



## On the relationships between solar-induced fluorescence and net photosynthesis of the canopy: a SCOPE modeling study

Jochem Verrelst<sup>(1)</sup>, Juan Pablo Rivera<sup>(1)</sup>, Christiaan van der Tol<sup>(2)</sup>, Federico Magnani<sup>(3)</sup>, Gina Mohammed<sup>(4)</sup>, Jose Moreno<sup>(1)</sup>

<sup>(1)</sup> Image processing Laboratory (IPL), University of Valencia, Spain

<sup>(2)</sup> University of Twente, Netherlands

<sup>(3)</sup> University of Bologna, Italy

<sup>(4)</sup> P&M Technologies, Sault Ste Marie, Ontario, Canada

16/04/2015 – 9<sup>th</sup> EARSeL SIG IS

# **Outline**:

### Background

- Sun-Induced Fluorescence (SIF)
- $\circ~$  How to relate SIF to photosynthesis?
- SCOPE v.1.53 & Automated SCOPE (A-SCOPE)

### Global Sensitivity Analysis (GSA) SCOPE

- Variance-based GSA
- GSA results: what drives canopy-leaving SIF?

### • Relating SIF with photosynthesis (NPC)

- Simulating canopies with increasing complexity
- $\circ~$  Single band/multiple bands regression results

### • Conclusions









### The challenge:

#### How to relate fluorescence to photosynthesis?

#### Current approach:

**Top-down**: linking fluorescence (SIF) retrievals to photosynthesis (e.g. GPP) by means of a regression function.

### Limitations top-down approaches:

- Impact of varying biophysical variables not taken into account (leaf, structure, micrometeorology).
- Current approaches use only one SIF retrieval band, typically in second emission peak (PSI)
- Mostly linear regression functions used

#### Towards improved understanding of canopy-leaving SIF – photosynthesis dynamics:

- The impact of photochemistry/leaf/canopy/micro-meteorology variables on SIF: A global sensitivity analysis (GSA)
- The predictive ability of the full SIF profile towards net photosynthesis of the canopy (NPC): regression analysis (SIF-NPC)





# **SCOPE** (C. van der Tol & W. Verhoef)

- SCOPE (Soil-Canopy-Observation of Photosynthesis and the Energy Balance) is a energy-balance RTM.
- SCOPE enables to evaluate effects of observation geometry, vegetation structure, leaf physiology and climate on RS observations (optical, thermal, and chlorophyll fluorescence).

As part of **Case FLEX Photosynthesis Study (PS)**, SCOPE underwent various improvements (from v1.34 to **v1.53** and currently v. 1.60):

- Leaf optical model **FLUSPECT** to calculate **the irradiance to fluorescence conversion matrices**.
- Separate fluorescence spectra for PSI and PSII. Hemispherically integrated fluorescence added as output.
- Coupling with **MODTRAN output files**.
- Biochemistry sub-models:
  - Empirical calibration of Pulse Amplitude Modulation (PAM) to the relative light saturation of photosynthesis as measured with gas exchange measurements and modeled with under typical diurnal conditions (referred to as the TB12 model) and during drought (referred to as TB12-D). (C. Van der Tol & J. Berry)
  - 2. <u>Mechanistic photosynthesis and fluorescence model</u> according to Von Caemmerer (2000) and developments by F. Magnani (2014), referred as **MD12** model.

# A GUI toolbox has been developed for intuitive and automated running and visualizing of simulations: A-SCOPE

# **A-SCOPE v1.53**



#### A scientific GUI toolbox encompassing SCOPE v1.53 and processing tools



**Fluorescence - photosynthesis** 

# **A-SCOPE main module**

|                                           | 📣 A-Scope model [v. 1.5  | 3]                |                  |
|-------------------------------------------|--------------------------|-------------------|------------------|
|                                           | File Settings model Help |                   | لا<br>ا          |
| scope_gui_ppal                            | A-Scope mod              | el [v. 1.53]      |                  |
| Simulation options                        | Tool Internet            |                   |                  |
| Input file data<br>pre-defined parameters | Weather conditions       | Leaf parameters   | Leaf Biochemical |
|                                           | Soil parameters          | Canopy parameters | Angular geometry |
|                                           |                          |                   | ОК               |

Most important module is "Leaf Biochemical". This module is dynamic depending on the selected model in:



