

REPLACING RADIATIVE TRANSFER MODELS BY SURROGATE APPROXIMATIONS THROUGH MACHINE LEARNING

J. Verrelst*, J.P. Rivera, J. Gómez-Dans, G. Camps-Valls and J. Moreno Image Processing Laboratory (IPL), University of Valencia, Spain

*Jochem Verrelst **Image Processing Laboratory** University of Valencia, Spain jochem.verrelst@uv.es

1. Introduction

Physically-based radiative transfer models (RTMs) help in understanding the processes occurring on the Earth's surface and their interactions with vegetation and atmosphere. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through socalled emulators. Emulators are statistical models that approximate the functioning of RTMs. They are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We here present an 'Emulator toolbox' that enables analyzing three multioutput machine learning regression algorithms (MO-MLRAs) on their ability to approximate an RTM. As a proof of concept, a case study on emulating suninduced fluorescence is presented. The toolbox is foreseen to open new opportunities in the use of advanced RTMs, in which both consistent physical

6. Conclusions

To facilitate the use of emulators, ARTMO's new Emulator toolbox enables analyzing three multi-output machine learning regression algorithms (MO-MLRAs), both linear (PLSR and nonlinear (KRR, NN). The toolbox enables the user to train the MO-MLRA models with data coming from RTMs that are available within ARTMO. Options are provided to optimize the training phase, such a PCA pre-processing step, ranging training/validation distributions or through cross-validation sub-sampling procedures. Performance and processing speed of the MO-MLRAs are then calculated. A successfully validated MO-MLRA can function as emulator.

We analyzed the ability of the implemented MO-MLRAs to substitute the SVAT model SCOPE in the generation of sun-induced fluorescence (SIF) outputs. NN and KRR emulated SIF profiles with great precision (relative errors below 0.5% when trained with 500 or more samples), and this with a gain in processing speed of about 50 (NN) up to about 800 (KRR) times faster than SCOPE v1.60.

assumptions and data-driven machine learning algorithms live together.

Objective: to present a Emulator toolbox that enables building surrogate models that approximate radiative transfer models through MO-MLRAs. Thereby related are the following goals:

- 1. to evaluate multiple MO-MLRAs on their performance to function as an emulator and as a proof of concept;
- 2. to apply the best performing MO-MLRA as the emulator to approximate SCOPE.

The emulator toolbox opens up a diverse range of new applications using advanced RTMs, such as improved inversion strategies, and fast rendering of simulated scenes in preparation for new satellite missions.

2. ARTMO

ARTMO brings multiple leaf and canopy radiative transfer models (RTMs) together along with essential tools required for semi-automatic retrieval of biophysical parameters in a modular toolbox. The software package is freely downloadable at <u>http://ipl.uv.es/artmo</u>.

File		Models	Forward	Modules	Help	T
Load Proj New Proj		Combined	Combined	Sensor Graphics	User's manual Installation guide	•
DB admir Settings		sco	PE	Emulator	Disclaimer	
Model in	puts					
Save	New	DB	•	ARTMO [v. 3.10)] – – ×	Т
Load	Char	nge DB	File Models Forward	Tools Retrieval Help	<u>لا</u>	
	Dele	te	Project Description			- T
	Upda	ate	Project Name: Comment:			•
	V	7	Sensor: NO SENS		✓	
	LUT class			LUTCI	lass by map LUT Class by User	
	Project					N
	Database					

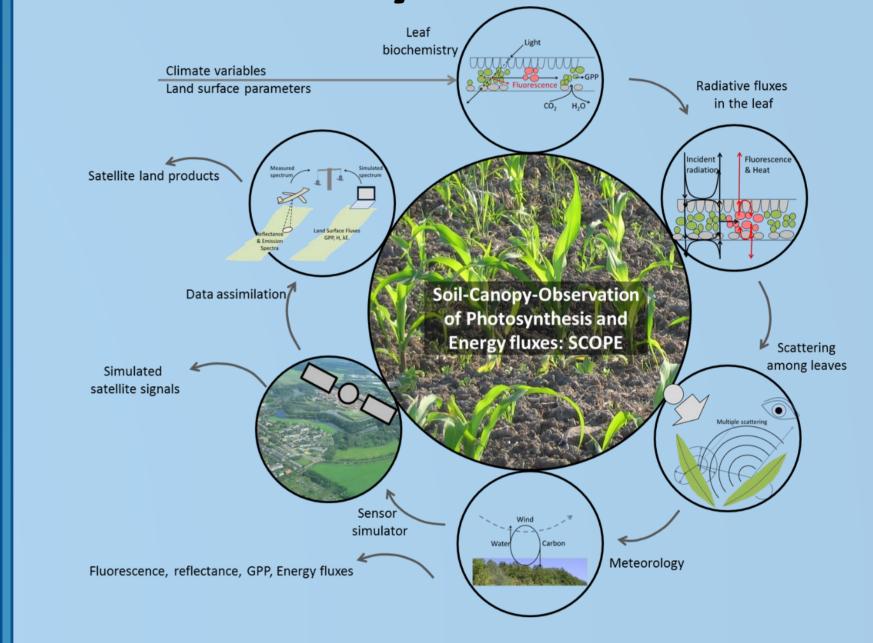
3. Emulator toolbox:

Input

Settings
Validation
Emulator

Input: An ARTMO-generated LUT **or** external LUT (.txt file).

