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Abstract—Computationally expensive radiative transfer models
(RTMs) are widely used to realistically reproduce the light interac-
tion with the earth surface and atmosphere. Because these models
take long processing time, the common practice is to first generate
a sparse look-up table (LUT) and then make use of interpolation
methods to sample the multidimensional LUT input variable space.
However, the question arise whether common interpolation meth-
odsperform most accurate. As an alternative to interpolation, this
paper proposes to use emulation, i.e., approximating the RTM out-
put by means of the statistical learning. Two experiments were con-
ducted to assess the accuracy in delivering spectral outputs using
interpolation and emulation: at canopy level, using PROSAIL; and
at top-of-atmosphere level, using MODTRAN. Various interpola-
tion (nearest-neighbor, inverse distance weighting, and piece-wice
linear) and emulation [Gaussian process regression (GPR), kernel
ridge regression, and neural networks] methods were evaluated
against a dense reference LUT. In all experiments, the emulation
methods clearly produced more accurate output spectra than clas-
sical interpolation methods. The GPR emulation performed up to
ten times more accurately than the best performing interpolation
method, and this with a speed that is competitive with the faster
interpolation methods. It is concluded that emulation can function
as a fast and more accurate alternative to commonly used interpo-
lation methods for reconstructing RTM spectral data.

Index Terms—Emulation, interpolation, look-up tables (LUT),
machine learning, peformance simulators, processing speed, radia-
tive transfer models (RTMs).
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I. INTRODUCTION

PHYSICALLY-BASED radiative transfer models (RTMs)
allow remote sensing scientists to understand the light

interactions between water, vegetation, and atmosphere [1]–
[3]. RTMs are physically-based computer models that describe
scattering, absorption, and emission processes in the visible to
microwave region [4], [5]. These models are widely used in
applications, such as inversion of atmospheric and vegetation
properties from remotely sensed data (see [6] for a review),
to generate artificial scenes as would be observed by a sen-
sor [7]–[9], and sensitivity analysis of RTMs [10]. In the op-
tical domain, a diversity of vegetation, atmosphere, and water
RTMs have continuous been improved in accuracy from simple
semiempirical RTMs toward advanced ray tracing RTMs. This
evolution has led to an increase in complexity, intepretability,
and computational requirements to run the model, which bears
implications toward practical applications. On the one hand,
computationally cheap RTMs are models with relatively few in-
put parameters that enables fast calculations (e.g., [11] and [12]
for vegetation and [13], [14] for atmosphere). On the other hand,
computationally expensive RTMs are complex physically-based
mathematical models with a large number of input variables.
In short, the following families of RTMs can be considered
as computationally expensive: Monte Carlo ray tracing models
(e.g., Raytran [15], FLIGHT [16], and librat [17]), voxel-based
models (e.g., DART [18]), and advanced integrated vegetation
and atmospheric transfer models that consists of various sub-
routines (e.g., SimSphere [19], SCOPE [20], and MODTRAN
[21]). Despite the higher accuracy of these RTMs to model the
light-vegetation and atmosphere interactions (see e.g., [15] and
[22]), their high computational burden make them impractical
for practical applications that demand many simulations, and
alternatives have to be sought.

In order to overcome this limitation, RTMs are most com-
monly applied by means of look-up tables (LUTs) [6]. LUTs
are prestored RTM output data so that the computational of the
RTM has to be done only one time, prior to the application.
Nevertheless, for reasons of memory storage and processing
time, LUTs are usually kept to a reasonable size, especially
in case of computationally expensive RTMs. The common ap-
proach is then to seek through the multidimensional LUT input
variable space by means of interpolation techniques. Various
interpolation techniques have been developed both for grid-
ded and scattered datasets [23]–[25]. Linear interpolation is the
most used approach in both gridded and scattered datasets due
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to its balance between processing speed and accuracy [26]–
[28]. However, the main drawback of the linear interpolation
in high-dimensional scattered datasets is that the underlying
triangulation is computationally expensive and uses large com-
puter memory.

Emulation of costly codes is an alternative to interpolation,
but based on statistical principles. The core idea of an emulator
is to extract (or learn) the statistical information from a limited
set of simulations of the original deterministic model [29], [30].
Emulators then approximate the original RTM at a tiny fraction
of its speed and this can be readily applied in tedious process-
ing routines [31], [32]. The use of emulators deals with some
extra advantages such as the use of a nongridded input param-
eter space, making it more versatile than several interpolation
methods (e.g., piece-wise cubic splines). In different research
fields, such as engineering, energy, robotics, and environmental
modeling, emulators have already demonstrated to be a more ef-
ficient alternative to classical LUT interpolation methods [29],
[33]–[38]. However, these studies are generally limited to mod-
els with a few output dimensions, low levels of noise, or low
degrees of freedom and ill-posedness. Therefore, an important
question arises here whether emulators are able to compete with
interpolation methods in sampling capabilities of hyperspectral
RTM outputs, both in terms of accuracy and processing speed.
The problem is thus new and actually challenges the potential
capabilities of emulators. This brings us to the main objective
of this paper, i.e., to analyze the performance of emulators as an
alternative of classical RTM-based LUT interpolation for sam-
pling the LUT parameter space. To do so, two contrasting LUT
spectral outputs are examined: one of spectrally smooth top-
of-canopy (TOC) reflectance data, and another of more sharper
(high frequency bands) top-of-atmosphere (TOA) radiance data.
We give experimental evidence that emulation generally out-
performs interpolation in both computational cost and accuracy,
which suggest they might be better suited for RTM-based LUT
sampling.

The remainder of this paper is as follows. Section II gives a
theoretical overview of the analyzed interpolation and emula-
tion methods. Section III presents the materials and methods to
study the performance of interpolation and emulation methods
in terms of accuracy and computation time. This is followed by
presenting the results in Section IV which are discussed in a
broader context in Section V. Section VI concludes this paper.

II. INTERPOLATION AND EMULATION THEORY

In this section, we first present common interpolation methods
(see Section II-A), and then address the emulation theory (see
Section II-B).

