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Abstract: Collection of spectroradiometric measurements with associated biophysical variables is
an essential part of the development and validation of optical remote sensing vegetation products.
However, their quality can only be assessed in the subsequent analysis, and often there is a need
for collecting extra data, e.g., to fill in gaps. To generate empirical-like surface reflectance data of
vegetated surfaces, we propose to exploit emulation, i.e., reconstruction of spectral measurements
through statistical learning. We evaluated emulation against classical interpolation methods using
an empirical field dataset with associated hyperspectral spaceborne CHRIS and airborne HyMap
reflectance spectra, to produce synthetic CHRIS and HyMap reflectance spectra for any combination
of input biophysical variables. Results indicate that: (1) emulation produces surface reflectance
data more accurately than interpolation when validating against a separate part of the field dataset;
and (2) emulation produces the spectra multiple times (tens to hundreds) faster than interpolation.
This technique opens various data processing opportunities, e.g., emulators not only allow rapidly
producing large synthetic spectral datasets, but they can also speed up computationally intensive
processing routines such as synthetic scene generation. To demonstrate this, emulators were run to
simulate hyperspectral imagery based on input maps of a few biophysical variables coming from
CHRIS, HyMap and Sentinel-2 (S2). The emulators produced spaceborne CHRIS-like and airborne
HyMap-like surface reflectance imagery in the order of seconds, thereby approximating the spectra
of vegetated surfaces sufficiently similar to the reference images. Similarly, it took a few minutes to
produce a hyperspectral data cube with a spatial texture of S2 and a spectral resolution of HyMap.

Keywords: emulation; machine learning; interpolation; spectroscopy; scene simulation

1. Introduction

The acquisition of spectroradiometric data and associated biophysical variables are an essential
part of the development and validation of imaging spectroscopy vegetation products [1–3]. However,
field data collection is an expensive and tedious job, typically requiring the organization of a dedicated
field and flight campaign. Despite committed efforts to collect highly qualitative empirical datasets,
their quality can only be assessed in the subsequent analysis. Often, it then appears that there is a
need for additional gap-filling data collection, e.g., in case the collected data represent insufficient
variability for a proper mapping validation [4]. Basically, two options occur to acquire additional data.
The obvious option is returning to the field to collect new measurements. However, this is not always
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feasible: repeating a campaign is not only costly and time-consuming, it may also be that too much
time has passed and the vegetation conditions have changed. It implies that an alternative way to
collect extra data has to be considered. In this respect, the second option involves generating new
data based on the already existing empirical data, e.g., by means of interpolation or extrapolation
techniques. Evidently, this approach will never replace the collection of original field data, yet it can
provide an adequate approximation and is without costs.

Interpolation of spectral data is a standard practice in image processing applications, and various
interpolation techniques are commonly used, both for gridded (i.e., systematically ordered) and
scattered (i.e., arbitrarily ordered) datasets [5]. When it comes to field spectral data, given its
irregular nature, only scattered interpolation methods are possible. The most widespread method
is linear interpolation because of its processing speed and accuracy [6,7]. Since interpolation in
scattered datasets relies on triangulation of the input space, it requires large computer memory
in high dimensionality of the input space and the method becomes computationally expensive.
Another drawback of linear interpolation in scattered data is that it does not allow extrapolating
outside the given parameter space. Other interpolation methods such as inverse distance weighting [8]
can be used for extrapolating at the expense of accuracy.

As an alternative of classical interpolation techniques, in this work we propose to exploit emulation
to produce new empirical-like spectral data. The principle of emulation is approximating the original
model by a surrogate statistical learning model, also referred to as a meta-model, or emulator [9,10].
Essentially, an emulator functions as an interpolation method, but based on statistical learning principles.
When an accurate emulator has been developed, it can then approximate the original model at a tiny
fraction of the original speed [11–13]. The use of emulator deals with some advantages such as the use of
a scattered input parameter space, making it more versatile than several advanced interpolation methods
(e.g., piece-wise cubic splines and Sibson’s method) and allows both interpolation and extrapolation.
An important question hereby arises whether emulators are able to compete with interpolation methods
in generating spectral outputs, both in terms of accuracy and processing speed. This has been recently
analyzed for the emulation of deterministic models, e.g., radiative transfer models (RTMs) [14]. In the
latter work, emulation clearly outperformed interpolation in terms of accuracy and this at competitive
speed. In the work of Verrelst et al. [13], RTM-based emulators are used for the generation of a synthetic
hyperspectral data. The simulation of optical images can play key roles in the development of new
instruments, the quantitative evaluation of algorithms and in the training of both image analysis
software and human analysts [15–17]. The challenge in image simulation remains to simulate as
realistically as possible without running into a tedious computational burden [17]. In this respect, an
open question emerges: whether emulators can be used to replicate rather irregular empirical spectral
data, i.e., as measured by a spectroradiometer. If so, it would become possible to render synthetic scenes
that approximates a degree of realism as measured by a spectroradiometer.

