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A B S T R A C T

Foliar nitrogen is a critical factor in leaf physiological processes, plant growth, and ecosystem functioning, which
has been proposed as one of the essential biodiversity variables. Nitrogen has been quantified by a number of
empirical approaches using hyperspectral data, but the retrieval of nitrogen through a physically based approach
remains a challenge. A recent study by Wang et al. (2015a) has revealed that leaf protein can be successfully
estimated from fresh leaf spectra using a revised leaf radiative transfer model PROPECT-5 which incorporated
the effects of leaf protein and cellulose+ lignin on leaf reflectance and transmittance. This provides a potential
approach of estimating nitrogen using radiative transfer models given the correlation between protein and ni-
trogen. However, such a revised leaf model has not been tested for the estimation of leaf nitrogen at the canopy
level. In this study, a canopy reflectance model INFORM, coupled with the revised PROSPECT-5 model, was used
to retrieve leaf and canopy nitrogen content in a mixed temperate forest using the wavelengths of 800–2500 nm
from airborne hyperspectral imagery. Ecological criteria were applied to the parameterization of the model to
reduce unrealistic combinations of input parameters. Global sensitivity analysis showed that leaf protein played
a small but distinct role in driving the variation of canopy reflectance in the INFORM model. More accurate
estimation was obtained for canopy nitrogen content (R2=0.64, RMSE=1.90, NRMSE=0.18) than leaf ni-
trogen content (R2=0.46, RMSE=3.79e-05, NRMSE=0.19). Moreover, inversion techniques, particularly
regularized look-up tables, further improved the estimation accuracies compared to the original tables. Our
results indicate that leaf and canopy nitrogen content can be retrieved successfully at the canopy level by in-
version of INFORM. Both the direct and indirect effects of nitrogen on canopy reflectance are important for
nitrogen estimation. The maps of leaf and canopy nitrogen content are the first to be generated using inversion of
coupled leaf-canopy models, and the spatial variation of foliar nitrogen appears to be reasonable and consistent
with ecological knowledge.

1. Introduction

Leaf nitrogen is an important parameter related to photosynthesis
and net primary production (Evans, 1989; Field and Mooney, 1986;
Reich, 2012), which mainly exists in chlorophylls and proteins in the
leaf cells (Elvidge, 1990; Evans, 1983). Estimation of leaf nitrogen
improves our understanding of terrestrial ecosystem carbon dynamics
and climate models (Lamarque et al., 2005; Morford et al., 2011;
Ollinger et al., 2008). As one of the essential biodiversity variables,
foliar nitrogen can be used to assess biodiversity and ecosystem services
(Pereira et al., 2013; Skidmore et al., 2015). Accurate retrieval of leaf
nitrogen could therefore enhance ecosystem process models that de-
scribe ecosystem functioning, since nitrogen is an important input
parameter of these models (Zaehle et al., 2014; Zhang et al., 2013).

Although leaf nitrogen is a small constituent of leaf dry weight
(0.2%–6.4%) (Wright et al., 2004), it has been quantified from leaf and
canopy spectra on the basis that the nitrogen absorption features can be
detected by the narrow-band of continuous information from hyper-
spectral remote sensing (Cho, 2007). A number of factors confound the
retrieval of leaf nitrogen from leaf and canopy spectra. Leaf water is one
of the main obstacles for estimating leaf nitrogen using the fresh leaf
spectra, because the strong absorption of water masks the spectral
features of nitrogenous biochemicals in the short-wave near infrared
(SWIR) spectral region (Fourty and Baret, 1998; Kokaly and Clark,
1999). Other constituents in leaves, such as cellulose, lignin and starch,
also overlap with the absorption features of nitrogen in SWIR regions
(Curran, 1989), which further increases the difficulty of retrieving ni-
trogen content. When estimating leaf nitrogen from the canopy spectra,
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factors such as canopy structure, illumination/viewing geometry, and
the background can further decrease our ability to detect nitrogen
(Asner, 1998; Knyazikhin et al., 2013; Yoder and Pettigrew-Crosby,
1995; Zarco-Tejada et al., 2001).

Different approaches have been applied to improve leaf nitrogen
estimation by enhancing the absorption features of nitrogen and redu-
cing the influence of other factors on canopy reflectance. The ap-
proaches include spectral transformation such as using first/second
derivatives and log transformation of reflectance (Coops et al., 2003;
Yoder and Pettigrew-Crosby, 1995), continuum removal (Huang et al.,
2004; Kokaly and Clark, 1999), water removal (Ramoelo et al., 2011;
Schlerf et al., 2010), and wavelet analysis (Ferwerda and Jones, 2006).
Empirical approaches such as vegetation indices (Serrano et al., 2002;
Wang et al., 2016), stepwise multiple linear regression (Kokaly and
Clark, 1999), partial least squares regression (Lepine et al., 2016;
Martin et al. 2008), neural networks (Skidmore et al., 2010), and
support vector regression (Axelsson et al., 2013) have been used to
establish relationships between spectral data and nitrogen. However,
such empirical relationships have been site-, sensor-, date- or species-
specific. In addition, the selected wavelengths that are sensitive to ni-
trogen in different studies are not always consistent, and often deviate
from the absorption bands of nitrogen (Curran et al., 2001; Huang et al.,
2004; Kokaly and Clark, 1999). The important wavelengths for nitrogen
estimation have been identified in the red-edge region, the near-in-
frared region, and short-wave infrared regions (Kokaly et al., 2009;
Homolova et al., 2013). The accurate retrieval of nitrogen can be at-
tributed to the association of nitrogen with chlorophyll, dry matter,
water and canopy structure (Knyazikhin et al., 2013; Homolova et al.,
2013; Wang et al., 2015b). However, the protein absorption features
(mainly in the 800–2500 nm region) have not been successfully used to
directly derive nitrogen at a reasonable level of accuracy.

Radiative transfer models (RTMs) offer a conceptual superiority to
empirical approaches with respect to transferability and robustness
(Darvishzadeh et al., 2011; Jacquemoud and Baret, 1990; Schlerf and
Atzberger, 2006). In these models, the transfer and interactions of
electromagnetic radiation inside the canopies are described based on
physical laws (Verhoef, 1984). Depending on the model type, i.e. leaf or
canopy, the absorbing and scattering processes of radiation are in-
corporated using a range of leaf, canopy and external parameters
(Jacquemoud and Baret, 1990; Verhoef, 1984). It was considered im-
possible to retrieve leaf nitrogen from fresh leaves using leaf RTMs
(Jacquemoud et al., 1996). However, a recent study showed that leaf
protein can be estimated through the leaf optical properties model
PROSPECT-5 (Feret et al., 2008), which was revised to incorporate both
protein as well as cellulose+ lignin compounds as a replacement for
the dry matter (Wang et al., 2015a). Protein is determined based on the
presence of nitrogen, with the Kjeldahl (or similar) method being al-
most universally applied to determine nitrogen, and a conversion factor
of 6.25 is used to convert nitrogen to protein for both the animal feed
and food materials industries (Barton, 1987; AOAC, 1990; Jacquemoud
et al., 1996). This protein-nitrogen relationship provides the possibility
of direct estimation of nitrogen using radiative transfer models. How-
ever, the feasibility of retrieving leaf nitrogen at the canopy level has
not yet been assessed through coupling this revised leaf model with a
canopy reflectance model.