A. Interpolation

Let us consider a D-dimensional input space X from where
we sample x ∈ X ⊂ RD in which a K-dimensional object func-
tion f(x; λ) = [f(x; λ1), . . . , f(x; λK )] : R �→ RK is evalu-
ated. In the context of this paper, X comprises the D input
variables [e.g., leaf area index (LAI), aerosol optical thickness
(AOT), visual zenith angle (VZA)] that control the behavior

of the function f(x; λ), i.e., a water, canopy or atmospheric
RTM. Here, λ represents the wavelengths in the K-dimensional
output space.1 An interpolation, ̂f(x) is, therefore, a technique
used to approximate model simulations, f(x) = ̂f(x) + ε, based
on the numerical analysis of an existing set of nodes, fi = f(xi),
conforming a precomputed LUT. The concept of interpolation
has been widely used in remote sensing applications, including
retrieval of biophysical parameters [39] and atmospheric cor-
rection algorithms [26], [27]. The following nonexhaustive list
gives an overview of commonly used interpolation techniques
in remote sensing.

1) Nearest-Neighbor: This is the simplest method for in-
terpolation, which is based on finding the closest LUT
node xi to a query point xq (e.g., by minimizing their
Euclidean distance) and associate their output variables,
i.e., ̂f(xq ) = f(xi). This fast method is valid for both
gridded and scattered LUTs.

2) Inverse Distance Weighting (IDW) [40]: Also known as
Shepard’s method, this method weights the n closest LUT
nodes to the query point xq (1) by the inverse of the
distance metric d(xq ,xi) : X �→ R+ (e.g., the Euclidean
distance)

̂f(xq ) =
∑n

i=1 ωif(xi)
∑n

i=1 ωi
(1)

where ωi = d(xq ,xi)−p and p (typically p = 2) is a tune-
able parameter known as power parameter. When p is
large, this method produces the same results as the nearest-
neighbor interpolation. The method is computationally
cheap but it is affected by LUT nodes far from the query
point. The modified Shepard’s method [41] aims to re-
duce the effect of distant grid points by modifying the
weights by

ωi =
(

R − d(xq ,xi)
R · d(xq ,xi)

)p

(2)

where R is the maximum Euclidean distance to the n
closest LUT nodes.

3) Piece-Wise Linear: This method is commonly used in
remote sensing applications due to its balance between
computation time and interpolation error [26], [42], [43].
The implementation of the linear interpolation is based on
the Quickhull algorithm [44] for triangulations in multidi-
mensional input spaces. For the scattered LUT input data,
the piece-wise linear interpolation method is reduced to
find the corresponding Delaunay simplex [45] (e.g., a tri-
angle when D = 2) that encloses a query D-dimensional
point xq [see (3) and Fig. 1]

̂fi(xq ) =
D+1
∑

j=1

ωj f(xj ) (3)

where ωj are barycentric coordinates of xq with respect
to the D-dimensional simplex (with D + 1 vertices) [46].

1For sake of simplicity, the wavelength dependency is omitted in the formu-
lation in this paper, i.e., f (x; λ) ≡ f (x).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VICENT et al.: EMULATION AS AN ACCURATE ALTERNATIVE TO INTERPOLATION IN SAMPLING RADIATIVE TRANSFER CODES 3

Fig. 1. Schematic representation of a two-dimensional interpolation of a query
point xq (white ∗) after Delaunay triangulation (solid lines) of the scattered LUT
nodes Xi (∗).

Notice that, though similar, the IDW with parameters n =
D + 1 and p = 1 is not strictly the same as linear interpo-
lation since IDW uses Euclidean distances instead of the
barycentric coordinates in linear interpolation. Since f(x)
is a K-dimensional function, the result of the interpolation
is also K-dimensional.
In scattered LUTs, the underlying Delaunay triangulation
is computationally expensive in high dimensional input
spaces (typically D > 6) and is also limited by its intensive
memory consumption [44], [47].

Other existing advanced interpolation methods (e.g., Sibson’s
interpolation [46], [48] and piece-wise cubic splines [49]) were
not considered in the analysis due to their even more intensive
memory consumption in high-dimensional input spaces.

B. Emulation

Emulation is a statistical learning technique used to estimate
model simulations when the model under investigation is too
computationally costly to be run many times [29]. The concept
of developing emulators have already been applied in the last
few decades in the climate and environmental modeling com-
munities [19], [50]–[56]. The basic idea is that an emulator
uses a limited number of simulator runs, i.e., input-output pairs
(corresponding to training samples), to train a machine learning
regression algorithm in order to infer the values of the complex
simulator output given a yet-unseen input configuration. These
training data pairs should ideally cover the multidimensional
input parameter space using a space-filling sampling algorithm,
e.g., Latin hypercube sampling [57].

As with the LUT interpolation, once the emulator is built, it
is not necessary to perform any additional runs of the model;
the emulator computes the output that is otherwise generated by
the simulator [29]. Accordingly, emulators are statistical mod-
els that can generalize the input–output relations from a sub-
set of examples generated by RTMs to unseen data. Note that
building an emulator is essentially nothing more than building
an advanced regression model as typically done for biophysi-
cal parameter retrieval applications [see pioneering works using

neural networks (NNs] [58], [59] and also more recent statistical
methods [6], [60], [61], but in reversed order: whereas a retrieval
model converts input spectral data (e.g., reflectance) into one or
more output biophysical variables, an emulator converts input
biophysical variables into output spectral data.