This brings us to the following main objective: to analyze the ability of emulators as an
alternative of classical interpolation methods for the production of empirical-like hyperspectral data.
Sub-objectives were: (1) to compare emulation methods against interpolation methods validated
against a part of a field dataset; (2) to use the most successful method to simulate a large empirical-like
dataset; and (3) to analyze the feasibility of constructing synthetic hyperspectral airborne and
spaceborne imagery. To address these objectives, a widely used empirical dataset was examined, i.e.,
SPARC (Spectra Barrax Campaign) [18]. This dataset consists of several field biophysical variables that
were collected over multiple crop types. Simultaneously, an overpassing satellite CHRIS (Compact
High Resolution Imaging Spectrometer) hyperspectral image was acquired and m a flight campaign
was conducted with a HyMap airborne hyperspectral sensor, leading to associated spaceborne and
airborne surface reflectance data. These labeled hyperspectral datasets were first analyzed with
the purpose of clarifying the predictive power of emulators and interpolation methods. Synthetic
empirical-like spectra were subsequently generated based on the best evaluated method. Eventually,
new possibilities were explored to render synthetic hyperspectral imagery.
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The remainder of this paper is arranged as follows. Section 2.1 introduces the interpolation and
emulation methods, while Section 3 presents ESA’s SPARC dataset and gives the empirical setup.
The results are presented in Section 4, followed by applications of hyperspectral imagery generation.
A discussion on emulation opportunities for the rendering of synthetic imagery is provided in Section 5.
Section 6 concludes the work.

2. Interpolation and Emulation

2.1. Interpolation

Starting with the interpolation theory, let us consider a D-dimensional input space X from where
we sample x ∈ X ⊂ RD in which a K-dimensional object function f(x; λ) = [ f (x; λ1), . . . , f (x; λK)] :
R 7→ RK is evaluated. In the context of this paper, X comprises the D input variables that control
the behavior of the function f(x; λ), i.e., spectral output. Here, λ represents the wavelengths in the
K-dimensional output space (for sake of simplicity, the wavelength dependency is omitted in the
formulation, i.e., f(x; λ) ≡ f(x)). An interpolation, f̂(x), is therefore a technique used to approximate
model simulations, f(x) = f̂(x) + ε, based on the numerical analysis of an existing set of nodes,
fi = f(xi), conforming to a pre-computed dataset. The concept of interpolation has been widely
used in remote sensing applications, including retrieval of biophysical parameters and atmospheric
correction algorithms [6,19,20].

The following interpolation techniques are commonly used given scattered data:

• Nearest-neighbor: This is the simplest method for interpolation, which is based on finding the
closest node xi to a query point xq (e.g., by minimizing their Euclidean distance) and associating
their output variables, i.e., f̂(xq) = f(xi). This fast method is valid for both gridded and scattered
datasets. However, it produces discontinuities of the underlying model being interpolated.

• Piece-wise linear: This method is commonly used in remote sensing applications due to its balance
between computation time and interpolation error. The implementation of linear interpolation
is based on the Quickhull algorithm [21] for triangulations in multi-dimensional input spaces.
For the scattered input data, the piece-wise linear interpolation method is reduced to finding
the corresponding Delaunay simplex [22] (e.g., a triangle when D = 2) that encloses a query
D-dimensional point xq (see Equation (1)):

f̂i(xq) =
D+1

∑
j=1

ωjf(xj), (1)

where ωj are barycentric coordinates of xq with respect to the D-dimensional simplex (with
D + 1 vertices) [23]. Since f(x) is a K-dimensional function, the result of the interpolation is
also K-dimensional.

However, linear interpolation causes discontinuities on the first derivative of the interpolated
model. In addition, in scattered datasets, the underlying Delaunay triangulation is computationally
expensive in high dimensional input spaces (typically D > 6) and is also limited by its intensive
memory consumption [21,24]. In practice, it implies that it cannot do extrapolation. To predict
the missing samples, here linear interpolation is used in combination with the following method:

• Inverse Distance Weighting (IDW) [8]: Also known as Shepard’s method, this method weights
the n closest nodes to the query point xq (see Equation (2)) by the inverse of the distance metric
d(xq, xi) : X 7→ R+ (e.g., the Euclidean distance):

f̂(xq) =
∑n

i=1 ωif(xi)

∑n
i=1 ωi

, (2)

where ωi = d(xq, xi)
−p, and p (typically p = 2) is a tuneable parameter known as power parameter.