# **3 Biochemical models implemented**

#### Collatz-TB12-D (drought) - empirical

| 📣 scope_gui_mod11                                                         |                                                                                                   |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Load external data Save Load                                              | لا<br>ا                                                                                           |
| Leaf - Biochemical [Collatz-TB<br>maximum carboxylation capacity [0 -200] | 12(drought)]<br>Rdparam [0.01 - 0.1]                                                              |
| 30 Range Table                                                            | 0.015 Range Table                                                                                 |
| Ball-Berry stomatal conductance [2 -20]                                   | Temperature correction coefficients                                                               |
| 8 Range Table                                                             | stti 0.2 shti 0.3<br>Thi 281 Th 308 Trd 328                                                       |
| Extinction coefficient for Vcmax [0 - 0.8]                                |                                                                                                   |
| 0.6396 Range Table                                                        | Photosynthetic pathway C3 T<br>Fluorescence quantum yield 0.02<br>efficiency at photosystem level |
|                                                                           | OK                                                                                                |

#### Collatz-TB12) - empirical

| 📣 scope_gui_mod11                                                         |                                                                                              |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Load external data Save Load                                              | لا                                                                                           |
| Leaf - Biochemical [Collatz-TB<br>maximum carboxylation capacity [0 -200] | <b>12]</b><br>Rdparam [0.01 - 0.1]                                                           |
| 30 Range Table                                                            | 0.015 Range Table                                                                            |
| Ball-Berry stomatal conductance [2 -20]                                   | Temperature correction coefficients                                                          |
| 8 Range Table                                                             | stti 0.2 shti 0.3<br>Thi 281 Th 308 Trd 328                                                  |
| Extinction coefficient for Vcmax [0 - 0.8]                                |                                                                                              |
| 0.6396 Range Table                                                        | Photosynthetic pathway C3 Fluorescence quantum yield 0.02 officiency at photosystem level OK |

#### Von Caemmerer-MD12 ) - mechanistic

| 📣 scope_gui_mod12                          |                                      | _ 🗆 🗙 |
|--------------------------------------------|--------------------------------------|-------|
| Load external data Save Load               |                                      | ¥د.   |
| Leaf - Biochemical [Von Camn               | nerer-MD12]                          |       |
| Photosynthetic pathway C3 -                |                                      |       |
| maximum carboxylation capacity [0 -200]    | Stress factor to reduce Vcmax [0 -1] |       |
| 30 Range Table                             | 1 Range Table                        |       |
| Ball-Berry stomatal conductance [2 -20]    | — mean annual temperature [oC]       |       |
| 8 🗆 Range 🗖 Table                          | 15 🗖 Range 🗖 Table                   |       |
|                                            | beta [0 - 1]                         |       |
| 0.015 Range Table                          | 0.507 Range Table                    |       |
| qLs                                        | - kNPQs [s-1]                        |       |
| 1 Range Table                              | 0 🗆 Range 🗖 Table                    |       |
| Extinction coefficient for Vcmax [0 - 0.8] | Fluorescence quantum vield           | _     |
| 0.6396 🗖 Range 🗖 Table                     | efficiency at photosystem level 0.02 | 2     |
|                                            |                                      | ОК    |

• V<sub>cmo</sub>: maximum carboxylation capacity: indicator of photothetic capcity

MD12 (Porcar-Castell, 2011):

- qLs: fraction of functional reaction centres
- kNPQs: rate constant of non-photochemical quenching

#### **Fluorescence - photosynthesis**

# A-SCOPE v1.53 modules

| 📣 scope_gui_mod6                              |                                     |
|-----------------------------------------------|-------------------------------------|
| Load external data Save Load                  | لا<br>ا                             |
| Weather conditions                            |                                     |
| - Incoming shortwave radiation [W m-2]        | Incoming longwave radiation [W m-2] |
| 600 Range Table                               | 350 Range Table                     |
| Air temperature [oC]                          | Air pressure [hPa]                  |
| 20 Range Table                                | 1000 Range Table                    |
| Atmospheric vapour pressure [hPa]             | Wind speed [m s-1]                  |
| 15 Range Table                                | 2 Range Table                       |
| CO2 concentration in the air [ppm]            | O2 concentration in the air [ppm]   |
| 380 Range Table                               | 209 Range Table                     |
| Measurement height of meteorological data [m] | 10 ОК                               |