When it comes to emulating RTM spectral outputs, however,
the challenge lies in delivering a full spectrum, i.e., predicting
contiguous spectral bands. This is an additional difficulty com-
pared to traditional interpolation methods or standard emulators
that only deliver one output [62]. It bears the consequence that
the machine learning methods should be able to generate multi-
ple outputs to be able reconstructing a full spectral profile. This
is not a trivial task. For instance, the full, contiguous spectral
profile between 400 an 2500 nm consists of over 2000 bands
when binned to 1 nm resolution. Not all regression models are
able to deal with high-dimensional outputs. Only some of them
can obtain multioutput models. For instance, with NNs it is pos-
sible to train multioutput models. However, training a complex
multioutput statistical model with the capability to generate so
many output bands would take considerable computational time
and would probably incur in a certain risk of overfitting because
of model overrepresentation. A workaround solution has to be
developed that enables the regression algorithms to cope with
large, spectroscopy datasets. An efficient solution is to take ad-
vantage of the so-called curse of spectral redundancy, i.e., the
Hughes phenomenon [63]. Since spectroscopy data typically
shows a great deal of collinearity, it implies that such data can
be converted to a lower-dimensional space through dimensional-
ity reduction (DR) techniques. Accordingly, spectroscopy data
can be converted into components, which are only a fraction
of the original amount of bands, and implies that the multiout-
put problem is greatly reduced to a number of components that
preserve the spectral information content. Afterward the com-
ponents are then again reconstructed to spectral data. In this
paper, we first apply a principal component analysis (PCA) [64]
to the spectral data in order to reduce it to a given number of
features (components). This step greatly reduces the number of
dimensions while keeping 99% of the spectra variance. Through
DR , the problem is better conditioned and allows us to either
train multioutput or single-output models on this reduced set of
components [30]–[32], [55], [65]. As the models are trained to
predict on the reduced set of components, the final step of the
process is to project back the predictions to the original spectra
space by applying the inverse PCA.

C. Machine Learning Regression Algorithms

Two steps are required to enable approximating an
RTM through emulation. The first step involves building a
statistically-based representation (i.e., an emulator) of the RTM
using statistical learning from a set of training data points de-
rived from runs of the actual model under study (LUT nodes
in the context of interpolation). The second step uses the em-
ulator previously built in the first step to compute the output
in the LUT input parameter space that would otherwise have
to be generated by the original RTM [29]. Based on the lit-
erature review above and earlier emulation evaluation studies



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

[31], [32], [65], the following three machine learning methods
potentially serve as powerful methods to function as accurate
emulators, being: First, Gaussian processes regression (GPR);
second, kernel ridge regression (KRR); and third, NNs.

We selected these three methods as representative the state-
of-the-art machine learning families for regression. KRR gen-
eralizes linear regression via kernel functions. The GPR is es-
sentially the probabilistic version of the KRR, and has been
widely used for biogeophysical parameter and emulation [36],
[66], [67]. NNs are standard approximation tools in statistics
and artificial intelligence, and are currently revived through the
popular adoption of deep learning models [68]. We explore all
these techniques for the sake of a complete benchmarking of
standard methods available. These methods are briefly outlined
later.

Kernel methods in the machine learning owe their name to
the use of kernel functions [69]–[71]. These functions quantify
similarities between input samples of a dataset. Similarity re-
produces a linear dot product (scalar) computed in a possibly
higher dimensional feature space, yet without ever computing
the data location in the feature space. The following two meth-
ods are gaining increasing attention: the GPR generalize Gaus-
sian probability distributions in function spaces [72], and KRR,
which perform least squares regression in feature spaces [73].
The expressions defining the weights and the predictions ob-
tained by GPR and KRR are the same, but interestingly these
expressions are obtained following different approaches. GPR
follow a probabilistic approach (see [72]), whereas KRR im-
plement a discriminative approach for regression and function
approximation. In both cases, the prediction and the predictive
variance of the model for new samples are given by

̂f(xq ) =
n

∑

i=1

αik(xi ,xq ) (4)

V [̂f(xq )] = k(xq ,xq ) − k�
∗ (K + σ2

nI)−1k∗ (5)

where k(·, ·) is a covariance (or kernel function), k∗ is the vector
of covariances between the query point, xq , and the n or training
points, and σ2

n accounts for the noise in the training samples. As
one can see, the prediction is obtained as a linear combination
of weighted kernel (covariance) functions, the optimal weights
given by α = (K + σ2

nI)−1f(x). Many different functions can
be used as kernels for both GPR and KRR. In this paper, we used
a standard Gaussian radial basis function kernel for KRR, which
has a single length hyperparameter for all input dimensions,
and the automatic relevance determination squared exponential
kernel for GPR, which has a separate length hyperparameter
for each input dimension. For KRR, these hyperparameters are
tuned through standard cross-validation techniques are used to
choose the best hyperparameters. For GPR, stochastic gradient
descent algorithms maximizing the marginal log-likelihood are
employed, which allow us to optimize a large number of hy-
perparemeters (compared to KRR) in a computational effective
way.

NNs are essentially fully connected layered structures of
artificial neurons [74]. An NN is a (potentially fully) con-

nected structure of neurons organized in layers. Neurons of
different layers are interconnected with the corresponding links
(weights). The output on the final layer of the NN, and thus the
prediction, is given by

̂f(x∗) = g

(

n
∑

k=1

wl
jkxl−1

k + bl
k

)

(6)

where wl
jk and bl

k are the weights and bias at the lth layer,

respectively, xl−1
k is the input vector at the l − 1th layer, and

g is an activation function, which at the output layer and for
regression problems could be the identity function. Training an
NN implies selecting a structure (number of hidden layers and
nodes per layer), initialize the weights, shape of the nonlinear
activation function, learning rate, and regularization parameters
to prevent overfitting [75]. The selection of a training algorithm
and the loss function both have an impact on the final model. In
this paper, we used the standard multilayer perceptron, which is
a fully-connected network. We selected just one hidden layer of
neurons. We optimized the NN structure using the Levenberg–
Marquardt learning algorithm with a squared loss function.

One can note the similarity between the prediction functions
used in the emulators [see (4) and (6)] with those used for in-
terpolation (see Section II-A). In fact, the theoretical relation
between both approaches was extensively discussed back in
1970 in the context of splines and GPR in [76]. Essentially,
machine learning emulators perform regression and, hence, are
more flexible functions for fitting than interpolation, as the so-
lution is not forced to pass through the observed points. On the
downside, the emulation approach may be hampered by an ad-
equate estimation of the hyperparameters (i.e., regularization).
When a good estimate of the hyperparameters is achieved em-
ulation should obtain equal or better results than interpolation,
otherwise the regression may incur in a certain risk of overfitting.