When p is large, this method produces the same results as the nearest-neighbor interpolation.
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The method is computationally cheap but it is affected by nodes far from the query point.
The modified Shepard’s method [25] aims to reduce the effect of distant grid points by modifying
the weights with Equation (3):

ωi =

(
R− d(xq, xi)

R · d(xq, xi)

)p

, (3)

where R is the maximum Euclidean distance to the n closest nodes.

2.2. Emulation

Emulation can essentially be considered as an interpolation technique, but then based on statistical
learning principles [11–14]. The basic idea is that an emulator uses a limited number of simulator runs,
i.e., input–output pairs (corresponding to labeled training samples), to infer the values of the complex
simulator output given a yet-unseen input configuration. As with interpolation, once the emulator is
built, it is not necessary to perform any additional runs of the model; the emulator computes the output
that is otherwise generated by the simulator [9]. Note that building an emulator is in principle nothing
more than building a statistical learning regression model as often done for biophysical variable
retrieval applications, but in reversed order: whereas a retrieval model converts input spectral data
(e.g., reflectance) into one or more output biophysical variables, an emulator converts input biophysical
variables into output spectral data [11]. See also [26] for a systematic review on biophysical variable
retrieval methods applicable to spectroscopy data.

When it comes to emulating spectral outputs, however, the challenge lies in delivering a full
spectrum, i.e., predicting multiple spectral bands. It bears the consequence that the learning methods
should be able to generate multiple outputs to be able to reconstruct a full spectral profile. This is
not a trivial task. Only few regression models can deal with multiple outputs. However, training a
complex multi-output statistical model with the capability to generate so many output bands would
take considerable computational time and would probably incur a certain risk of overfitting because of
model over-representation. A workaround solution had to be developed that enables the regression
algorithms to cope with large, spectroscopy datasets. An efficient solution is to take advantage of the
so-called curse of spectral redundancy, i.e., the Hughes phenomenon. Since spectroscopic data typically
show a great deal of collinearity, it implies that such data can be converted to a lower-dimensional
space through dimensionality reduction techniques. Accordingly, converting the spectral data into
a limited set of components that preserve most of the spectral information content implies that the
multi-output problem is greatly reduced [13]. Afterwards, the components can again be converted to
spectral data with an efficient approximation.

The first step thus involves building a statistically-based representation (i.e., an emulator) of the
field data using statistical learning from a set of training data points derived from runs of the actual
model under study (nodes in the context of interpolation). These training data pairs should ideally
cover the multidimensional input space using a space-filling algorithm. The second step uses the
emulator previously built in the first step to compute spectral output. Based on the above literature
review and earlier conducted emulation evaluation studies [11–13], the following three machine
learning regression algorithms (MLRAs) serve as powerful methods to function as accurate emulators:
(1) kernel ridge regression (KRR) [27]; (2) Gaussian processes regression (GPR) [28]; and (3) neural
networks (NNs) [29]. A description of these algorithms can be found in earlier related works [11,30,31].

3. Description of Used SPARC Dataset and Experimental Setup

3.1. SPARC Dataset

As part of the SPARC campaign [18], the following biophysical variables were measured within a
total of 108 Elementary Sampling Units (ESUs) for different crop types (garlic, alfalfa, onion, sunflower,
corn, potato, sugar beet, vineyard and wheat): (1) leaf chlorophyll content (LCC); (2) leaf area index
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(LAI); (3) fractional vegetation cover (FVC); (4) biomass; (5) leaf water content (LWC); and (6) canopy
water content (CWC) [18].

During the campaign a CHRIS satellite image and airborne hyperspectral airborne HyMap
flight-lines were acquired for the study site, during the month of July 2003. CHRIS onboard PROBA
satellite measures over the visible/near-infrared (NIR) spectra from 400 to 1050 nm. It can operate
in different modes, balancing the number of spectral bands, size of the covered area, and spatial
resolution because of onboard memory storage reasons [32]. CHRIS data were acquired in Mode 1
(62 bands, full spectral information, pixel size 34 m). The spectral resolution provides a bandwidth
from 5.6 to 33 nm depending on the wavelength. The images were atmospherically corrected according
to the method proposed in [33]. HyMap flew with a configuration of 125 contiguous spectral bands,
spectrally positioned between 430 and 2490 nm. Spectral bandwidth varied between 11 and 21 nm.
The pixel size at overpass was 5 m. The flight-lines were corrected for radiometric and atmospheric
effects according to the procedures in [33]. Finally, from both images, a top-of-canopy reflectance
dataset was prepared, referring to the center point of each ESU and their corresponding biophysical
variables values. Accordingly, datasets of CHRIS and HyMaP spectra with labels of biophysical
variables were created. Additionally, to account for spectral variability of non-vegetated surfaces,
29 bare soil spectra (with biophysical variables set to 0) were added so that a total of 130 samples
was reached.