| 📣 scope_gui_mod7                  |                                      |
|-----------------------------------|--------------------------------------|
| Load external data Save Load      | لا                                   |
| Leaf parameters                   |                                      |
| Leaf Structure (N) [1-3]          | – Chlorophyll (Cab - µg/cm²) [0-100] |
| 1.4 Range Table                   | 40 Range Table                       |
| Water thickness (Cw - cm) [0-0.5] | Dry matter (Cm - g/cm² ) [0-0.05]    |
| 0.009 Range Table                 | 0.012                                |
| Senescent material [0-0.3]        | Broadband thermal reflectance 0.01   |
| 0 Range Table                     | Broadband thermal transmittance 0.01 |
|                                   | ОК                                   |

| 4SAIL MODEL                                                                                      | 📣 45AIL MODEL                                                                                      | Angular geometry                       |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|
| .oad external data Save Load 🛛 🛥                                                                 | Load external data Save Load                                                                       | Load external data Save Load           |
| Soil Parameters D_soil Soil ColumnD1 Soil_ColumnD2 Soil_ColumnD3                                 | Canopy geometry LAI [0-10+] Bange Table Aerodynamic Parameters Soil boundary layer resistance [s m | Angular geometry                       |
| Soil resistance for evaporation                                                                  | Vegetation height (h) [m] [0.05 - 100]<br>0.5 Range Table Within canopy layer resistance [s r      | n-1] [0-20]<br>30 Range Table          |
| 500     □     Range     □     Table       − Volumetric soil moisture content [0.01 - 0.7]        | Leaf width [m] [0.01 - 2]<br>0.1 Range Table                                                       | 20] Observer zenith angle (°) [0 - 90] |
| 0.25 Range Table                                                                                 | Leaf Inclination distribution function                                                             | Relative azimuth (°) [0 - 180]         |
| Volumetric heat capacity of the soil [J m-2 K-1] 1180<br>specific mass of the soil [kg m-3] 1800 | Erectophile Plagiophile Extremophile Spherical Displacement heigi                                  | 0.246 90 	 Range 	 Table               |
|                                                                                                  | User                                                                                               | ОК ОК                                  |

#### **Fluorescence - photosynthesis**

📣 45AIL MOI Load external of Soil Par ID soil-

### Global sensitivity analysis (GSA) toolbox

### GSA Saltelli et al., 2010:

•First order sensitivity:

$$S_i = \frac{\frac{1}{n} \sum_{j=1}^{n} f(B)_j \left( f\left(A_B^i\right)_j - f(A)_j \right)}{\operatorname{Var}(L)}$$

• Total sensitivitiy:

$$T_{n} = \frac{\frac{1}{2n} \sum_{j=1}^{n} \left( f(A)_{j} - f\left(A^{i}_{B}\right)_{j} \right)^{2}}{\operatorname{Var}(L)}$$

### Sample distribution:

**Sobol** quasi-random sampling sequence (LPTAU)

S



Total # of samples= (N<sub>variabls</sub> +2)\*#sample distribution

Saltelli, A., Annoni, P., 2010, How to avoid a perfunctory sensitivity analysis, *Environmental Modeling and Software*, 25, 1508-1517.

#### GSA configuration X Save Load PRO4SAIL 1000 Project Type SI Saltelli subsamples 1000 RT mode Sensor ▼ Default NO SENSOR 4SAIL-Prospect 4 RTM input settings Group Select Parameter m Leaf Structural Parameter Canopy • chlorophyll a+b content i. Paramete equivalent water thickne... 1.000 Total Leaf Area Index -4 dry matter content in g/c. Extremal Parameters 5 Total Leaf Area Index Leaf angle distribution Empt Diffuse/direct light Range min max Distributio Delete selected 0 10 Soho Delete all RTM output Group Select Parameters Gro Directional reflectance Canopy • 1 Canopy Parameter Directional reflectance • Delete all Delete selected

#### **PROSPECT-4 validity check**

 $S_{\tau l}$  - normalized



GSA delivers consistent analysis. ©

#### Fluorescence - photosynthesis

# **GSA SCOPE experimental setup:**

1. <u>Vegetation SCOPE GSA</u> study: varying only vegetation SCOPE variables (biochemical, leaf optical, canopy)

2. <u>Full SCOPE GSA study</u>: Varying all SCOPE variables (vegetation, soil, micrometeorological, aerodynamic)



### Setup:

- **2000** samples per variable according to Sobol' quasi-random sampling technique.
- Only normalized  $S_{\tau i}$  shown (expressed as %).