III. MATERIALS AND METHODS

In this section, we will start by giving an overview the soft-
ware used to generate the synthetic datasets used to assess
the performance of the interpolation/emulation methods (see
Sections III-A and III-B). We will continue by describing these
datasets (see Section III-C) and finish by explaining the er-
ror metrics used to evaluate the performance of the interpola-
tion/emulation methods (see Section III-D).

A. Automated Radiative Transfer Models Operator (ARTMO)
and Atmospheric Look-Up Table Generator (ALG) Toolboxes

This study was conducted within two in-house developed
graphical user interface software packages named ARTMO [77]
and ALG [78]. Both software packages facilitate the usage of a
suite of leaf, canopy and atmosphere RTMs including, among
others, PROSAIL (i.e., the leaf model PROSPECT coupled with
the canopy model SAIL [79]) and MODTRAN5. As a novelty,
the latest ARTMO version (v. 3.24) is coupled with ALG (v. 1.2),
which allows generating large multidimensional LUTs of TOA
radiance data for Lambertian surfaces.
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ARTMO also embodies a set of retrieval toolboxes, and
recently an “Emulator toolbox” was added [65]. In the
Emulator toolbox, several of those MLRAs can be trained by
RTM-generated LUTs, whereby biophysical variables are used
as input in the regression model, and spectral data is gener-
ated as an output. In addition, ALG includes a function that
allows various methods of interpolating gridded and scattered
LUTs (i.e., nearest neighbor, piece-wise linear/splines, IDW).
The ARTMO and ALG packages are developed in MATLAB
and can be freely downloaded from http://ipl.uv.es/artmo/.

B. Description of Simulated Datasets

1) PROSPECT-4: The leaf optical model PROSPECT-4 [11]
calculates leaf reflectance and transmittance as a function of
four biochemistry and anatomical variables: leaf structure (N ),
equivalent water thickness (Cw), chlorophyll content (Cab), and
dry matter content (Cm). PROSPECT-4 simulates directional
reflectance and transmittance over the solar spectrum from 400
to 2500 nm at the fine spectral resolution of 1 nm.

2) SAIL: At the canopy scale, SAIL [12] approximates the
RT equation through two direct fluxes (incident solar flux and ra-
diance in the viewing direction) and two diffuse fluxes (upward
and downward hemispherical flux) [80]. SAIL input variables
consist of LAI, leaf angle distribution (LAD), ratio of diffuse and
direct radiation (skyl), soil coefficient (soil coeff.), hot spot and
sun-target-sensor geometry, i.e., solar/view zenith angle and rel-
ative azimuth angle (SZA, VZA and RAA, respectively). Spec-
tral input consists of leaf reflectance and transmittance spectra
and a soil reflectance spectrum. The leaf optical properties can
come from a leaf RTM such as PROSPECT, which results in the
leaf-canopy model PROSAIL [3]. PROSAIL allows analyzing
the impact of leaf biochemical variables on the hemispherical
and bidirectional TOC reflectance.

3) MODTRAN5: At the atmosphere scale, MOD-
TRAN5 [21], the moderate resolution transmittance code, is
one of the most widely used radiative transfer codes in the
atmospheric community due to its accurate simulation of the
coupled absorption and scattering effects [81], [82]. MOD-
TRAN solves the RT equation in a multilayered spherically
symmetric atmosphere by including the effects of molecular
and particulate absorption/emission and scattering, surface
reflections and emission, solar/lunar illumination, and spherical
refraction.

C. Experimental Setup

Here, we outline the experimental setup for running the in-
terpolation and emulation experiments. For both PROSAIL and
MODTRAN RTMs, LUTs were generated by means of Latin
hypercupe sampling (LHS) within the RTM variable space with
minimum and maximum boundaries as given in Tables I and II.
The selected input variables were chosen given their influence in
both the entire spectra (e.g., Aerosol optical thickness, Ångström
exponent) and in specific absorption bands (e.g., Chlorophyll
absorption, water vapour, and ozone). An LHS of training data
is preferred, as LHS covers the full parameter space, and thus,
in principle, assures that the developed emulator/interpolation

TABLE I
RANGE OF VEGETATION INPUT VARIABLES FOR THE PROSAIL LUTS

ACCORDING TO LATIN HYPERCUBE SAMPLING

SAIL fixed variables: hot spot: 0.01; solar zenith angle: 30◦; observer zenith angle: 0◦;
azimuth angle: 0◦.

TABLE II
RANGE OF ATMOSPHERIC INPUT VARIABLES FOR THE MODTRAN LUTS

ACCORDING TO LATIN HYPERCUBE SAMPLING

MODTRAN fixed geometric variables: solar zenith angle: 55◦; observer zenith angle:
0◦; azimuth angle: 0◦. Remaining MODTRAN parameters were set to their default
values.

will be able to reconstruct correct spectral output for any pos-
sible combination of input variables. For both the canopy and
atmospheric RTMs, three sizes of LUTs were created given the
same LUT boundaries: 500, 2000, and 5000. While the most
dense LUT (5000) was used as a reference LUT to evaluate the
performances of the emulation and interpolation algorithms, the
first two LUTS (500 and 2000) where simulated to actually run
the emulation and interpolation techniques for different LUTs
sizes. Additionally, the 64 vertex of the input variable space (i.e.,
where the input variables get the minimum/maximum values)
were added to these two LUTs. The addition of these vertex
enables consistent functioning of all tested interpolation tech-
niques, i.e., that the input variable space is bounded and no
extrapolation is performed.

The MODTRAN LUTs consist on TOA radiance spectra con-
structed according to (7) under the Lambertian assumption

LTOA = L0 +
(Edirμs + Edif)(Tdif + Tdir)ρ

π(1 − Sρ)
(7)

where L0 is the path radiance, Edir/dif are the direct/diffuse
at-surface solar irradiance, Tdir/dif are the surface-to-sensor di-
rect/diffuse atmospheric transmittance, S is the spherical albedo,
μs is the cosine of SZA, and ρ is the Lambertian surface re-
flectance (in our case we used the conifer trees surface re-
flectance from ASTER spectral library [83]). The atmospheric
transfer functions are derived after applying the MODTRAN
interrogation technique described in [26].