3.2. Experimental Setup

To ascertain that the predictive power of the interpolation and emulation methods, the labeled
SPARC datasets were 80%/20% split into two parts: (1) a training-testing part (104 samples); and
(2) a validation part (26 samples). The validation part serves as reference for all the methods. Then,
the training dataset was again split into 80% training and 20% testing to test the emulation power of
the three MLRAs. Based on earlier evaluation studies [11–14], the spectral training data were first
converted with a PCA into 20 components. The interpolation methods do not require a training step,
meaning that the entire original 80% was used as scattered dataset wherein the interpolation methods
were applied.

The study was conducted in ARTMO’s Emulator toolbox [11]. This graphical user interface emulator
toolbox provides various tools to develop, optimize and validate emulators. Multiple emulators
can be developed. It then analyzes the validation accuracy of each emulator by calculating the
root-mean-square-error (RMSE) and the normalized RMSE (NRMSE) (%) difference between emulated
spectra and validation RTM spectra per wavelength and also averaged over the full spectral range.
In this latest version (v. 1.09), the emulator toolbox has been expanded with new tools such as scene
emulation and validation and the option to export an emulator outside the toolbox, which facilitates the
interested user to repeat this study or conduct similar experiments for its own purposes. The complete
analysis was done on a 64 bits Windows i7-4790CPU3-6GHz, 16GB RAM.

4. Results

4.1. Interpolation vs. Emulation

The performances of interpolation and emulation were validated against the 20% validation
dataset for the CHRIS and HyMap datasets. Based on the calculated statistics and recorded run-time in
Table 1, the following trends can be observed: (1) KRR and GPR emulation approximated the surface
reflectance data considerably more accurately than the two interpolation methods, who perform
similarly with linear interpolation performing slightly better than nearest interpolation. For both
datasets, GPR emulation performed slightly superior than KRR. The performance of NN to reconstruct
surface reflectance data tended to be more unstable; for the CHRIS dataset, the NN emulator performed
similarly to the other emulators, while, for the HyMap dataset, the NN emulator performed on the
same order as the interpolation methods. (2) All emulators produced spectral output multiple times
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faster than interpolation techniques. The gain in speed was on the order of 10–30 times for GPR, and
250–400 times for KRR.

Table 1. Interpolation vs. emulation validation results and CPU time for CHRIS (top) and HyMap
(bottom) SPARC datasets.

Model RMSE NRMSE (%) CPU (s)

CHRIS
Interpolation:
- nearest 653.3 20.7 0.1881
- linear + IDW 649.4 20.5 0.3040
Emulation:
- KRR 436.3 13.0 0.0007
- GPR 420.6 13.0 0.0096
- NN 432.5 13.4 0.0070

HyMap
Interpolation:
- nearest 405.4 12.5 0.1501
- linear + IDW 398.2 12.2 0.2428
Emulation:
- KRR 269.6 8.5 0.0006
- GPR 267.2 8.4 0.0086
- NN 412.0 12.6 0.0059

Probably a more comprehensive way to evaluate the predictive power of the interpolation and
emulation methods is plotting the relative errors (NRMSE) as a function of wavelength (Figure 1). It can
be noted that, for both the CHRIS and HyMap datasets, the emulation methods led to systematically
lower errors. For the CHRIS dataset, both interpolation methods perform similarly, but that is not
necessarily always the case, as shown for the HyMap dataset, and also tests with other datasets (results
not shown). Lowest errors were obtained with the emulation methods KRR and GPR, with GPR
producing slightly more accurate replications for the majority of wavebands. When inspecting the
errors along the spectral range, some wavelength-dependent fluctuations can be observed, with most
remarkable the peak in the HyMap dataset at 1404 nm. This band falls within the water absorption
region, leading to a noisy dataset and thus more difficult to reproduce. However, this band is typically
removed in vegetation applications (just as the water absorption bands in the 1900 nm region). A second
HyMap peak with inaccuracies (at 723 nm) can also be observed in the CHRIS dataset (at 718 nm).
These bands are located in the middle of the red edge, which is a highly dynamic narrow region where
reflectance of vegetation changes rapidly from the visible to the NIR shoulder. Comparison of both
datasets also reveals that the CHRIS dataset was less successful in replicating the spectra in the visible
region than the HyMap dataset. While this suggests that the visible region of the satellite data is noisier
than the airborne data, the key message is that the emulation methods are better able to cope with
such data than the interpolation methods.