Settings:


e following MO-MLRAs have been implemented:

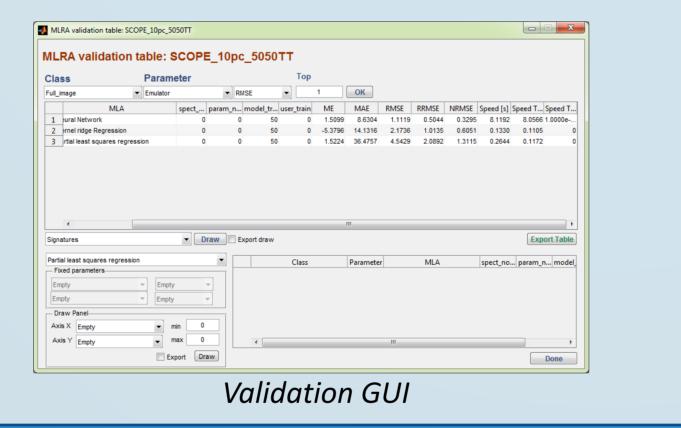
- Partial least squares regression (PLSR)
- Neural networks (NN)
- Kernel ridge regression (KRR)

e following options are provided:

PCA (greatly speeds up the training phase)

4. Case study: SCOPE

ARTMO's new Emulator toolbox first time presented here: EMULATOR Toolbox [v. 1.01] -


Input Settings Validation Emulator Tools Help

	Input	Sett	ings	Validation	Emulator	Tools		Help
	RTM data	7		New	RTM vs Emulator	Save		User's manual
	Txt data			Load	LUT Emulator	Load		Installation guide
	NC data	C data			Txt Emulator	Manage tests		Disclaimer
			-			View figure		
	Select pro	oject				Plot LUT		
	Edit settir	ngs				Residual analyzer		Delete
			J				1	Rename
	Select project Edit settings							

Cross-validation sub-sampling. Enables a more robust assessment of the accuracy.

ultiple MO-MRLAs can be validated at once.

Validation: An overview table with RMSE accuracies is provided. The most accurate MO-MLRA can then function as **emulator**.

SEN	I: scope SOR: NO SENSOR					
E	mulator parameters setting	gs				
	Parameter	min	max	model_	dist	
1	Rin:broadband incoming she	0 408.3021	998.9142	Uniform	-	
	2 Cab:Chlorophyll AB content	0.7542	79.3385	Uniform	-	
	LAI:Leaf area index [m2 m-2	2] 0.2496	6.9463	Uniform	•	
4	Vcmo:maximum carboxylati	o 0.2344	198.2537	Uniform	•	
	Settings color plot (HSV) Hue Saturation Bins					
		Saturation		Bin	15	
H		Saturation Cab:Chlorop	hyll AB cont		15	

Only train Only Val.

Only train 📃 Only Val

Settings GUI

SCOPE is a vertical (1-D) integrated radiative transfer and energy balance SVAT model, with sun-induced chlorophyll fluorescence (SIF) as one of their outputs. A LUT of 1000# entries were generated based on the most important input variables.

	Variable Names	Units	Range			
Leaf bi	ochemistry					
Vcmo	Maximum carboxylation capacity	$\mu \mathrm{mol} \ \mathrm{m}^{-1} \ \mathrm{s}^{-1}$	0.1 to 100			
Leaf va	vriables					
CHL	Leaf chlorophyll content	μ g/cm 2	0 to 80			
C_m	Leaf dry matter content	g/cm ²	0.001 to 0.05			
Canopy	v variables					
LAI	Leaf area index	m^2/m^2	0.01 to 7			
rwc	Within-canopy-layer resistance	m^2/m^2	0 to 20			
SZA	Solar zenith angle	0	0 to 60			
Micrometeorology variables						
Ca	CO_2 concentration in the air	ppm	350 to 450			
Р	Air pressure	hPa	1000 to 1090			
ea	Atmospheric vapour pressure	hPa	10 to 50			
Та	Air temperature	°C	5 to 25			
Rin	Incoming shortwave radiation	$\mathrm{W}~\mathrm{m}^{-2}$	400 to 1000			

NN

NN

750 wavelength (nm)

NN

750

wavelength (nm)