### **SCOPE input variables & boundaries**

#### **Vegetation only**

| Variable     | Interpretation                                                    | Unit                          | min   | max  | default |
|--------------|-------------------------------------------------------------------|-------------------------------|-------|------|---------|
| Leaf optical |                                                                   |                               |       |      |         |
| Ν            | Mesophyll Structural parameter in Prospect                        | [-]                           | 1     | 2.5  | 1.4     |
| Cw           | Water content in Prospect                                         | g/cm <sup>2</sup>             | 0     | 0.1  | 0.009   |
| Cdm          | Dry matter content in Prospect                                    | g/cm <sup>2</sup>             | 0     | 0.05 | 0.012   |
| Cs           | Senescence factor Prospect                                        | [-]                           | 0     | 0.9  | 0       |
| Cab          | Chlorophyll content in Prospect                                   | µg/cm2                        | 0     | 80   | 40      |
| Leaf biochem | ical                                                              |                               |       |      |         |
| m            | Ball-Berry stomatal conductance parameter                         | [-]                           | 2     | 20   | 8       |
| kV           | extinction coefficient for Vcmo in the vertical                   |                               | 0     | 0.8  | 0.64    |
| Rdparam      | Respiration = Rdparam*Vcmo                                        |                               | 0.001 | 0.03 | 0.015   |
| Vcmo         | maximum carboxylation capacity                                    |                               | 0     | 200  | 30      |
| Leaf biochem | icai (MD12 oniy)                                                  |                               |       |      |         |
| Tyear        | mean annual temperature                                           | °C                            | 8     | 20   | 15      |
| beta         | fraction of photons partitioned to PSII                           |                               | 0     | 1    | 0.507   |
| stressfactor | optional input: stress factor to reduce Vcmo                      |                               | 0     | 1    | 1       |
| kNPQs        | rate constant of sustained thermal dissipation                    |                               | 0     | 10   | 0       |
| qLs          | fraction of functional reaction centres                           |                               | 0     | 1    | 1       |
| Canopy       |                                                                   |                               |       |      |         |
| lw           | Leaf width                                                        | m                             | 0.01  | 0.1  | 0.1     |
| LIDFa        | LIDF parameter a, which controls the average leaf slope           | [-]                           | - 1   | 1    | -0.35   |
| LIDFb        | LIDF parameter b, which controls the<br>distribution's bimodality | [-]                           | - 1   | 1    | -0.15   |
| LAI          | Leaf area index                                                   | m <sup>2</sup> m <sup>2</sup> | 0     | 7    | 3       |
| hc           | Canopy height                                                     | m                             | 0.1   | 2    | 1       |

#### **All SCOPE**

| Variable        | Interpretation Unit min max      |                   |      |      |      |  |
|-----------------|----------------------------------|-------------------|------|------|------|--|
| Soil parameters |                                  |                   |      |      |      |  |
| rss             | Soil resistance for evaporation  | [200-5000 s m -1] | 200  | 5000 | 500  |  |
| SMC             | Volumetric soil moisture content | [0.01-0.7]        | 0.01 | 0.7  | 0.25 |  |
| Aerodynar       | nic                              |                   |      |      |      |  |
| rbs             | Soil boundary layer resistance   | s m-1             | 5    | 30   | 10   |  |
| rwc             | Within canopy layer resistance   | s m-1             | 0    | 20   | 0    |  |
| rb              | Leaf boundary resistance         | S m-1             | 5    | 20   | 10   |  |
| micromete       | eorologic                        |                   |      |      |      |  |
| р               | Air pressure                     | [hPa]             | 300  | 1090 | 970  |  |
| u               | Wind speed                       | [m s-1]           | 0    | 50   | 2    |  |
| Oa              | $O_2$ concentration in the air   | [ppm]             | 0    | 220  | 209  |  |
| ea              | Atmospheric vapour pressure      | [hPa]             | 0    | 150  | 15   |  |
| Ca              | $CO_2$ concentration in the air  | [ppm]             | 50   | 1000 | 380  |  |
| Та              | Air temperature                  | [ºC]              | -10  | 50   | 20   |  |
| Rin             | Incoming shortwave radiation     | [W m-2]           | 0    | 1400 | 600  |  |
| Rli             | Incoming longwave radiation      | [W m-2]           | 0    | 400  | 300  |  |
| Geometry        |                                  |                   |      |      |      |  |
| VZA             | Viewing zenith angle             | degree            | 0    | 10   | 0    |  |
| RAA             | Relative azimuth angle           | degree            | 0    | 180  | 0    |  |
| SZA             | Sun zenith angle                 | degree            | 0    | 60   | 30   |  |