Another way to evaluate the predictive power of the best-performing emulator is by comparing
the GPR-emulated HyMap-like spectra against the original CHRIS and HyMap spectra (Figure 2).
All six variables were sampled, although the spectra was color-scaled by LAI. The similarity between
the original spectra and emulated spectra can be appreciated, although not all spectra were precisely
replicated. That some differences appear is mainly due to the inclusion of bare soil spectra. Bare soil
spectra are characterized by 0 values for all biophysical variables. An emulator is a deterministic model
and thus generates only one spectral output when given 0 values for all variables. Hence, spectral
variability over soil and man-made surfaces is lost.

As a proof of concept and in an attempt to exemplify the predictive power of the GPR emulators,
we generated 500 CHRIS-like and HyMap-like surface reflectance spectra based on random sampling
of the six input variables. Although all six variables were randomly sampled, it took only 0.1 s to
produce the associated output spectra. The obtained spectral variability can be viewed in Figure 3;
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the spectra is again color-scaled by LAI. With this figure, the potential of the emulator to rapidly
generate sensor-specific hypespectral spectra of vegetated surfaces can be appreciated. Consequently,
it should become similarly possible to emulate complete hyperspectral imagery.
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Figure 1. Wavelength-dependent NRMSE (%) results of the two interpolation methods and the three
tested emulators, i.e., KRR, GPR, NN for CHRIS (left) and HyMap (right) datasets.
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Figure 2. Original SPARC 20% validation spectra (left) and GPR-emulated spectra (right) for CHRIS
(top) and HyMap (bottom) data, color plotted as a function of LAI.
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Figure 3. 500 GPR-emulated CHRIS-like (left) and HyMap-like (right) surface reflectance spectra, color
plotted as a function of LAI.
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4.2. Emulation of Hyperspectral Imagery

Having demonstrated the predictive power of emulators to produce empirical-like hyperspectral
surface reflectance data, we then assessed whether emulators can be used to construct synthetic
hyperspectral data cubes. Three demonstration cases are provided: (1) the emulation and validation of
a synthetic spaceborne CHRIS image; (2) the emulation and validation of a synthetic airborne HyMap
image; and (3) the emulation of a synthetic hyperspectral image with the spatial texture of Sentinel-2
(S2) and the spectral resolution of HyMap.

4.2.1. CHRIS-Like Image

First, we assessed whether the above-developed emulator can also be used to reconstruct a
synthetic CHRIS image (744 by 635 pixels). To do so, GPR retrieval models for all six SPARC variables
(i.e., LCC, LAI, FVC, biomass, LWC and CWC) were developed and applied to a CHRIS image to
obtain input maps (see [30,31] for details on GPR biophysical variables retrieval). As outlined in
Figure 4, the following approach was pursued. The above-developed CHRIS emulators (KRR, GPR,
and NN) were first run with inputs coming from the input maps. The emulated CHRIS-like image was
then band-per-band compared against the reference CHRIS image.

Figure 4. Schematic overview of RGB and emulated synthetic CHRIS image over agricultural site
Barrax, Spain (R: 653 nm; G: 553 nm; B: 460 nm).

All three above-developed CHRIS emulators ran quickly in rendering the CHRIS-like image, with
KRR and NN running extremely quickly, producing the data cube in about 15 s, and GPR running
in about 24 s. Each emulated band was band-by-band compared for all image pixels against the
reference image by calculating the NRMSE, which was then plotted for all bands (Figure 5). Overall,
GPR performed most stably with errors around 10%, followed by NN that performed somewhat more
unstably in the NIR. KRR largely failed in the visible but excelled after passing the red edge.

To assess the quality of the GPR-emulated synthetic scene, relative errors maps are shown for
six arbitrarily taken bands along the CHRIS spectral range in Figure 6—the other bands showed
similar patterns (not shown for brevity). The whitish surfaces represent no differences, i.e., a perfect
reconstruction of the pixel values, reddish colors signify an overestimation while bluish colors represent
an underestimation. Substantial whitish areas along all spectral bands can be observed, meaning a
perfect spectral reconstruction. This suggests that these areas have good to excellent approximations
by the emulator. The underlying mechanism lies in that these areas were well represented by the
SPARC training dataset. At the same time, some surfaces expose significant overestimations, especially
around the irrigated agricultural fields. A closer look against the RGB image (see Figure 4) reveals that
these areas are merely characterized by bare soils or fallow lands, areas that were hardly covered by
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the training dataset. Hence, this suggests that the emulator would benefit from the inclusion of a soil
variable in order to be able deal with soil spectral variability.
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Figure 5. Wavelength-dependent NRMSE (%) comparison of scenes as generated by the three tested
emulators (KRR, GPR, NN) against a reference CHRIS scene.
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Figure 6. Relative difference maps (%) for arbitrarily chosen wavelengths between GPR-emulated
scene and reference CHRIS scene.