For the emulation approach, each LUT was used to develop
and evaluate the different statistical models.

The role of number of components has been systematically
studied before [32]. The selection of 10 and 20 PCA components
(i.e.,∼ 100% explained variance) was found an acceptable trade-
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off between accuracy and processing time. Better reconstruction
of the spectral profiles can be achieved with additional compo-
nents, but at expenses of slower processing times. Further, since
emulators only produce an approximation of the original model,
it is important to realize that such an approximation introduces
a source of uncertainty referred to as “code uncertainty” associ-
ated to the emulator [29]. Therefore, validation of the generated
model is an important step in order to quantify the emulator’s de-
gree of accuracy. To test the accuracy of the 500- and 2000-LUT
emulators, part of the original data is kept aside as validation
dataset. Various training/validation sampling design strategies
are possible with the “Emulator toolbox.” Because of the deter-
ministic nature of RTM data, an initial cross-validation sampling
testing led to similar accuracies as one-time validation. To speed
up the processing time [31], a single data split was, therefore,
applied using 70% samples for training and the remaining 30%
for validation.

D. Validation

In order to show the differences between the RTM outputs and
the approximation inferred by interpolation or emulation tech-
niques, some goodness-of-fit statistics as a function of wave-
length are calculated against the n = 5000 references LUTs as
generated by the RTMs. The root-mean-square error (RMSE)
and the normalized RMSE (NRMSE) [%] [see (8) and (9)]
are calculated, both per wavelength and then averaged over all
wavelengths (λ)

RMSE =

√

1
n

∑n

i=1
[f(xi) − f̂(xi)]2 (8)

NRMSE =
100 · RMSE
fmax − fmin

(9)

where fmax and fmin are, respectively, the maximum and mini-
mum values of the n spectra in the reference dataset. A closer
inspection will be given to the most interesting results by plot-
ting the histogram of the relative residuals (εi , in absolute terms
and expressed in %)

εi = 100
|f(xi) − f̂(xi)|

f(xi)
. (10)

Specifically, the average relative error and the percentiles
2.5%, 16%, 84%, and 95.5% will be plotted as function of
wavelength.

The processing time of executing the emulator/interpolation
method on the reference dataset has also been tracked. These
calculations were performed in a i7-4710MP CPU at 2.5 GHz
with 16 GB of RAM and 64-bits operating system.

IV. RESULTS

In this section, we will show the results of applying the
emulator and interpolation methods on the described canopy
and top-of-atmosphere datasets. In Section IV-A, we will show
an overview of the performance of interpolation and emula-
tion methods in terms of accuracy and computation time. In
Section IV-B, we will inspect in greater detail the error his-

TABLE III
PROSAIL INTERPOLATION AND EMULATORS VALIDATION RESULTS AGAINST

5000 LUT REFERENCE DATASET (RMSEλ, NRMSEλ) AND

PROCESSING TIME (S: SECONDS)

tograms for the best performing interpolation and emulation
methods.

A. Interpolation Versus Emulation Comparison

For both PROSAIL and MODTRAN outputs four scenarios
are evaluated: training/interpolating with 500 and 2000 samples.
The emulation approach is additionally tested with entering 10
or 20 components in the regression algorithm. All approaches
are validated against the reference 5000 samples’ LUTs.

Starting with the PROSAIL analysis, validation results and
processing time is given in Table III. NRMSE results along the
spectral range for the four scenarios are shown in Fig. 2. In-
spection of these four graphs suggest the following. Each of
the four scenarios show approximately the same patterns, with
expected higher NMRSE errors in spectral channels with lower
reflectance values (e.g., bottom of Chlorophyll absorption at 680
nm and inside the water absorptions at 1440 nm and 1900 nm).
The three emulation methods clearly outperform the three inter-
polation methods in reproducing LUT reflectance spectra. The
GPR is best able to reconstruct spectra with high accuracies
(i.e., low NRMSE errors). The KRR is second best performing,
while NN performs still better than the interpolation techniques
but no longer with a substantial gain in accuracy. Among the in-
terpolation methods, linear and IDW achieve similar accuracy,
particularly when using the 2000 samples LUT. Only in the
near-infrared plateau (i.e., 720–1300 nm) linear interpolation
obtain the lowest NRMSE errors among the interpolation tech-
niques, similar to those obtained with NN emulation. Thereby,
results improved when more input data is involved, i.e., when
the statistical models are trained with more samples, or when
a denser LUT is used for interpolation. This is clearly notable
when comparing the results of 2000 samples with that those
of 500. A decrease in errors is especially noticeable for KRR,
but also the interpolation methods lower errors with a few per-
cents. The superiority of emulation methods can perhaps be
better appreciated when considering Table III: GPR trained by a
2000-LUT yielded RMSEλ on the order of ten times lower than
the best interpolation method.

PROSAIL emulation results can further improved when more
components are entered in the statistical learning, as then in
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Fig. 2. PROSAIL interpolation versus emulation results. Note that the number of PCA components refers only to the emulator methods since no DR is applied
in interpolation.

principle more variability is preserved. However, these im-
provements were not obvious in our results: when doubling the
number of components from 10 to 20 hardly differences were
observed for KRR and GPR. This is especially the case for the
2000 training LUT: Table III gives the same RMSEλ results.
Hence, this suggests that about ten components are more than
enough to preserve a maximal amount of information. NN ap-
pears more affected by the number of components in case of
the 500 training samples: clear improvements can be observed
from 1500 nm onward. Conversely, in the visible part errors
increased, which implies that the gain of adding more compo-
nents is not systematic. In case of trained with 2000 samples
then doubling the components did not influence at all.