The canopy reflectance model provides a means of understanding
the covariance of leaf and canopy effects in canopy reflectance (Baret
et al., 1994; Jacquemoud et al., 2000). There are generally four cate-
gories of canopy reflectance models: (1) 1D turbid medium model such
as SAILH (Verhoef, 1984); (2) geometrical models such as Li–Strahler
GO model (Li and Strahler, 1985); (3) Monte Carlo ray tracing models
such as DART (Gastellu-Etchegorry et al., 1996); and (4) hybrid models
such as GeoSail (Huemmrich, 2001). To select a proper canopy re-
flectance model, two factors should be considered (Atzberger, 2000;
Pinty et al., 2004). The first factor is the realism of simulations with
regard to the canopy architecture description, and the second is the

invertibility of the model associated with a limited number of input
variables. However, a model with more realistic simulations often leads
to more complicated inversion, thus a compromise needs to be sought.
The hybrid models benefit from a combination of 1D turbid medium
and geometrical models (GO), which means they are closer to reality
and easier to invert. The invertible forest reflectance model INFORM
(Atzberger, 2000) is an example of a hybrid model that has been suc-
cessful in retrieving vegetation parameters (Ali et al., 2016a; Schlerf
and Atzberger, 2006, 2012; Yuan et al., 2015). As a hybrid model,
INFORM could therefore offer a compromise between the realism of
simulating the canopy and invertibility. We adopted the INFORMmodel
for this study.

This study aimed (1) to assess if leaf and canopy nitrogen content
could be retrieved from canopy spectra using the wavelengths of
800–2500 nm by inverting coupled leaf-canopy radiative transfer
models; (2) to investigate if regulation techniques such as using prior
information, spectral subsets and ecological constraints could improve
the estimation accuracies; and (3) to map the spatial variation of leaf
and canopy nitrogen content in a mixed temperate forest from airborne
hyperspectral imagery.

2. Materials and methods

2.1. Study area and field data

2.1.1. Study area
The study area is located in the southern part of the Bavarian Forest

National Park (49˚ 3′ 19″ N, 13˚ 12′ 9″ E), Germany (Fig. 1). The park
has a total area of 24,218 ha. The geology is dominated by gneiss and
granite, and the soils weathered from these parent materials are natu-
rally acid and low in nutrients. The main soil types are brown soils,
loose brown soils, and podsol brown soils. The park’s elevation ranges
from 600m to 1453m. The climate is temperate with a total annual
precipitation between 1200mm and 1800mm and a mean annual
temperature of 5.1 °C in the valleys, 5.8 °C on hillsides, and 3.8 °C in the
higher montane zones (Heurich et al., 2010). The dominant forest
species are Norway spruce (Picea abies) (67%) and European beech
(Fagus sylvatica) (24.5%), with some white fir (Abies alba) (2.6%), sy-
camore maples (Acer psudoplatanus) (1.2%), and mountain ash (Sorbus

Fig. 1. Location of the study area in the Bavarian Forest National Park, Germany, and the
distribution of sample plots with the HySpex image in the background.
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aucuparia) (3.1%) (Heurich et al., 2010).

2.1.2. Field sampling
Fieldwork was carried out from mid-July to mid-August, 2013,

using a stratified random sampling strategy. The study area was stra-
tified into broadleaf, needle leaf, and mixed forest areas based on the
land cover data obtained from the Department of Conservation and
Research, Bavarian Forest National Park. The mixed forest includes
both broadleaf and needle leaf species, but the fractions vary across
different areas. We randomly selected 26 plots over the three vegetation
types, yielding 8 broadleaf, 8 needle leaf and 10mixed forest plots.
Each plot was 30m×30m in size, and a Leica GPS 1200 (Leica
Geosystems AG, Heerbrugg, Switzerland) was used to record the center
location of each plot (to an accuracy of approximately 1m). Within
each plot, depending on the species composition, one to three trees of
each dominant overstory species were selected for leaf sampling, re-
sulting in overall 53 broadleaf samples (44 European beech, 4 sycamore
maples, 3 mountain ash, 1 goat willow (Salix caprea)) and 84 conifer
needle samples (28 trees× 3 ages). The conifer needle samples were
obtained from 21 Norway spruce and 7 white fir trees, and the shoots of
needles were divided into three age classes: current growing season (C),
the previous growing season (C+) and those older than the previous
growing season (C++).

Sunlit leaves were collected by shooting small branches from the top
canopy of each selected tree with a crossbow. Leaf samples were stored
in zip-lock plastic bags with wet paper towels, and placed in a cooler
before transportation to the laboratory for further measurement. The
leaf mass per area (LMA, g/cm2), leaf water content (g/cm2, also known
as equivalent water thickness (EWT, cm)) and leaf nitrogen con-
centration (% dry weight) were determined in the laboratory. Leaf ni-
trogen content (Narea, g/cm2) was calculated as the product of leaf ni-
trogen concentration and LMA. More details regarding the sampling
and laboratory analysis can be found in Wang et al. (2015b).

2.1.3. Measurements of canopy structural parameters
A number of canopy structural parameters were collected within

each plot, including leaf area index (LAI), stem density, canopy closure,
crown diameter and stand height. Digital hemispherical photography
(DHP) and LAI-2000 (LI-COR Inc., NE, USA) are two commonly used
methods for measuring LAI. DHP was used in this study because it was
sometimes difficult to find open reference area for LAI-2000 in forest.
LAI for each plot was calculated from five upward-pointing hemi-
spherical photographs collected from the plot center as well as 10m
away from the center point in each diagonal direction. The images were
acquired using a Canon 5D equipped with a fisheye lens leveled on a
tripod at breast height (1.3 m above the ground) near dawn or dusk.
Two-corner classification was applied on the images obtained, and a
combined Lang and Xiang clumping correction and needle-to-shoot
area ratio (Leverenz and Hinckley, 1990) was used to estimate the LAI
as outlined by Woodgate et al. (2015), Macfarlane (2011), and Leblanc
et al. (2005), respectively.

Stem density was calculated as the number of trees per hectare
based on the number of trees in each plot. Crown closure was measured
by averaging five observations within each plot using a spherical crown
densiometer (Forestry Suppliers, Inc., Jackson, USA). Crown diameter
was calculated from the mean of the measurements in two directions.
The stand height was measured using a Nikon Forestry 550 laser ran-
gefinder. Both crown diameter and stand height were obtained by
averaging the values of five randomly selected trees in each plot.
Table 1 presents the summary statistics of the field leaf and canopy
parameters measured.