**GSA/**SIF-NPC

# **PROOF of concept GSA SCOPE: Reflectance**



Reflectance results are consistent with PROSAIL and shows consistency of GSA analysis

### GSA fluorescence: SCOPE vegetation for different biochemical models





#### MD12



#### MD12 without MD12-specific vars



**GSA/**SIF-NPC

#### **TB12**

### **GSA fluorescence:** <u>all SCOPE variables</u>

TB12-D **MD12** = rss ■ SM0 N Cw Cdm Cab m kv ■ SMC N Cw Cdm Cs Cab kV Rdparam rss m Rdparam Vcmc Tyear beta stressfactor kNPO: gLs 🔳 rbs = rwc = rb p **u** 🗖 Oa Ca Ta Rin = Rli Ta Vcmo rbs rwc 🔳 rb p p u 🗖 Oa ea Ca LIDE: LIDFb VZA RA4 SZA Rli LIDFa SZA Rin = lw LIDFb LAI ∎ hc VZA RAA 100 S7A 100 LID 90 90 80 80 70 70 LIDFa 60 60 STi [%] ea SП [%] 50 50 40 40 Kin aLs 30 30 20 20 Cab 10 Cab 10 0 660 690 760 640 650 670 680 700 710 720 730 740 750 770 780 790 800 Wavelength [nm] Wavelength [nm]

- Essentially the same patterns as with vegetation variables only were revealed, but these variables are now suppressed due to the added influence of driving micrometeorological variables.
- V<sub>cmo</sub> contributed about ~2.1% to the full SIF signal, with slightly more relevance in the first peak than in the second.
- Results suggest that in heterogeneous conditions over 97% of the canopy SIF variability is not due to variations in the photosynthetic machinery (V<sub>cmo</sub>), it is due to leaf, canopy and micrometeorological effects and their interactions.

# Implications for SIF interpretation

- More information directly related to photosynthesis (V<sub>cmo</sub>) is to be found within the first emission peak (SIF<sub>red</sub>).
- Variations in leaf chlorophyll content, vegetation structural and micrometeorological variables are mostly driving canopyleaving SIF variability, and so govern its spatial patterns. Unbiased SIF interpretation towards photosynthesis can only be achieved by quantifying these variables.

Having identified the driving variables, the question now is:

How strongly can canopy-leaving SIF be related to net photosynthesis of the canopy (NPC, also related to GPP)?



Requires a multi-scale regression analysis.

# II: Exploiting the fluorescence signal towards "Net photosynthesis of the canopy" (NPC)

• SCOPE modelling study on NPC retrieval strategies based on fluorescence data. (*Reflectance data did not lead to any meaningful relationship*)

### **Objective:**

• To relate Fluorescence data (single bands, combined bands) to output NPC

**Regression problem with multiple SIF inputs and NPC as output**. We have tested both linear and nonlinear regression algorithms



# Sampling the broadband fluorescence signal

Important (absorption) wavelengths fluorescence retrieval:



|                                                                           | <b>Central Wavelength</b> | Spectral range (nm) |
|---------------------------------------------------------------------------|---------------------------|---------------------|
|                                                                           | (nm)                      | absorption lines    |
| Hα absorption line                                                        | 656                       | 653-662             |
| Red peak (attributed to SIF emission of PS II)                            | 684                       |                     |
| O <sub>2</sub> (-B) absorption line                                       | 687                       | 683-692             |
| Valley between red and NIR peaks                                          | 699                       |                     |
| Water vapor (Wv) absorption line                                          | 719                       | 714-722             |
| NIR peak (attributed to SIF emission of PS I and to a lesser extent PSII) | 736                       |                     |
| O <sub>2</sub> (-A) absorption line                                       | 761                       | 757-771             |
|                                                                           |                           |                     |

# Driving SCOPE variables of $F_{total}$ (integral of SIF 640 – 850 nm) as identified by GSA ( $S_{TI}$ ) (without geometry, LAD).