When subsequently also considering processing time (see
Table III), then the emulation methods become even more at-
tractive. Although the interpolation methods nearest neighbor
and IDW are very fast (below 1% of the slowest, linear inter-
polation, method), they are not the most accurate: especially
nearest neighbor is fastest but also the poorest performing. On
the contrary, the emulation methods are not only accurate, but
are also very fast. GPR processes the output spectra with a speed
that is on the order of these interpolation methods. However, the
GPR is affected by the training size and number of compo-
nents, which slows down somewhat the processing. Yet, even
for the 2000 LUT and including 20 components the processing
of 5000 output spectra took only a few seconds, i.e., 2.4% of the
time spent by linear interpolation. NN and KRR deliver spectral
output still several times faster, in a fraction of a second, and
this regardless of the training size. Hence, when a tradeoff be-

TABLE IV
MODTRAN INTERPOLATION AND EMULATORS VALIDATION RESULTS AGAINST

5000 LUT REFERENCE DATASET (RMSEλ, NRMSEλ) AND

PROCESSING TIME (S: SECONDS)

tween accuracy and processing speed is to be made, given that
NN delivers poorer accuracies, then KRR tends to become an
attractive option. In all cases KRR emulated the 5000 spectra a
factor 100 faster than linear interpolation (0.3 s), and this with
second-best accuracies.

The same analysis has been repeated with the MODTRAN
LUTs (see Table IV and Fig. 3). NRMSE results are now plotted
in logarithmic scale in order to better visualize differences be-
tween the various interpolation/emulation methods and the wide
range of error values between inside and outside atmospheric ab-
sorption bands. Similar patterns as the PROSAIL results are ob-
tained, yet some differences should be remarked. GPR and sec-
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Fig. 3. MODTRAN interpolation versus emulation results. Note that the number of PCA components refers only to the emulator methods since no DR is applied
in interpolation.

ond KRR are again clearly top performing LUT parameter sam-
pling methods. Table IV indicates that KRR and especially GPR
yielded RMSEλ results more than ten times lower than the best
performing interpolation method. However, NN performs now
on the order of the interpolation methods. Regarding the interpo-
lation methods, linear interpolation now systematically outper-
formed the other two methods, but still errors are nearly one or-
der of magnitude higher than the GPR and KRR emulators. Mov-
ing from 500 to 2000 training samples did not lead to significant
improvements. Table IV suggests that only for KRR a substan-
tial gain in accuracy was achieved. The same holds for adding
more components into the emulators: although some small im-
provements can be obtained with more components, e.g., as is
noticeable for GPR, overall the gain in accuracy is modest.

Also regarding processing time similar trends emerged as
for PROSAIL: all three emulation methods produced the spec-
tral output very fast, with NN and KRR delivering the 5000
MODTRAN-like spectra in a fraction of a second (a factor
<1% when compared against linear interpolation). GPR suf-
fered somewhat from adding more samples and components,
leading to a slightly slower emulation method in case of 2000
LUT and trained with 20 components: the output spectra is again
produced in a few seconds.

B. Closer Inspection of Best Performing Results

Having observed the general trends of the interpolation and
emulation methods, in this section, we will inspect a few
methods in more detail. Specifically, the histograms of the
relative residuals (in absolute terms) for the best performing

interpolation and emulation methods, i.e., linear and GPR, are
plotted in Figs. 4 and 5. Thereby, the linear interpolation method
is shown as obtained with a 2000-LUT, whereas the GPR is
shown as trained with only a 500-LUT and 10 PCA components.
Interestingly, although the emulator method is not presented in
its optimized configuration, already a substantial gain in accu-
racy as compared to the optimized linear interpolation method
is achieved.

To fully appreciate the predictive power of the emulator meth-
ods, we start by analyzing the results on the PROSAIL residuals
in Fig. 4. We can observe how the GPR emulator obtains rela-
tive errors that, on average, are a factor 5–10 lower than those
obtained with the linear interpolation (see mean values on the
solid line). These error differences between the GPR emulator
and linear interpolation methods are still maintained on both
the lower and higher part of the histogram (see 2.5% and 84%
percentiles, where the reconstruction errors are lower/higher,
respectively).

We continue by analyzing the results on the MODTRAN
residuals in Fig. 5. As previously observed in NRMSE values
(see Fig. 3 and Table IV), the reconstruction errors with GPR
emulators obtains the best performance. The residual errors are
in this case a factor 2–10 lower than using linear interpolation
for both the lowest and highest errors in the histogram and in
most part of the spectrum (<1800 nm).

V. DISCUSSION

Advanced RTMs are widely used in various remote sens-
ing applications, such as atmospheric correction (e.g., [84]),
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Fig. 4. Histogram statistics of PROSAIL relative residuals (in absolute
terms)(%) for 2000-LUT interpolation linear (top) and 500-LUT GPR (bottom).
To ease the comparison, the mean residual for linear interpolation is added on
top of the GPR residuals (red dashed line).

Fig. 5. Histogram statistics of MODTRAN relative residuals (in absolute
terms)(%) for 2000-LUT interpolation linear (top) and 500-LUT GPR (bottom).
To ease the comparison, the mean residual for linear interpolation is added on
top of the GPR residuals (red dashed line).

inversion of vegetation properties (see [6] for a review), sensi-
tivity analysis [10], and scene generation [7]. Because advanced
RTMs take long processing time, the LUT interpolation is com-
monly used to sample the input parameter space and to infer
an approximation of the RTM outputs [26]. Although various
interpolation techniques are standard practice in remote sensing
applications and computer vision, in this paper, we challenged
these techniques by comparing them against statistical learning
methods, i.e., emulation. The basic principle of emulation is
using a sparse LUT to train machine learning methods so that
the trained statistical model is able to reproduce the spectral
output given unseen parameter combinations. According to this
principle, the emulation technique can be considered to func-
tion similarly as interpolation methods, but based on statistical
learning.

To ascertain the predictive power of both interpolation and
emulation, two experiments were conducted: one for surface
reflectance as generated by PROSAIL, and another for TOA ra-
diance data as generated by MODTRAN. For both experiments
the interpolation and emulation methods were tested against a
common reference dataset of 5000 simulations. Despite the TOA
radiance data being much more irregular and spiky (due to nar-
row atmospheric absorption regions) than surface reflectance,
common trends were observed in the majority of cases. They
are summarized as follows.