2.1.4. Calculation of plot-level leaf and canopy nitrogen content
Within each plot, the stand height, the diameter at breast height

(DBH), and the number of trees from each dominant species were used
to calculate the species fraction of foliar biomass using published

allometric equations (Gower et al., 1993; Widlowski et al., 2003). The
plot-level mean leaf nitrogen content (NITplot, g/cm2, per leaf area) was
calculated as the mean leaf nitrogen content for each species, weighted
by the species leaf area fraction as in Eq. (1) (Homolova et al., 2013)

∑=
=

NIT n fLAIplot
i 1

k

i i
(1)

where ni represents the average leaf nitrogen content of species i
within a plot, fLAIi is the leaf area fraction of species i (in g/g), and k is
the number of tree species within a plot.

The species leaf area fraction was calculated by the species foliar
biomass fraction and specific leaf area (SLA, cm2/g, the inverse ratio of
LMA) as in Eq. (2) (Martin et al., 2008)

=
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where fBiomassi is the foliar biomass fraction of species i, and SLAi
is the average specific leaf area for species i within a plot. The canopy
nitrogen content (g/m2, gram per ground area) was calculated by the
product of LAI and plot-level mean leaf nitrogen content.

2.1.5. Spectral measurements for sample leaves and forest background
The leaf directional-hemispherical reflectance and transmittance

over the optical domain from 400 nm to 2500 nm were measured using
an ASD FieldSpec-4 Pro FR spectrometer coupled with an ASD RTS-3ZC
Integrating Sphere designed for the spectrometer (Analytical Spectral
Devices, Inc., Boulder, CO, USA). The leaf spectral measurements of the
broadleaf samples are detailed in Wang et al. (2015b). The spectral
measurements of conifer needle samples were carried out according to
the Daughtry’s approach (Daughtry et al., 1989) which was later re-
vised by Mesarch et al. (1999). More details can be found in Mesarch
et al. (1999), Malenovský et al. (2006) and Ali et al. (2016b). In total,
the leaf reflectance and transmittance of 53 broadleaf samples and 84
conifer samples were collected.

The background spectra were measured using an ASD FieldSpec-4
Pro spectrometer (Analytical Spectral devices, Inc., Boulder, CO, USA)
coupled to a high density contact probe. No bare soil was found in the
sampling plots, so the spectra from the background elements, such as
bark, stem, dried leaves, understory and moss, were collected from a
variety of representative plots.

2.2. Airborne hyperspectral data collection and processing

The hyperspectral data was obtained with a HySpex sensor through
the German Aerospace Center (DLR) for the study area on 22 July 2013.

Table 1
Summary statistics of the leaf parameters and canopy parameters measured in the field
(for 137 leaf samples and 26 sampling plots).

Parameter Abbreviation Unit Minimum
value

Maximum
value

Mean

(1) Leaf
parameters

Equivalent water
thickness

EWT cm 0.0063 0.0337 0.017

Leaf mass per
area

LMA g/cm2 0.0034 0.0291 0.014

Leaf nitrogen
content

Narea g/cm2 1.43e-04 3.68e-04 2.78e-04

(2) Canopy
parameters

Leaf area index LAI m2/m2 2.85 5.14 3.61
Stem density SD ha−1 222 1722 771
Stand height H m 8 38 23
Crown diameter CD m 1.65 15.45 5.4
Canopy closure CC % 77 91 82
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The HySpex sensor-system consists of two imaging spectrometers with
spectral ranges of 400–1000 nm (visible and near infrared, VNIR) and
1000–2500 nm (short-wave infrared), which record the solar radiance
reflected from the Earth’s surface. The HySpex sensor comprises 160
spectral channels and 256 channels, with spectral resolutions of 3.7 and
6 nm, and spatial resolutions of 1.65m and 3.3m, for VNIR and SWIR,
respectively. The HySpex data were recorded between 9:00 and
11:00 a.m., at an average flying height of 3000m above ground level.
The data were collected in 19 image strips for the study area with
overlaps of about 30% and each strip covering about 1.1×11 km. The
flight line was run in an almost N–S direction. Most of the image strips
were acquired in clear weather conditions and none of the sample plots
in the strips were covered by clouds.

The image strips were preprocessed by DLR in the following steps:
(1) the digital numbers (DNs) of raw images were calibrated to at-
sensor radiance; (2) ortho-rectification was performed using differential
global positioning system GPS (DGPS) data and digital elevation model
(DEM) data; (3) atmospheric correction was performed to convert at-
sensor radiance to surface reflectance using the ATCOR4 (Atmospheric
& Topographic Correction). More details can be found in Wang et al.
(2016). The image reflectance values for each field plot were extracted
from the preprocessed strips. A 17×17 pixel window (i.e.
27.2×27.2 m) centered on the center point of each plot was used to
collect the spectra in VNIR from a sampling plot, while a 9×9 pixel
window (i.e. 28.8×28.8 m) was selected for SWIR. For each window,
the average spectrum to represent a plot was calculated. In total, 26
spectra were extracted over the 800–2500 nm, in which spectral region
leaf nitrogen contributed most to spectra. The spectra over the
800–2500 nm were used in the following analysis because the PROSP-
ECT-5 was recalibrated over this region (see Section 2.3.1).

The HySpex image strips were first resampled to a spatial resolution
of 30m and then mosaicked to a single image. A forest mask was ap-
plied to the image to extract the forest areas and a forest map was
derived from recently updated land cover data provided by the
Bavarian Forest National Park.

2.3. Model description, parameterization and inversion

2.3.1. Leaf optical properties model: PROSPECT
The PROSPECT leaf optical properties model was developed to si-

mulate the leaf directional-hemispherical reflectance and transmittance
over the optical domain from 400–2500 nm (Jacquemoud and Baret,
1990). The model only requires a few input parameters, including leaf
structure parameter (Nstruc), leaf chlorophyll content (Cab, μg/cm2),
equivalent water thickness (EWT, cm) and leaf mass per area (LMA, g/
cm2). The model was improved and recalibrated by Feret et al. (2008),
resulting in the new versions PROSPECT-4 and PROSPECT-5 (http://
teledetection.ipgp.jussieu.fr/prosail/). PROSPECT-5 is the same as
PROSPECT-4 except for the separation of total leaf chlorophyll and total
leaf carotenoids (Ccx, μg/cm2) in the visible range of 400–750 nm.
Recently, PROSPECT-5 was used to estimate protein (Cp, g/cm2) and
cellulose+ lignin content (Ccl, g/cm2) in fresh leaves by simulating
their effects on leaf reflectance and transmittance (Wang et al., 2015a).
The recalibration of PROSPECT-5 was performed over the
800–2500 nm because protein and cellulose+ lignin absorb solar ra-
diation mostly within this range (Curran, 1989; Baret and Fourty, 1997;
Feret et al., 2008). The revised PROSPECT-5 model considers Nstruc,
Cab, Ccx, EWT, Cp, and Ccl as input parameters, please see Wang et al.
(2015a) for more details.

PROSPECT was originally developed for broadleaf species
(Jacquemoud and Baret, 1990) and it indeed performed well with
broadleaf (deciduous) trees (Feret et al., 2008; Jacquemoud et al.,
1996; Jacquemoud et al., 2009; Wang et al., 2015b). Previous studies
also proved that the model provided a reasonable description of needle
optical properties (Ali et al., 2016b; Hernandez-Clemente et al., 2014;
Jacquemoud et al., 2009; Laurent et al., 2011; Moorthy et al., 2008;

Zarco-Tejada et al., 2004). The revised PROSPECT-5 described by Wang
et al. (2015a) was based on broadleaf species found in the publicly
available LOPEX dataset (Hosgood et al., 1995), although its applic-
ability to conifer species was not tested due to the lack of a proper
dataset.