12 driving variables explain 97.5 % of total variability (with interactions).

# Retrieval strategies (#2000 sim. each)

| under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Ranging variables                                          | Justification                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nuerescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Biod  | chemistry                                                  |                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | Vcmo                                                       | Vcmo is the main biochemical driver of photosynthesis. Hence, this is the theoretical baseline when SIF is not influenced by any other variable.                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2     | Biochemistry                                               | <b>All biochemical variables</b> (Vcmo, m, Rdparam, kV). Represents the most heterogeneous situation at the biochemical scale.                                                                |
| And a state of the | Biod  | chemistry, leaf                                            |                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3     | Vcmo, LCC                                                  | Driving biochemical and leaf variables.                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4     | Vcmo, leaf                                                 | Driving biochemical variable and all leaf variables (N, Cw, Cdm, Cs, LCC).                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5     | Biochemistry, leaf                                         | All biochemical and leaf variables. Represents the most heterogeneous situation at biochemical and leaf scales (Vcmo, m, Rdparam, kV, N, Cw, Cdm, Cs, LCC).                                   |
| Viet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Biod  | chemistry, leaf , canopy                                   |                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6     | LCC, LAI                                                   | Driving leaf and canopy variables.                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7     | Vcmo, LAI                                                  | Driving biochemical variable (Vcmo) with driving canopy variable (LAI)                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8     | Vcmo, canopy                                               | Driving biochemical variable (Vcmo) with all varying canopy variables (LAI, lw, hc).                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9     | Vcmo, N, Cw, Cdm, Cs, Cab,<br>LAI, hw, hc (spherical LIDF) | <b>Driving biochemical variable (Vcmo) with all leaf and all canopy</b> (N, Cw, Cdm, Cs, Cab, LAI, Iw, hc).                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10    | Biochemistry, leaf, canopy                                 | <b>Al biochemical, leaf and canopy variables</b> (Vcmo, m, Rdparam, kV, N, Cw, Cdm, Cs, LCC, LAI, lw, hc). Represents the most heterogeneous situation at the canopy scale.                   |
| therease and the second s                                                                                                                                                                                                                                             | All Ł | biochemistry, leaf , canopy, geo                           | metry, micrometeorology                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11    | Key SCOPE variables driving<br>SIF                         | Vcmo, Cdm, LCC, LAI, hc, rwc, P, ea, Ca, Ta, Rin. <b>These variables and their interactions</b><br>explain 97.5% of the variability in F <sub>total</sub> .                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12    | All SCOPE variables                                        | All SCOPE variables (Vcmo, m, Rdparam, kV, N, Cw, Cdm, Cs, LCC, LAI, lw, hc, VZA, RAA, SZA, rwc, rb, P, u, Oa, ea, Ca, Ta, Rin, Rli). <b>Represents the most heterogeneous</b> configuration. |

# **Results: R<sup>2</sup> validation SIF -NPC**





### NPC estimation by single bands



Most realistic situation: varying multiple variables at biochemistry, leaf, canopy &micrometeorology scale.R<sup>2</sup>

|                               |      |      | -    | -    |      |      |      |        |                |
|-------------------------------|------|------|------|------|------|------|------|--------|----------------|
|                               | 656  | 684  | 687  | 699  | 719  | 737  | 761  | Best λ | R <sup>2</sup> |
| Vcmo, leaf, canopy            | 0.89 | 0.90 | 0.89 | 0.85 | 0.74 | 0.70 | 0.67 | 678    | 0.90           |
| Biochemistry, leaf,<br>canopy | 0.25 | 0.24 | 0.24 | 0.22 | 0.18 | 0.18 | 0.17 | 650    | 0.25           |
| Key SIF variables             | 0.52 | 0.50 | 0.50 | 0.41 | 0.28 | 0.30 | 0.28 | 650    | 0.52           |
| All SCOPE variables           | 0.23 | 0.23 | 0.22 | 0.21 | 0.19 | 0.19 | 0.19 | 650    | 0.23           |

- Rather poor results when relying on only one SIF wavelength in heterogeneous canopies.
- Most sensitive SIF bands related to NPC to be found within first peak.
- This because:
  - SIF<sub>Ned</sub> reabsorbtion, thus, what leaves the canopy less affected by scattering.
  - SIF<sub>NIR</sub> no reabsorption, more affected by leaf and canopy scattering effects.