4.2.2. HyMap-Like Image

We subsequently assessed whether the HyMap emulators can be used to reconstruct a HyMap-like
a subset of an HyMap image (500 by 500 pixels). Retrieval models for all six SPARC variables were
again developed using GPR and applied an HyMap subset. As shown in Figure 7, the obtained maps
were then used as input to run the three emulators. KRR again ran extremely quickly: it produced the
data cube in less than 5 s. NN followed in about 12 s and GPR ran in about 18 s. KRR also appeared to
replicate the reference image most accurately: KRR errors were on the order of 10–15% depending on
the wavelength (Figure 8). Its combination of running quickly with high accuracy makes this KRR
emulator attractive for further use.
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Figure 7. Schematic overview of RGB and emulated synthetic subset of HyMap scene over agricultural
site Barrax, Spain (R: 646 nm; G: 555 nm; B: 462 nm).
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Figure 8. Wavelength-dependent NRMSE (%) comparison of scenes as generated by the three tested
emulators (KRR, GPR, and NN) against a reference HyMap scene.

For the KRR-emulated HyMap scene, again some relative errors maps were given for six arbitrarily
taken bands along the HyMap spectral range (Figure 9). The whitish surfaces along all spectral bands
imply a perfect spectral reconstruction. For instance, the large circular agricultural parcel is mostly
whitish or light bluish apart from the 738 nm bands. This suggests that these vegetated surfaces have
good to excellent approximations by the emulator. Conversely, the spectral response of some surfaces
exposed systematic overestimations, especially when moving towards the SWIR. A closer look against
the RGB image reveals that these areas are merely characterized by bare soils or fallow lands, areas
that were hardly represented by the training dataset. It again underlines that the emulator would
benefit from the inclusion of a soil variable to deal better with soil spectral variability.
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Figure 9. Relative difference maps (%) for arbitrarily chosen wavelengths between KRR-emulated
scene and reference HyMap scene.

4.2.3. Sentinel-2-Like Hyperspectral Image

As a final scene rendering application, in this third experiment the KRR HyMap emulator
was applied to generate a new synthetic hyperspectral image. Of interest is that the emulator
technique enabled producing hyperspectral spectra based on inputs that come from anywhere, e.g.,
from biophysical variables derived from a routinely acquired satellite image. To exemplify this idea,
we emulated a data cube with the spectral profile of HyMap and the spatial texture of a Sentinel-2 (S2).
The pursued approach is as follows: first, biophysical variables maps coming from an original S2 image
at 20 m resolution (5490 by 5490 pixels) were retrieved using GPR models. These maps subsequently
served as input for the KRR HyMap emulator. It led to an emulated hyperspectral data cube with the
spatial texture of S2 and the spectral richness of HyMap. It took 8 min to produce this hyperspectral
S2-like image with a size of 29.4 GB. Because a single S2 image is rather big, Figure 10 displays a small
subset of 700 × 700 pixels as a hyperspectral data cube so that the spatial details can be appreciated.
The rendering of this subset took 4 s. The S2 spatial texture is clearly visible, with agricultural fields
in pronounced green colors, and also spatial patterns of roads and riverbeds are easily observable.
On the downside, since the emulator is based on training data over vegetated surfaces, it led to that
the senescent or bare soil fields and other non-vegetated areas lack spectral variability, which can be
observed by the homogeneous whitish fields.
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Figure 10. Schematic overview of RGB- and KRR-emulated synthetic hyperspectral S2-like image
and data cube visualization of emulated subset over agricultural site Valladolid, Spain (R: 646.5 nm;
G: 554.9 nm; B: 462.4 nm).

5. Discussion

This study evaluated the use of statistical learning emulators to produce synthetic hyperspectral
surface reflectance data similarly to how it would have been measured by a spectroradiometer.
Emulation has been recently introduced as an attractive method to approximate the input–output
functioning of deterministic models [10,11], and earlier proved to be successful in approximating
full-spectrum RTM output data [12,13]. Here, it was assessed whether emulators can be developed
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to approximate sensor-specific empirical spectroradiometric data. Three emulation methods were
compared against more conventional interpolation techniques, i.e., nearest neighbour and linear
interpolation. Two empirical hyperspectral datasets with associated biophysical variables were
analyzed: a spaceborne dataset, with surface reflectance measurements as acquired by a CHRIS
overpass, and an airborne dataset, with surface reflectance measurements as acquired by HyMap.
The emulators as developed by the machine learning regression algorithms KRR and GPR not only
outperformed the tested interpolation techniques in terms of accuracy, but also produced the output
spectra numerous times faster (up to 400 in case of KRR). This led us to suggesting that emulation is a
more promising method than the commonly used interpolation methods in producing empirical-like
synthetic surface reflectance data. However, it must be remarked that the used validation dataset was
rather small (26 samples). The performances of all these methods will likely improve when having
more samples available. This has been earlier tested with simulated data, where larger datasets clearly
favoured the accuracies of all methods with superior results for emulators [14]. The performances
of these methods when using large empirical datasets is left to be consolidated, yet the gain in
speed as opposed to interpolation methods is clearly unsurpassable. To exemplify the emulators’
speed, 500 reflectance spectra were produced as a function of randomly combining input variables
in less than a second. Another remark is that none of the tested methods performed equally stable
along the spectral range; particularly, inaccuracies emerged in replicating noisy or highly dynamic
spectral regions. This is not a surprise given that both interpolation or emulation methods develop a
deterministic model and thus merely mimic general trends in the spectral data.