Prior to canopy level analysis, the recalibrated PROSPECT-5 was
tested for its ability to retrieve leaf nitrogen using measured fresh leaf
reflectance and transmittance and then the estimation was compared
with field measurements. The leaf-level analysis was performed on our
dataset as well as on the publicly available LOPEX dataset. The LOPEX
dataset includes more than 50 plant species, and is the most extensive
dataset used for calibrating the specific absorption coefficients of pro-
tein and cellulose+ lignin (Jacquemoud et al., 1996; Wang et al.,
2015a). The model inversion procedure was conducted according to
Wang et al. (2015a).

2.3.2. The protein-nitrogen conversion factor
Protein is calculated as 6.25 times of nitrogen in food and animal

feed materials (Barton, 1987; AOAC, 1990; Jacquemoud, et al. 1996).
The approach is based on the assumption that nitrogen mainly exists as
amino acids in proteins, since early research found that proteins of
animal origin contained approximately 16% nitrogen (Aurand et al.,
1987; AOAC, 1990; Sikorski, 2001). In the LOPEX dataset, protein was
determined from nitrogen with a conversion factor of 6.25 based on
Kjeldahl method. This dataset has been used in a number of previous
studies for the retrieval of protein using empirical approaches
(Jacquemoud et al., 1995, Fourty et al., 1996; Fourty and Baret, 1998)
and radiative transfer models (Jacquemoud et al., 1996; Botha et al.,
2006; Wang et al., 2015a).

However, this factor may not be fully valid for plant tissues due to
the existence of non-protein nitrogeneous compounds (Milton and
Dintzis, 1981; Handley et al., 1989). A previous study was conducted on
90 plants species and suggested a protein-nitrogen conversion factor of
4.43 for plants (Yeoh and Wee et al., 1994). For statistical studies, using
a conversion factor of 6.25 or 4.43 would change the coefficients of the
models, but the values of protein may be easily converted and com-
pared. For radiative transfer models (Jacquemoud et al., 1996; Botha
et al., 2006; Wang et al., 2015a), the difference in the conversion factor
would affect the magnitude of the specific absorption coefficient of
protein.

Therefore, we used a conversion factor of 4.43 suggested by Yeoh
and Wee et al. (1994) to calculate protein from nitrogen, and recali-
brated the specific absorption coefficient of protein following the ap-
proach in Wang et al. (2015a). This newly calibrated specific absorption
coefficient of protein was then used in this study.

2.3.3. Canopy reflectance model: the invertible forest reflectance model
(INFORM)

The invertible forest reflectance model (INFORM) was developed to
simulate the bi-directional reflectance in forest stands by combining the
forest light interaction model (FLIM) (Rosema et al., 1992), scattering
by arbitrary inclined leaves (SAILH) model, and PROSPECT model.
INFORM is one of the hybrid models which provides a trade-off be-
tween detailed characterization of the canopy structure and model in-
vertibility. The INFORM model accounts for the 1-dimensional, turbid
medium radiative-transfer within the crowns and the 3-dimensional
effects, such as crown-created shadows, the hotspot and the clumping of
leaves in crowns (Schlerf and Atzberger, 2006, 2012). The model is an
invertible model and has been used for estimating biophysical and
biochemical forest parameters such as LAI, fAPAR, specific leaf area,
and leaf dry matter content in both broadleaf and conifer stands
(Schlerf and Atzberger, 2006, 2012; Yang et al., 2011). However, it has
not yet been used for retrieving leaf nitrogen.

The previous submodel of PROSPECT built into INFORM was up-
dated by the revised PROSPECT-5 to estimate protein, described in
Section 2.3.1.
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2.3.4. Model parameterization
The range of input parameters and their fixed values are listed in

Table 2.
For the revised PROSPECT-5, leaf chlorophyll and carotenoids

content were held constant since these two parameters have negligible
effects on leaf spectra for wavelengths longer than 800 nm. Leaf
structure parameter has a small influence on canopy reflectance
(Jacquemoud, 1993; Xiao et al., 2014), thus this was fixed at 1.5 based
on previous studies (Ali et al., 2016b,c). Leaf nitrogen content was re-
trieved from laboratory measurements and the leaf protein content was
calculated as 4.43 times of leaf nitrogen content (Yeoh and Wee et al.,
1994). The range of leaf water and protein content were determined
from field measurements. Leaf cellulose+ lignin content varied from
0.00034 to 0.027 based on the range of the difference between leaf
mass per area and leaf protein content (by assuming that the leaf dry
mass is composed of protein and cellulose+ lignin).

The range of the INFORM input parameters, including stem density,
crown diameter and stand height, were set based on prior information
from the field (Table 2). Single-tree LAI was calculated as the ratio of
LAI and canopy closure as demonstrated in Schlerf and Atzberger
(2006), which ranged from 2.5 to 8. The range of average leaf in-
clination angle (ALA) was set according to Ali et al. (2016c). The un-
derstory LAI was fixed at 0.1. The ratio of diffuse to total incident ra-
diation (Skyl) was set to 0.1, as suggested in the literature
(Darvishzadeh et al., 2008; Schlerf and Atzberger, 2006). The range of
measurement geometry, including zenith angle of solar (ts), observation
zenith angle (to), and relative azimuth angle (ψ) were acquired from the
HySpex image acquisition campaign. The HySpex observation zenith
angle was 0, the sun zenith angle ranged from 28.7 to 38.7 based on the
flight time period, and the azimuth angle varied from 126.3 to 182.

We used the average reflectance spectrum that was measured for
understory and forest floor in representative plots (see Section 2.1.5) as
a fixed background reflectance in the model.

2.3.5. Global sensitivity analysis
Sensitivity analysis helps to identify the contribution of variation in

input parameters to the variability in the output canopy reflectance.
There are two types of sensitivity analysis, i.e., local sensitivity analysis
(LSA) and global sensitivity analysis (GSA). LSA provides information
on how the variation of each input parameter individually explains the
variation in the model output and ignores the interactions between
model parameters, while GSA provides information of how the varia-
tion of each input parameter individually, and their interactions with
each other, account for the variation of model output (Asner, 1998;
Saltelli, 1999). GSA includes the simultaneous variations of model
parameters (Bowyer and Danson, 2004), we therefore adopted a GSA in
this study. The GSA was performed for INFORM using the ranges of
input parameters presented in Table 2. A Matlab software tool (GSAT)
(Cannavó, 2012) was applied to perform the GSA; see Wang et al.
(2015a) for more details.

2.3.6. The look-up table inversion
There are a number of inversion approaches, such as iterative op-

timization, look-up table (LUT), and neural network (Kimes et al.,
2000). The look-up table (LUT) inversion approach was chosen in this
study, since it is a conceptually simple technique, can be easily im-
plemented, and yields similar results to the alternatives (Combal et al.,
2002; Pragnere et al., 1999). Also the LUT inversion provides a guar-
antee to find a global minimum, as well as the ability to apply ecolo-
gical constraints during the inversion procedure (Combal et al., 2002;

Table 2
The input parameters and their ranges used for generating the look-up table, using for-
ward models in the INFORM.