1) In all experiments, the three tested emulation methods
produced substantially more accurately spectral outputs
than the three tested interpolation techniques. Particu-
larly, GPR was by far the most accurate emulation method
with errors on the order of 5–10 times lower than the lin-
ear interpolation method and at a fraction of the time
with respect linear interpolation. The KRR was the sec-
ond most accurate emulation method, with reconstruction
errors 2–5 times lower than the best performing interpola-
tion method. The GPR is thus clearly the preferred method
given accuracy and fast processing. At the same time, the
KRR run still much faster than GPR, i.e., producing 5000
spectra in 0.3 s, which is faster than any interpolation
method behind while reaching superior accuracies.

2) Regarding the emulation methods, the GPR and KRR em-
ulate output spectra not only perform more accurately, but
also tend to be more stable than the NN (e.g. Fig. 2, in the
visible part). Having more parameters than KRR/GPR to
adjust, training the NN emulator can be more complicated,
and thus requires a larger number of training samples to
avoid overfitting and to obtain a good prediction. In addi-
tion, an increasing number of components can make the
problem harder in terms of adjusting the NNs parameters.
Conversely, for GPR and KRR clearly some little extra
gain can be achieved by training with more samples or by
adding more PCA components in the regression model.
However, this slows down processing time, especially
in case of GPR (see also [32] for a discussion on GPR
emulation).

3) When comparing the PROSAIL emulation results with
those of MODTRAN, e.g., as in the histogram statis-
tics (Figs. 4 and 5), it is noteworthy that the spectrally
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smoother TOC reflectance is reconstructed with lower ac-
curacy than the more irregular TOA radiance. Although
the parameter space of both LUTs consists of six variables,
the discrepancy can be explained that the six PROSAIL
variables exert more influence, in relative terms, on the
reflectance data than the six MODTRAN variables on the
TOA radiance data, implying more variability to construct
the reflectance spectra. This has been observed before with
a global sensitivity analysis [31].

4) Regarding the interpolation methods, while performing
substantially poorer than emulation, the linear interpola-
tion is the most accurate method. This is particularly the
case when increasing the LUT size. However, it is also
the most computationally intensive interpolation method,
i.e., on the order of few minutes for 5000 spectra. This is
mostly due to the exponential increase of memory usage in
construction of the implicit Delaunay triangulation [44].

The superiority of KRR and especially GPR emulation is
most noteworthy. The strength of the GPR statistical learning
was already demonstrated in previous studies with application of
machine learning algorithms in various fields [66], [85], [86], yet
in fact any machine learning regression algorithm can function
as emulator. Moreover, since the accuracy and run-time of these
methods depend on the size of training LUT and number of
components, these methods can be further optimized in view of
balancing between accuracy and processing speed. For instance,
it is likely that the GPR can still deliver excellent accuracies with
a smaller training LUT or less components, which would imply
a faster processing. As addressed before [32], it requires some
iterations to deduce an optimized accuracy-speed tradeoff.

Hereby, another point to be remarked is that emulation re-
quires the additional effort of a training step and validation of
the model. This implies that a sparse LUT is always required to
train an emulator, i.e., to finding the best hyperparameters that
optimize its performance. Two issues have an impact on finding
these optimal parameters: the method for tuning the hyperpa-
rameters and the size of the training dataset. Regarding the first
issue, and in the specific case of the implemented GPR, the max-
imum log-likelihood method was adopted to find the best set of
hyperparameters. Nevertheless, other alternative procedures are
often employed with similar success and adoption. Examples
include random sampling [87], the Nelder–Mead method (aka
downhill simplex) [88], Bayesian optimization [88]–[91], and
many flavors of derivative-free optimization approaches, such
as stochastic local search, simulated annealing, or evolution-
ary computation [92], [93]. Other approaches consider Monte
Carlo methods [94]–[96], which search in a portion of the space
according to the posterior distribution of the hyperparameters
given the observed data. With respect to the training dataset, we
found in our examples that typically about 500 samples accord-
ing Latin hypercube sampling should suffice. The training and
model validation step requires some additional processing time
as compared to interpolation. In case of KRR this is in the order
of seconds, but NN and GPR that can take longer depending on
the complexity of training setup (number of samples and com-
ponents). Nevertheless, the training phase is to be done only
one time; the generated emulator model can afterward replace

the LUT interpolation in the processing chain. This approach
of replacing an LUT interpolation by an emulator may lead not
only to a more accurate processing, but likely also faster and
less computationally demanding.

With respect to interpolation methods, in this paper, we
focused on exploring the accuracy of the most widely used
methods working on scattered LUT data. From the considered
methods, the linear interpolation achieve the higher accuracy.
However, this method is typically limited to low dimensions
(<6) of the input space due to its exponential demands of
memory usage and computation time. Other more advanced
interpolation methods (not studied here) exist for gridded LUT
data. Among them, piece-wise cubic splines interpolation [49]
can achieve high accuracies, but at expenses of an increase of
computation time with respect linear interpolation. Also, cubic
splines require gridded LUTs with at least four points in each
dimension (e.g., 4096 LUT samples for six dimensions), which
implies both an increase of memory usage and computation time
to generate and interpolate the resulting LUTs. Sibson method
is another advanced and accurate interpolation algorithm [?]
that can have very fast implementations for low-dimension
spaces (see, e.g., [48]). However, the extension of Sibson
interpolation in high-dimensional input variable spaces (>6)
is likely not to be effective due to its exponential growth in
memory consumption. In turn, the emulation approach only
requires a small LUT for training, which in principle can be
developed for any number of variables. It remains yet to be
studied, how adding more variables to the LUT parameter space
affects the accuracy of the emulator. This will also depend on
the role these variables play in driving the spectral output [32].