While the theoretical framework, strengths and weaknesses of interpolation versus emulation have
been discussed before [14], here we address the potential of emulation for remote sensing applications.
One attractive application of emulation is the rendering of synthetic passive optical imaging of the
Earth’s surface. The rendering of synthetic images is one of the core elements in end-to-end satellite
mission simulators [15,16,34]. Mission simulators are software tools used by scientists and engineers
that allow: (1) consolidating the requirements of a satellite mission; and (2) testing and evaluating the
performance of its instruments and data processing algorithms. Synthetic scenes therefore provide the
reference bio-geophysical products maps to evaluate the performance of the mission as well as the
input radiance observed by the instruments. The common approach is to use present reflectance maps
from existing airborne/satellite images. This approach comes at the expenses of including instrumental
noise to the reference scenes. The alternative approach is to use RTMs to propagate light though the
surface and atmosphere. However, this comes at expenses of prohibitive computation time.

The emulated scenes presented in this paper show the capabilities of emulators to produce realistic
scenes in terms of texture (by using external airborne/satellite imagery) and spectroradiometry
(by training the emulator with labeled empirical spectra). The best-performing emulators were
evaluated on their ability to reproduce CHRIS an HyMap data cubes by comparing against reference
images. With KRR and NN emulators such scenes were generated quasi-instantly (in the order of
seconds) and with wavelength-dependent relative errors below 15% when considering the whole
scene. However, these errors varied largely depending on the spatial size (e.g., see CHRIS vs. HyMap)
and within the scene depending on the land cover type. That emulation of HyMap led to local spots
with high errors can also be interpreted in this light: a more diverse spectral variability is measured at
a higher spatial scale, e.g., due to local variations in soil properties, which are not reproduced by the
emulator. On the other hand, for vegetated surfaces a spectral variability similar as reference spectra
was obtained both for CHRIS and HyMap. This is encouraging, given the fast processing and the low
memory requirements of an emulator, i.e typically less than 1 MB. In principle, any kind of synthetic
scenes with vegetated surfaces can be emulated, as long as input maps are available. This idea has
been demonstrated with the rendering of a new hyperspectral image with the spatial texture of S2.
These input maps can come from user-developed retrieval models, as done in this work, as well as
from routinely acquire satellite products, or can be simulated, e.g., based on land cover maps and
probability density functions [13,16]. Logically, the more realistic are the input maps, the more realistic
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are the emulated scene. In addition, processing speed can further be accelerated with more powerful
computers. For instance, it took less than a minute (56 s) to repeat the rendering of the hyperspectral
S2-like image on a newer PC (i7-8700CPU 3.70GHz, 32GB RAM).

Because of its versatility, the emulation technique opens up new opportunities in synthetic scenes
generation. In the review paper by Han and Kerekes (2017) [17], four image simulation techniques have
been reviewed with their pros and cons: (1) empirical approach; (2) image modification; (3) statistical
approach; and (4) physical modeling. The usage of emulators for scene generation belongs to the
category of the statistical methods. In statistical methods, Monte Carlo methods are of often used
that generate individual pixels that conform to the statistical abundance data or machine learning
to replicate real image phenomena [17]. It was also argued that the statistical models often lack the
realism of empirical imagery that occurs given the complexity of the real world. With the emergence of
emulators trained by empirical data—as has been demonstrated here—we believe progress has been
made towards the statistical generation of realistic scenes.