Parameter Abbreviation Unit Minimum
value

Maximum
value

Leaf structure parameter Nstruc – 1.5 1.5
Leaf chlorophyll content Cab μg/cm2 40 40
Leaf carotenoids content Ccx μg/cm2 10 10
Equivalent water

thickness
EWT cm 0.0063 0.0337

Leaf protein content Cp g/cm2 0.0006 0.0018
Leaf cellulose+ lignin

content
Ccl g/cm2 0.0025 0.027

Single-tree leaf area
index

LAIs m2/m2 2 8

Understory leaf area
index

LAIu m2/m2 0.1 0.1

Average leaf inclination
angle

ALA degree 40 60

Stem density SD ha−1 200 1800
Stand height H m 8 38
Crown diameter CD m 3 11
Sun zenith angle ts degree 28.7 38.7
Observation zenith angle to degree 0 0
Azimuth angle ψ degree 126.3 182
Fraction of diffuse

radiation
Skyl – 0.1 0.1

Table 3
Selected spectral subsets for model inversion to estimate leaf and canopy nitrogen con-
tent.

Spectral subset Wavelengths (nm)

1 800–2500
2 800–1350, 1550–1750, 2000–2400
3 1550–1800, 2100–2300
4 1020, 1510, 1730, 1980, 2060, 2130, 2180, 2240, 2300

Table 4
Correlations between plot-level leaf nitrogen and other LUT parameters.

Nitrogen EWT LMA LAI Stand density Crown
diameter

Nitrogen
EWT 0.821**

LMA 0.876** 0.979**

LAI 0.451* 0.734** 0.634**

Stand density 0.058 0.044 0.014 0.317
Crown diameter 0.078 0.074 0.102 −0.192 −0.709**

* Correlations significant at p<0.05.
** Correlations significant at p<0.01.

Fig. 2. Comparison of the recalibrated specific absorption coefficients of protein de-
termined on fresh leaves using the LOPEX dataset. A conversion factor of 4.43 was used
for calculating protein from nitrogen in this study. A factor of 6.25 was used in Wang
et al. (2015a).
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Houborg et al., 2009; Jurdao et al., 2013; Yebra et al., 2008).
Prior to inversion, a LUT was built via forward modeling using

different combinations of input parameters covering their prescribed
range of variation (Table 2). A sufficiently large LUT is needed to ensure
high accuracy for the estimated parameters, as suggested by
(Darvishzadeh et al., 2008). In this study, 200,000 parameter combi-
nations (uniform distributions) were randomly generated from the
forward modeling of INFORM. To reduce unrealistic combinations of
input parameters in the look-up table, we applied three ecological rules
obtained from field measurements to filter out some of the simulations.
The first filter selected the cases with canopy closure between 0.1 and
0.95, because values beyond this range were rarely found in our study
area. The second filter utilized the empirical relationship between LAI
and equivalent water thickness (LAI= 106.43*EWT+2.57, R2= 0.64,
p<0.001). The third filter utilized the empirical relationship between
crown diameter and stand density (CD=−0.0023*SD+7.19,
R2= 0.50, p<0.001). For the latter two filters, the cases that exceeded
10% of the range derived from the maximum or minimum residue of

the regression fitting were excluded. The threshold of 10% was sug-
gested in Yebra et al. (2008). In total, four look-up tables were built for
the model inversion: (1) LUT 1, with 200,000 parameter combinations;
(2) LUT 2, with 95,279 selected records by applying the first filter to
LUT 1; (3) LUT 3, with 70,714 selected records by applying the first and
second filters to LUT 1; and (4) LUT 4, with 29,467 selected records by
applying all the three filters to LUT 1.

Then, a set of parameters was identified by searching for the best fit
between measured spectra and the modeled spectra of the LUT by
minimizing the

=
∑ −

=
R λ R λ

n
RMSE

( ( ) ( ))i
n

mes LUT1
2

(3)

where R λ( )mes is the measured reflectance at wavelength λ, R λ( )LUT

is the reflectance modeled by INFORM and stored in the LUT at wa-
velength λ, and n is the number of wavelengths. To overcome the ill-
posed problem, previous studies suggested using the mean or median of
the parameters corresponding to the first 100 best matches instead of
those from the best fit (Darvishzadeh et al., 2008; Schlerf and
Atzberger, 2012). Therefore, 100 best matched spectra were identified,
and the mean of their 100 sets of corresponding parameters were cal-
culated as the estimates of the targeted parameters.

Previous studies have demonstrated that the use of spectral subsets
rather than the full wavelengths could provide equally or more accurate
estimations through model inversion (Darvishzadeh et al., 2011;
Darvishzadeh et al., 2008; Wang et al., 2015a; Weiss et al., 2000). Extra
bands may add some noise instead of adding useful information on

Fig. 3. Measured versus estimated leaf nitrogen content from fresh leaf spectra using the revised PROSPECT-5 inversion: (a) our dataset and (b) the LOPEX dataset.

Fig. 4. Results of FAST first-order sensitivity coefficients and interactions to canopy re-
flectance for the global sensitivity analysis with INFORM. The abbreviations in the legend
are equivalent water thickness (EWT), leaf protein content (Cp), leaf cellulose+ lignin
content (Ccl), single-tree leaf area index (LAIs), stem density (SD), stand height (H), crown
diameter (CD), and the average leaf inclination angle (ALA).

Fig. 5. The average absolute error (AAE) between measured and best-fit reflectance
spectra as a function of wavelengths. The AAE has been calculated from the 26 measured
canopy spectra against the best fitting look-up table (LUT) spectra for spectral subset 2
from INFORM.
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model inversion, which is due to the model uncertainties at certain
wavelengths as well as the uncertainties in measurements (Weiss et al.,
2000). We therefore performed the inversion over the following spec-
tral subsets presented in Table 3: (1) full available wavelength range;
(2) the spectral regions excluding water absorption bands; (3) the
spectral regions where protein contributed relatively more to re-
flectance according to the global sensitivity analysis; and (4) protein
absorption wavelengths based on the literature (Curran, 1989; Fourty
et al., 1996).

2.4. Validation

For both leaf and canopy level analysis, the leaf nitrogen content
was calculated as the estimated leaf protein content divided by 4.43.
There are a number of indicators for evaluating model performance.
The coefficient of determination (R2), the root mean square error
(RMSE), and the normalized RMSE (NRMSE=RMSE/range), and
Nash–Sutcliffe efficiency index (NSE) were adopted in this study as
suggested in Richter et al. (2012). At the leaf level, the accuracy of the
retrieved leaf nitrogen content from fresh leaf reflectance and trans-
mittance via revised PROSPECT-5 was evaluated. At the canopy level,
the accuracy of the retrieved leaf nitrogen content, LAI and canopy
nitrogen content from airborne hyperspectral imagery via INFORM
inversion was also evaluated.