800

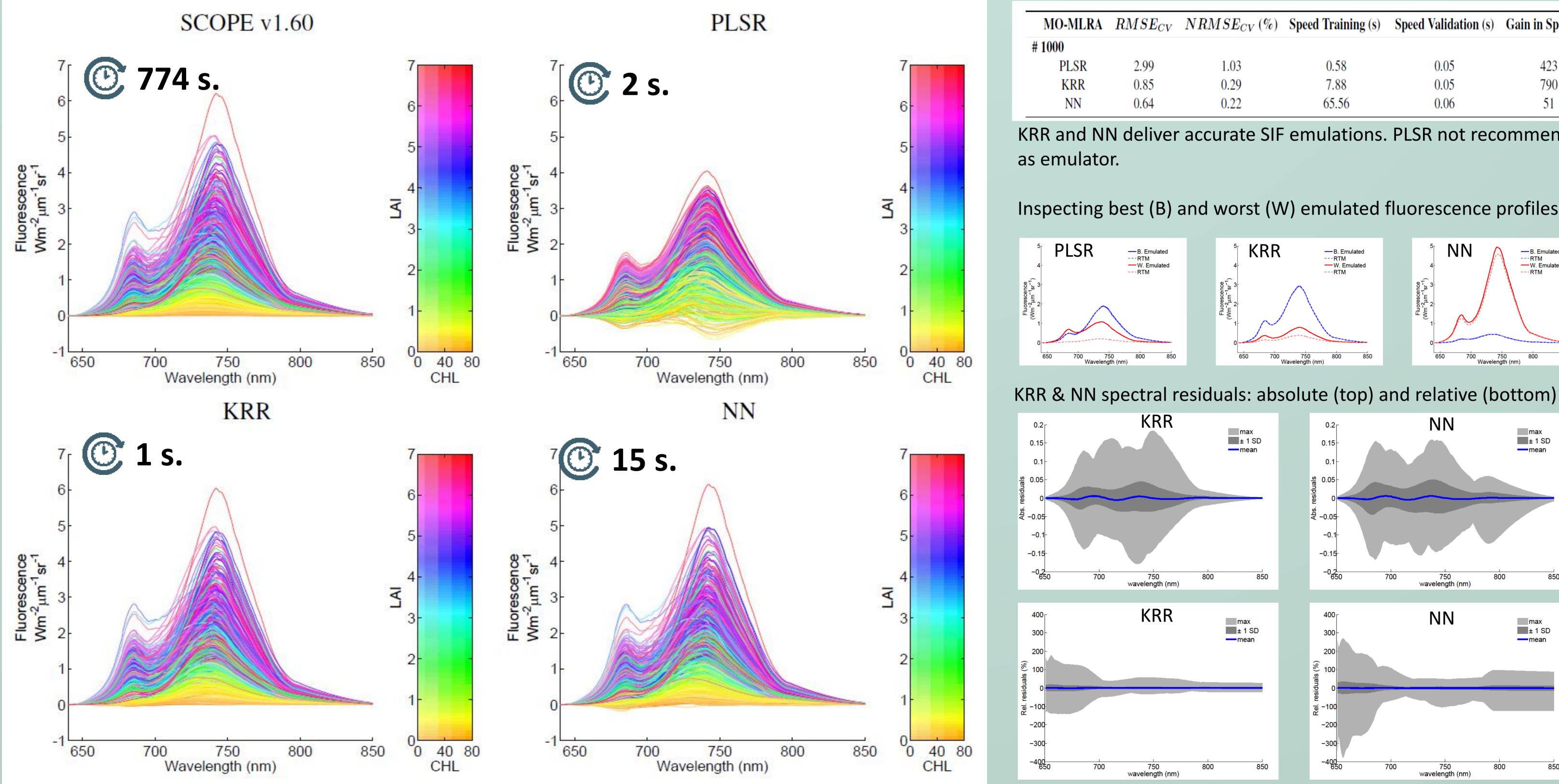
700

750 Wavelength (nm)

-B. Emulated

-W. Emulated

--RTM


max

max ±1SD

850

± 1 SD

5. Emulation results

Validation SCOPE fluorescence emulation

MO-MLRA	$RMSE_{CV}$	$NRMSE_{CV}$ (%)	Speed Training (s)	Speed Validation (s)	Gain in Speed (x)
# 1000					
PLSR	2.99	1.03	0.58	0.05	423
KRR	0.85	0.29	7.88	0.05	790
NN	0.64	0.22	65.56	0.06	51

KRR and NN deliver accurate SIF emulations. PLSR not recommended

-B. Emulated

-W. Emulated

--RTM

400₁

100

Inspecting best (B) and worst (W) emulated fluorescence profiles

Rivera, J.P., Verrelst, J., Gómez-Dans, J., Muñoz-Marí, J., Moreno, J., Camps-Valls, J. 2015. An emulator toolbox to approximate radiative transfer models with statistical learning. Remote Sensing. In press.