Having outlined the potential of emulators for scene generation applications, it did not escape our
attention that an emulator can only perform as well as the labeled training data. It is well understood
that emulation never has the ambition to replace the need for field data collection (i.e., spectral
observations and associated measured biophysical variables). Field data are mandatory to train
the emulators, i.e., the quality of the emulator is only as good as the quality of the measurements.
However, an emulator is non-stochastic, i.e., emulated output spectra behaves deterministically within
the patterns of earlier-trained data [11,13]. Hence, good quality of training data is indispensable for
the development of an accurate emulator. For an emulator trained by empirical data, evidently the
inclusion of more biophysical variables and larger datasets will enhance its versatility. Regarding
the empirical SPARC dataset, while multiple variables and many samples were collected, the dataset
is not perfect as it contains value replications for each of the variables, i.e., the same variable value
for multiple spectra. At the same time, the SPARC dataset—just as any empirical data—suffers from
imperfections, e.g., due to undesired variability as introduced through imperfect measurements or
through imperfections in the measurement devices. Hence, some degree of noise is unavoidable.
Accordingly, the quality of statistical models can still be improved, not only with the addition of
carefully taken samples, but also with ensuring the measurements contain a large variability of unique
variables values. Related to this remark, it remains problematic that the developed emulators were
unable to approximate non-vegetated surfaces. Given the absence of a variable that controls spectral
variability over non-vegetated surfaces, it led that all these surfaces were emulated with the same
soil spectral profile. This is a shortcoming for realistic scene generation of natural surfaces. However,
in principle, this limitation can easily be mitigated when having a soil property variable available such
as soil moisture data [35]. Apart from data quality, another path where further emulation accuracy
improvements may be encountered is in the used algorithm. Latest statistical learning algorithms
can be very powerful, particularly of interest is the rapidly evolving field of deep learning [36].
Although advanced NN designs are mostly used into classification studies, deep learning methods
such as transfer learning are increasingly used in regression, and could thus be exploited for emulation
purposes (e.g., [37]).

Beyond the here presented demonstration cases, emulators can easily be developed and imported
into other image processing applications with ARTMO’s Emulator Toolbox [11]. In the toolbox,
emulators can be developed either based on RTM data or on empirical data, or a mixture of both.
They can then be imported into various toolboxes including scene simulation. Simulated scenes
through emulation can be either based on external input maps of biophysical variables or inputs can
be also be based on user-defined land cover classes with associated variables and probability density
functions [13]. Other ARTMO toolboxes that enable the running of emulators include: (1) global
sensitivity analysis, allowing to identify the driver variables [12]; and (2) inversion of RTMs. Inversion
is typically done by means of look-up tables, e.g., for atmospheric correction and retrieval or for the
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retrieval of vegetation variables. By replacing a computationally expensive RTM with its emulated
counterpart, the inversion becomes extremely quick and therefore attractive for image processing.

Altogether, emulation can serve as a convenient technique to generate quickly a massive amount
of synthetic spectral data that behave similarly to data observed by a sensor based on input biophysical
variables. As such, it enables rendering scenes of vegetated surfaces with low computational cost.
Moreover, in principle, multiple emulators can be combined in the rendering of synthetic scenes,
e.g., specific emulators for different land cover classes such as a vegetation emulator, water emulator
and an emulator that accounts for spectral variability of bare soil and man-made surfaces. Likewise,
emulators can also be combined with the more sophisticated RTMs. For instance, the vegetated
surfaces can be simulated by means of a canopy RTM while water bodies can be emulated, or the other
way around, depending on the application and the preferred trade-off between required accuracy
and processing speed. It is anticipated that future image simulation systems will offer blends of
physical and statistical image simulation techniques that can be customized depending on the user’s
requirements and preferred trade-off between accuracy and speed.

6. Conclusions and Outlook

This study demonstrated that emulation of empirical surface reflectance data labeled with
biophysical variables offers a fast and convenient technique to generate an unlimited amount of
empirical-like synthetic surface reflectance data. Emulators are statistical models that approximate
spectral outputs as a function of input biophysical variables. While machine learning regression
algorithms (MLRAs) have earlier been shown successful in emulating deterministic models, in this
work, we analyzed whether statistical learning models can be used to emulate empirical spectral data.
To analyze their ability to replicate surface reflectance data, three different MLRAs were compared
against common interpolation methods for two empirical hyperspectral datasets. Emulation simulated
surface reflectance data multiple times faster and also more precise than interpolation. This technique
opens the door to rapidly produce empirical-like synthetic hyperspectral data, e.g., for the production
of synthetic imagery. The running of emulators to render scenes has been demonstrated with the
production of a synthetic CHRIS, HyMap and a new hyperspectral Sentinel-2-like image. Images were
rendered instantaneously and particularly over vegetated surfaces sufficient realism as compared to
reference images was preserved. Emulation can be concluded as a fast and easy alternative to simulate
synthetic imagery, e.g., in preparation of future imaging spectroscopy missions. It is expected that in
the near future emulators will find their way into end-to-end satellite mission simulators. For instance,
exploratory efforts are underway to introduce emulators into the FLEX E2E simulator [15,16] for
rendering more realistic FLEX-like reflectance and fluorescence imagery.
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