3. Results

3.1. Characteristics of leaf and canopy parameters

Table 1 gives the statistical characteristics of leaf and canopy
parameters of the 26 sampling plots. The leaf nitrogen content varied
from 1.43e-04 to 3.68e-04 g/cm2, with a mean of 2.78e-04 g/cm2. The
mean LAI of all plots was 3.61, with a minimum value of 2.85 and a
maximum value of 5.14. The mean stem density, tree height, crown
diameter and canopy closure of the sampling plots were 771 ha−1,
23 m, 5.4 m, and 82%, respectively.

Table 4 shows the Pearson correlation coefficients of the leaf and
canopy parameters in the INFORM model. The plot-level leaf nitrogen
content significantly correlated with LMA and EWT (r=0.876 and
0.821, respectively, p<0.01), which have been demonstrated in pre-
vious leaf level studies (Sullivan et al., 2012; Wang et al., 2015b). EWT
correlated significantly with LMA and LAI (r=0.979 and 0.734, re-
spectively, p<0.01). The stand density correlated with crown diameter
(r=0.709, p<0.01).

3.2. Validation of estimated leaf nitrogen content from fresh leaf spectra

The comparison of the newly calibrated specific absorption coeffi-
cient in this study and that in Wang et al. (2015a) are shown in Fig. 2. It
shows that the absorption peaks in both coefficients are consistent, but
the magnitudes differ. The newly recalibrated SAC in this study is
higher than that in Wang et al. (2015a). This is due to the use of the
factor 4.43 to convert nitrogen to protein, which is lower than using a
factor of 6.25 in Wang et al. (2015a).

Fig. 3 illustrates that leaf nitrogen content can be estimated from
fresh leaf spectra using the recalibrated PROSPECT-5. The R2, RMSE,
NRMSE for our dataset were 0.51, 8.51e-05 and 0.17, respectively. The
R2, RMSE, NRMSE for LOPEX dataset were 0.45, 4.69e-05 and 0.18,
respectively. This demonstrated the applicability of the recalibrated
PROSPECT-5 for estimating leaf nitrogen content at the leaf level.

3.3. Global sensitivity analysis

Fig. 4 shows the FAST first-order sensitivity coefficients of the input
parameters to canopy reflectance for a global sensitivity analysis with
INFORM model. Cellulose+ lignin contributed to canopy reflectance
(around 50%) in the near infrared spectral region of 800–1300 nm,
followed by crown diameter (20%) and stem density (10%). For wa-
velengths longer than 1300 nm, water dominated the canopy re-
flectance, contributing up to 60% of the explained variance. Cellu-
lose+ lignin contributed most to canopy reflectance over the spectral
intervals 1500–1850 nm and 2100–2300 nm. Stem density and crown
diameter had pronounced effects on canopy reflectance in the spectral
intervals of 1850–2150 nm and 2300–2500 nm. In comparison, single-
tree LAI, the average leaf inclination angle, and stand height had less
influence on canopy reflectance over the interval 800–2500 nm. Protein
had a small but noticeable impact on canopy reflectance (around 2–4%)
in the spectral regions dominated by water absorption.

3.4. Validation of estimated leaf and canopy nitrogen content using
INFORM inversion

Table 5 details the validation of leaf nitrogen content estimated
from four look-up tables using INFORM. Leaf nitrogen content was
poorly estimated from LUT 1 with no ecological constraints, and the
most accurate estimates were obtained by spectral subset 3 using the
mean of the best 100 cases (R2=0.31, RMSE=4.28e-05,
NRMSE=0.22, NSE=0.29). The accuracy of estimated leaf nitrogen
content was greatly improved when using LUT 2, and the most accurate
estimates were provided by spectral subset 4 and the mean of the best
100 cases (R2=0.43, RMSE=3.86e-05, NRMSE=0.20, NSE= 0.43).

Fig. 6. Measured versus estimated parameters: (a) leaf nitrogen content (g/cm2) (b) LAI, and (c) canopy nitrogen content (g/m2) from measured spectra by INFORM inversion.
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Compared with using LUT 2, there was a small improvement in the
nitrogen estimates from the LUT 3 (R2=0.46, RMSE=3.79e-05,
NRMSE=0.19, NSE= 0.45). LUT 4 did not improve the nitrogen es-
timation accuracy (R2=0.40, RMSE=4.04e-05, NRMSE=0.20,
NSE=0.20) compared with LUT 2. Accurate estimation of canopy re-
flectance was obtained through parameterization of the models, as
demonstrated by the low average absolute error (AAE) (Darvishzadeh
et al., 2008) between measured and best-fit reflectance spectra for
subset 2 (AAE<0.02, Fig. 5).

Table 6 and Fig. 6 present the validation of the most accurately
estimated leaf nitrogen content, LAI and canopy nitrogen content using
INFORM. Leaf nitrogen content was estimated by subset 3 and the mean
of the best 100 cases found in LUT 3. LAI is a critical parameter to scale
up leaf nitrogen content to canopy nitrogen content. LAI was poorly
estimated by LUT 1, LUT 2 and LUT 3 (results not shown), and was
moderately retrieved using LUT 4. The most accurate estimates of LAI
were generated by subset 3 and the mean of the best 20 cases found in
LUT 4. Canopy nitrogen content was calculated as the product of the
leaf nitrogen content and LAI. Canopy nitrogen content was retrieved at
a higher accuracy (R2=0.64, RMSE=1.90, NRMSE=0.18,
NSE=0.63) than leaf nitrogen content (R2=0.46, RMSE=3.79e-05,
NRMSE=0.19, NSE=0.45), which can be mainly attributed to the
higher accuracy of the LAI estimation (R2=0.63, RMSE=0.43,
NRMSE=0.19, NSE=0.47). However, less accurate estimates were
obtained for each of the three forest types than pooled plots (Table 6).

3.5. Mapping of leaf and canopy nitrogen content from airborne
hyperspectral imagery

The HySpex image, masked for forested areas (see Section 2.2), was
used as input to the INFORM inversion, resulting in a map of leaf ni-
trogen content (Fig. 7).

LAI is a critical forest structural parameter used to scale up the leaf-
level biochemical parameters to canopy level. LAI cannot be directly
obtained by inversion of INFORM, but is calculated as the product of
retrieved single-tree LAI and canopy closure; canopy closure was cal-
culated using the retrieved stem density and crown diameter (Schlerf
and Atzberger, 2006). Canopy nitrogen content per unit ground surface
area is defined as the product of leaf nitrogen content per unit leaf area
and LAI. Canopy nitrogen content was mapped (Fig. 9) based on the
INFORM leaf nitrogen content map (Fig. 7) and LAI map (Fig. 8). The
spatial variation of leaf nitrogen content in the generated map corre-
sponds well with the distribution of broadleaf, needle leaf and mixed
forest observed during the fieldwork. Fig. 10 details the zoomed area of
estimated leaf nitrogen content, LAI and canopy nitrogen content over
one of the sampling plots. As shown from the RGB image (Fig. 10(a)),
this mixed forest plot included both broadleaf (in the upper left) and
needle leaf stands (near the center).