Altogether, considering all strengths and weaknesses of both
interpolation and emulation, this study leads us concluding that
the emulation technique can become an attractive alternative to
interpolation in sampling an LUT parameter space. Based on
the results presented here, it is foreseen that relying on emu-
lation rather than interpolation will lead to more accurate, and
typically faster querying through an LUT parameter space. This
bears consequences in various RTM-based processing applica-
tions in which high accuracy and fast run-time is needed, e.g.,
in scene generation [32], [97], [98], in atmospheric correction
procedures, in LUT-based inversion of biophysical parameters
[99], [100], in hyperspectral target detection [101] or in in-
strument performance modeling [102]. Further studies are re-
quired to consolidate whether emulation techniques are always
to be trusted as functioning more accurately than interpolation
techniques.

VI. CONCLUSION

Computationally expensive RTMs are commonly used in var-
ious remote sensing applications. Because these RTMs take long
processing time, the common practice is develop one time an
LUT and then making use of interpolation techniques to sample
the LUT parameter space. However, the question arose whether
these interpolation techniques are most accurate. This paper pro-
posed to use emulation, i.e., statistical learning, as an alternative
to interpolation. Two experiments were conducted to ascertain
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the accuracy in delivering spectral outputs of both techniques:
one for TOC reflectance as generated by PROSAIL, and an-
other for TOA radiance data as generated by MODTRAN. The
interpolation and emulation methods were evaluated against a
reference LUT of 5000 simulations, leading to the following
results.

1) In all experiments the emulation methods clearly produced
output spectra more accurately than the tested interpola-
tion techniques.

2) GPR reproduced RTM output spectra up to ten times
more accurately than interpolation methods and this with
a speed that is <5% of the linear interpolation method,
i.e., in mere seconds. The KRR was the second most ac-
curate method, and this emulator is extremely fast: 5000
spectra were produced in a fraction of a second. Hence,
the KRR shows an attractive tradeoff between accuracy
and computational time.

3) Regarding emulation, some little more gain can be
achieved by training with more samples or adding more
PCA components in the regression model. However, for
GPR this is at the expense of somewhat slowing down
processing. It is thus concluded that emulation methods
offer a better alternative in computational cost and accu-
racy than traditional methods based on interpolation to
sample an LUT parameter space.

Future work will aim to include GPR emulators as an alter-
native to the current LUT interpolation methods implemented
in the FLEX end-to-end mission simulator [9], [98]. This will
likely reduce the computation time for the generation of syn-
thetic scenes, which will extend the current FLEX simulator ca-
pabilities to perform sensitivity analysis for various leaf/canopy
and atmospheric conditions. In addition, two research lines are
currently being explored to improve the accuracy of interpola-
tion/emulation methods. On the one hand, we are optimizing
the LUT nodes distribution in order to reduce LUT size while
increasing the accuracy of interpolation methods [103], [104].
On the other hand, we can improve the accuracy of statisti-
cal methods to generate multioutput emulators by using ad-
vanced machine learning methods, deep learning algorithms,
or combining emulators, e.g., for different wavelength regions
[105]. Both research lines will turn into more efficient sampling
methods, reducing both computation burden and RTM-output
reconstruction error.
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[30] J. L. Gómez-Dans, P. E. Lewis, and M. Disney, “Efficient emulation
of radiative transfer codes using Gaussian processes and application
to land surface parameter inferences,” Remote Sens., vol. 8, no. 2,
p. 119, 2016.

[31] J. Verrelst et al., “Emulation of leaf, canopy and atmosphere radiative
transfer models for fast global sensitivity analysis,” Remote Sens., vol. 8,
no. 8, p. 673, 2016.

[32] J. Verrelst, J. Rivera Caicedo, J. Muñoz Marı́, G. Camps-Valls, and
J. Moreno, “SCOPE-based emulators for fast generation of synthetic
canopy reflectance and sun-induced fluorescence spectra,” Remote Sens.,
vol. 9, no. 9, p. 927, 2017.

[33] D. Busby, “Hierarchical adaptive experimental design for Gaussian pro-
cess emulators,” Rel. Eng. Syst. Safety, vol. 94, no. 7, pp. 1183–1193,
2009.

[34] Y.-J. Kim, “Comparative study of surrogate models for uncertainty
quantification of building energy model: Gaussian process emulator vs.
polynomial chaos expansion,” Energy Buildings, vol. 133, pp. 46–58,
2016.

[35] S. Razavi, B. A. Tolson, and D. H. Burn, “Numerical assessment of meta-
modelling strategies in computationally intensive optimization,” Environ.
Model. Softw., vol. 34, pp. 67–86, 2012.

[36] L. S. Bastos and A. O’Hagan, “Diagnostics for Gaussian process emula-
tors,” Technometrics, vol. 51, no. 4, pp. 425–438, 2009.

[37] A. O’Hagan, “Probabilistic uncertainty specification: Overview, elabo-
ration techniques and their application to a mechanistic model of carbon
flux,” Environ. Model. Softw., vol. 36, pp. 35–48, 2012.

[38] N. E. Owen, P. Challenor, P. P. Menon, and S. Bennani, “Comparison of
surrogate-based uncertainty quantification methods for computationally
expensive simulators,” SIAM/ASA J. Uncertainty Quantification, vol. 5,
pp. 403-435, 2015.

[39] J. Gastellu-Etchegorry, F. Gascon, and P. Esteve, “An interpolation pro-
cedure for generalizing a look-up table inversion method,” Remote Sens.
Environ., vol. 87, no. 1, pp. 55–71, 2003.

[40] D. Shepard, “Two-dimensional interpolation function for irregularly-
spaced data,” in Proc. 23rd Nat. Conf., 1968, pp. 517–524.

[41] S. Łukaszyk, “A new concept of probability metric and its applications
in approximation of scattered data sets,” Comput. Mech., vol. 33, no. 4,
pp. 299–304, Mar. 2004.

[42] T. Cooley et al., “FLAASH, a MODTRAN4-based atmospheric cor-
rection algorithm, its applications and validation,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., 2002, vol. 3, pp. 1414–1418.
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València, Valencia, Spain, in 2002.

He is currently a Full Professor in electrical engi-
neering, and a Coordinator of the Image and Signal
Processing Group, Universitat de València. He is in-
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