See also Van Wittenberghe et al., 2015; RSE

### NPC estimation by multiple SIF bands

| Wavelengths (nm)                                 |
|--------------------------------------------------|
| 687, 761                                         |
| 656, 687, 719, 761                               |
| 684, 736                                         |
| 684/736                                          |
| 684, 699, 736                                    |
| Integrated SIF (from 640 to 850nm)               |
| All individual SIF wavelengths (from 641 to 800) |
|                                                  |



#### Linear regression:

|                            | O <sub>2</sub> -B, O <sub>2</sub> -A | Ha, O <sub>2</sub> -B, Wv, O <sub>2</sub> -A | Two peaks | Peak ratio | Two peaks and valley | F <sub>total</sub> | F <sub>all</sub> |
|----------------------------|--------------------------------------|----------------------------------------------|-----------|------------|----------------------|--------------------|------------------|
| Vcmo, leaf, canopy         | 0.90                                 | 0.92                                         | 0.90      | 0.43       | 0.91                 | 0.72               | 0.92             |
| Biochemistry, leaf, canopy | 0.23                                 | 0.27                                         | 0.23      | 0.10       | 0.27                 | 0.13               | 0.28             |
| Key SIF variables          | 0.52                                 | 0.53                                         | 0.52      | 0.24       | 0.54                 | 0.32               | 0.54             |
| All SCOPE variables        | 0.22                                 | 0.22                                         | 0.22      | 0.14       | 0.23                 | 0.19               | 0.22             |

### $\mathbf{V}$

#### (Nonlinear) Gaussian processes regression (GPR):

|                            | О <sub>2</sub> -В, О <sub>2</sub> -А | Ha, O <sub>2</sub> -B, Wv, O <sub>2</sub> -A | Two peaks | Peak ratio | Two peaks and valley | F <sub>total</sub> | F <sub>all</sub> |
|----------------------------|--------------------------------------|----------------------------------------------|-----------|------------|----------------------|--------------------|------------------|
| Vcmo, leaf, canopy         | 0.92                                 | 0.93                                         | 0.92      | 0.56       | 0.92                 | 0.73               | 0.93             |
| Biochemistry, leaf, canopy | 0.32                                 | 0.35                                         | 0.32      | 0.18       | 0.36                 | 0.19               | 0.34             |
| Key SIF variables          | 0.81                                 | 0.82                                         | 0.82      | 0.37       | 0.82                 | 0.72               | 0.82             |
| All SCOPE variables        | 0.30                                 | 0.31                                         | 0.30      | 0.14       | 0.30                 | 0.24               | 0.31             |

- **Combining multiple SIF retrieval bands** lead to improved **predictive power** as compared so single bands.
- Moving away **from linear to nonlinear regression** further improved predictive power, particularly when considering all SCOPE key variables.
- When not having SIF retrieved at many bands, using SIF retrievals at both O<sub>2</sub>-B & O<sub>2</sub>-A suffice.

#### **Fluorescence - photosynthesis**

# **Conclusions:**

# <u>SCOPE v. 1.53 modeling studies</u> were conducted to gain insight in fluorescence – photosynthesis relationships.

### 1. Global Sensitivity Analysis (GSA):

V<sub>cmo</sub> drives only for a relatively small portion the fluorescence signal. Key driving variables (LAI, Chl, Rin) need to be taken into account in order to realize unbiased interpretations of SIF.

### 2. <u>Relating SIF to photosynthesis (NPC)</u>:

- Most sensitive SIF bands to NPC were located around the first emission peak for heterogeneous canopy configurations.
- Combining two SIF retrieval bands (e.g., O2-B and O2-A) led to stronger correlations than using only one SIF band. Even stronger correlations were achieved using four main SIF retrieval bands (Hα, O2-B, water vapor, O2-A)
- Using a **nonlinear regression** algorithm (GPR) can further increase predictive power.