4. Discussion

Prediction of leaf biochemistry at the canopy level faces a number of
challenges, such as the confounding factors of canopy structure, illu-
mination/viewing geometry and background (Asner, 1998; Yoder and
Pettigrew-Crosby, 1995; Zarco-Tejada et al., 2001). Previous studies
have demonstrated that lower accuracies were obtained for leaf bio-
chemistry compared with canopy biochemistry (Darvishzadeh et al.,
2008; Liang et al., 2016; Omari et al., 2013; Si et al., 2012). In these
studies, an R2 of 0.14–0.40 was obtained for leaf chlorophyll and an R2

of 0.60–0.80 for canopy chlorophyll in grasslands and trembling aspen
forest when coupled leaf-canopy radiative transfer models were

Fig. 7. Leaf nitrogen content (g/cm²) map, generated by inversion of the INFORM model
using HySpex airborne image data from 22 July 2013 in the Bavarian Forest National
Park, Germany.

Fig. 8. LAI map, generated by inversion of the INFORM model using HySpex airborne
image data from 22 July 2013 in the Bavarian Forest National Park, Germany.

Fig. 9. Canopy nitrogen content (g/m2) map, calculated as the product of leaf nitrogen
content and LAI estimated by inversion of the INFORM model using HySpex airborne
image data from 22 July 2013 in the Bavarian Forest National Park, Germany.

Z. Wang et al. Agricultural and Forest Meteorology 253–254 (2018) 247–260

255



inverted. Another study reported an R2 of 0.47 for retrieved leaf
chlorophyll from the canopy spectra for black spruce forest (Zhang
et al., 2008). Asner et al. (2015) suggested that a validation of relative
RMSE of 0.25 or less indicates good estimates, and Richter et al., (2012)
also suggested good estimates with relative RMSE below 0.20 and NSE
higher than 0.50. Our results showed that canopy nitrogen content can
be estimated at a higher accuracy (R2=0.64, NRMSE=0.18,
NSE=0.63) than the leaf nitrogen content (R2=0.46, NRMSE=0.19,
NSE=0.45) (Table 6). The estimation accuracy of canopy nitrogen
content is comparable with previous empirical studies (Martin et al.,
2008; Asner et al., 2015; Wang et al., 2016). It should be noted that the
spectral wavelengths from 400–799 nm were not incorporated in this
study, since protein and cellulose+ lignin absorption features are more
prominent within the 800–2500 nm spectral region (Curran, 1989;
Baret and Fourty, 1997; Feret et al., 2008). The existing correlation
between nitrogen and chlorophyll may imply a higher accuracy for
nitrogen estimation if red-edge region (680–780 nm) information is
included.

Despite the above confounding factors, our results confirmed the
feasibility of retrieving leaf nitrogen content at the canopy level by
coupling a leaf radiative transfer model PROSPECT-5 and a canopy
reflectance model INFORM. In previous studies, which focused on
empirical models, an increased predictability of leaf biochemistry was
observed when up-scaling to the canopy level (Asner and Martin, 2008;
Asner et al., 2011). One reason for the feasibility of estimating leaf
nitrogen content at the canopy level is the strong, multiple scattering
effects in forests, which can enhance the leaf biochemical signals by up
to a factor of two, especially in the near and short wave infrared regions

(Baret et al., 1994). In other words, due to the relatively high LAI, the
light scattering and absorption enhances the spectroscopic difference
among canopies and, hence, leaf biochemistry retrieval (Asner and
Martin, 2008). The second explanation is that the parameterization of
the INFORM model is probably quite realistic. The INFORM model in-
cludes parameters for characterizing the canopy geometrical structure,
and incorporates the forest light interaction model (FLIM) model to
account for 3-dimensional effects such as shadows, the hotspot, and
clumping of leaves in crowns (Schlerf and Atzberger, 2006, 2012).
These enable the disassociation of the remotely sensed signal from ca-
nopy structural effects and leaf biochemical properties.

Both the direct and indirect effects of nitrogen exerting on the ca-
nopy reflectance are critical for nitrogen estimation (Lepine et al.,
2016; Wang et al., 2017). The direct effect of nitrogen means that the
variation in reflectance can be caused by the nitrogen absorption in
leaves. This can be confirmed by the fact that protein contributed 2–4 %
to the variation of canopy reflectance according to the global sensitivity
analysis (Fig. 4), although that contribution was far less than that of
other parameters such as water, cellulose+ lignin and canopy struc-
tural properties. Also, the spectral subset 4 (including the nitrogen
absorption bands) provided the most accurate estimation of nitrogen
(Table 5), which suggested that the nitrogen absorption features might
be detectable through the radiative transfer model. Meanwhile, the
indirect effects of nitrogen on canopy reflectance should be noted due
to the associations between nitrogen and other variables in this study
area. First of all, the variation in canopy reflectance is partly driven by
canopy structure rather than leaf nitrogen (Knyazikhin et al., 2013).
Thus, there are distinct differences in the mean canopy reflectance of

Fig. 10. Zoomed area of estimated leaf nitrogen content (g/cm2), LAI and canopy nitrogen content (g/m2) with one of the sampling plots in the center. The spatial resolution of the maps
is 3.2m.
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broadleaf, needle leaf and mixed forest (Singh et al., 2015; Wang et al.,
2017). The leaf nitrogen content also correlates well with the forest
type (Ollinger et al., 2008; Knyazikhin et al., 2013; Singh et al., 2015).
For example, the broadleaf (deciduous) plots with lower nitrogen had
higher canopy reflectance, the needle leaf (conifer) plots with higher
nitrogen had lower canopy reflectance, and mixed forest plots pre-
sented intermediate values (Ollinger et al., 2008; Lepine et al., 2016).
Therefore, the estimation of nitrogen was probably due to that the
INFORM model captured the difference in canopy reflectance caused by
canopy structure across forest types. Secondly, leaf nitrogen is highly
correlated with EWT and LMA, as observed in previous studies (Sullivan
et al., 2012; Homolova et al., 2013; Wang et al., 2015b; Singh et al.,
2015; Chadwick and Asner, 2016). The covariance of nitrogen with
EWT might be another reason for the estimation of nitrogen, since EWT
can be generally estimated with good accuracy (R2=0.70–0.92, results
not shown).

From Fig. 6 and Table 6, we observed that the estimation accuracy
of leaf nitrogen was lower for each forest functional type than for the
pooled plots, which have been shown in a number of previous studies
(Dahlin et al., 2013; Lepine et al., 2016; Gokkaya et al., 2015; Singh
et al., 2015; Loozen et al., 2017). The limited number of plots for each
forest type (8–10) may make the indicators of model performance un-
suitable for comparison. An analysis of variance showed that the
functional type explained most variance (95%) in the plot-level leaf
nitrogen content. The poor estimation for each forest type may be due
to the limited variation within each forest type. A larger dataset of each
forest type is needed to further investigate this result.

Global sensitivity analysis showed that leaf water contributed most
to the variation of canopy reflectance, which is consistent with previous
studies (Jacquemoud et al., 2009; Xiao et al., 2014). Leaf cellu-
lose+ lignin exerted a great influence on canopy reflectance, particu-
larly in the NIR spectral regions (800–1300 nm). This indicated that the
impact of the leaf constituents associated with internal leaf structure is
transferred to the canopy level. In terms of the canopy structural
parameters, we found that stand density and crown diameter were the
dominant factors affecting canopy reflectance, while less influence was
found from single-tree LAI and the average leaf inclination angle. This
is in agreement with a recent study on the effects of canopy structural
parameters on retrieving specific leaf area and leaf dry matter content
from remotely sensed data (Ali et al., 2016c). In the INFORM model,
canopy LAI is correlated to single-tree LAI, stem density and crown
diameter, with the contribution of canopy LAI being mostly compen-
sated by stem density and crown diameter. Therefore, a larger influence
of canopy LAI on canopy reflectance is expected if single-tree LAI is
converted to canopy LAI through stem density and crown diameter.
Leaf protein had a small but noticeable effect on the variation of canopy
reflectance (e.g. 800–1300 nm, 1600–1800 nm, 2100–2300 nm) as si-
mulated using INFORM.

RTMs are inherently constrained by the ill-posed inverse problem
(Combal et al., 2002). In other words, firstly, different combinations of
input parameter may generate similar spectra. Secondly, measurement
and model uncertainties will lead to inconsistencies during model in-
version. Regularization techniques have been proposed to minimize the
ill-posed inverse problem, such as using prior information (Combal
et al., 2002), spectral subsets (Darvishzadeh et al., 2008; Wang et al.,
2015a; Weiss et al., 2000), ecological constraints (Jurdao et al., 2013;
Yebra and Chuvieco, 2009), and a spatial regularization approach
(Houborg et al., 2009; Houborg et al., 2015).

In this study, we used the prior information from field measure-
ments, which constrains the input parameters and avoids unrealistic
solutions. Ecological rules were applied to the look-up table to reduce
unrealistic combinations of input parameters. Instead of adopting the
best case LUT, the mean of the first 100 best cases was selected as the
solution. The latter provided more robust results for the retrieved
parameters (Table 5). The spectral subset 4 generated the most accurate
estimations, followed by subset 3 (Table 5). Subset 4 includes the

nitrogen absorption bands while subset 3 is the spectral region that
protein contributed most to the canopy reflectance. This demonstrates
the physical mechanisms of nitrogen estimation. Due to the masking
effect of water, water removal techniques will be required to enhance
the nitrogen absorption features in further research (Wang et al.,
2015a), such as integration with continuum removal (Clark and Roush,
1984; Malenovský et al., 2006) as well as with wavelet transforms
(Banskota et al., 2013).

The application of ecological constraints improved the estimation
accuracy, and if further refined may improve the transferability of RTM
models to other species and sites. The first filter, of canopy closure
between 0.1 and 0.95, largely improved the estimation accuracy, and
can be applied to most forest areas. The second ecological rule utilized
the negative relationship between stand density and canopy diameter,
which may be applied to closed forest like the study area here but
would not work for open forest. The third filter was built on the em-
pirical relationship between EWT and LAI, which did not improve the
estimation accuracy of nitrogen but improved the estimation of LAI.
This can be attributed to the good estimates of EWT (R2=0.70–0.92,
results not shown). The essence of RTM models may result in less ac-
curate estimation when compared with empirical approaches. A com-
promise between retrieval accuracy and model transferability needs to
be sought when applying regulation techniques to model inversion.
RTM models improve the understanding of physical mechanisms in
nitrogen estimation, and empirical approaches laid the foundation of
developing RTM models. The RTM models and empirical approaches
are not exclusive, and their combination would complement each other
when retrieving leaf and canopy nitrogen (Wang, 2016). Furthermore,
hybrid methods are recommended for the retrieval of vegetation vari-
ables, which combine the generalization of RTMs with the flexibility
and computational efficiency of non-parametric regression methods
(Verrelst et al., 2015).

Fig. 7 demonstrated that the spatial pattern of leaf nitrogen content
and that of structural and biochemical characteristics of broad- and
needle-leaf forest stand, due to the covariance of nitrogen and other
variables in this study area. The areas with higher nitrogen content are
in good agreement with the distribution of needle leaf forest, which is
mainly found in the southern valley areas, while low nitrogen areas are
consistent with the broadleaf forest located in the north at a higher
elevation. This was also confirmed by our observations during the
fieldwork (Wang et al., 2015b). We calculated the mean and standard
deviation of leaf nitrogen content for all image pixels in the forest area.
The mean and standard deviation of INFORM leaf nitrogen were 2.7e-
04 g/cm² and 6.8e-05, respectively, which is close to values of sampled
plots measured in the field (2.8e-04 g/cm² and 5.2e-05). The canopy
nitrogen content per unit ground surface area ranged from 4.90 to
18.91 g/m2 for forest pixels (Fig. 9). The canopy nitrogen map highly
correlated with both the leaf nitrogen map and the LAI map. The var-
iance of canopy nitrogen across different plant functional types is being
driven almost equally by the values of leaf nitrogen and LAI.

5. Conclusions

We have evaluated the feasibility of combining leaf and canopy
radiative transfer models to retrieve leaf and canopy nitrogen content
using airborne hyperspectral measurements. Leaf protein had a small
but noticeable effect on the canopy reflectance. The look-up table de-
tailed the canopy information and viewing geometry, which enabled
the separation of canopy structural effects from leaf optical properties.
Canopy nitrogen content was retrieved at a higher accuracy than leaf
nitrogen content, which can be attributed to having good estimates of
LAI. Inversion techniques, such as using prior information, ecological
constraints, spectral subsets, and statistical parameters of a certain
number of best solutions further improved our estimation accuracy. The
most accurate estimation of leaf nitrogen was obtained when using
spectral subset 4 and the mean of the first 100 cases. The estimation of
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nitrogen could be explained by both the direct and indirect effects of
nitrogen on the variations in canopy reflectance. To fully understand
the physical mechanisms for nitrogen estimation using radiative
transfer models, a more extensive dataset is needed. The leaf nitrogen
and canopy nitrogen maps were generated by applying the inversion
procedure to the whole hyperspectral imagery, and the spatial variation
corresponded well with the distribution of plant functional types.

The robustness and transferability of radiative transfer models
suggests that the approaches proposed in this study may be transferred
to other sites with different natural and environmental conditions.
Ancillary information and ecological rules for new sites would be ne-
cessary to obtain an accurate estimation. With the aid of light detection
and ranging (LiDar), canopy structural parameters that are inputs to the
canopy model can be obtained and used as constraints in the model
inversion (Asner et al., 2015; Combal et al., 2002; Gokkaya et al., 2015;
Niemann et al., 2012). Hybrid methods of coupling radiative transfer
models with empirical approaches through machine learning regression
algorithms are needed for accurate retrieval of nitrogen (Verrelst et al.,
2015; Wang, 2016). Larger scale maps of foliar nitrogen could be
generated for modeling ecosystems and assessing biodiversity if hy-
perspectral satellites such as EnMAP (Guanter et al., 2015) and HyspIRI
((NRC) 2007) become operational.
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