
ISPRS Journal of Photogrammetry and Remote Sensing 178 (2021) 382–395

Available online 15 July 2021
0924-2716/© 2021 The Author(s). Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Mapping landscape canopy nitrogen content from space using PRISMA data 

Jochem Verrelst a,*, Juan Pablo Rivera-Caicedo b, Pablo Reyes-Muñoz a, Miguel Morata a, 
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A B S T R A C T   

Satellite imaging spectroscopy for terrestrial applications is reaching maturity with recently launched and up
coming science-driven missions, e.g. PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Envi
ronmental Mapping and Analysis Program (EnMAP), respectively. Moreover, the high-priority mission candidate 
Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is expected to globally provide routine 
hyperspectral observations to support new and enhanced services for, among others, sustainable agricultural and 
biodiversity management. Thanks to the provision of contiguous visible-to-shortwave infrared spectral data, 
hyperspectral missions open enhanced opportunities for the development of new-generation retrieval models of 
multiple vegetation traits. Among these, canopy nitrogen content (CNC) is one of the most promising variables 
given its importance for agricultural monitoring applications. This work presents the first hybrid CNC retrieval 
model for the operational delivery from spaceborne imaging spectroscopy data. To achieve this, physically-based 
models were combined with machine learning regression algorithms and active learning (AL). The key concepts 
involve: (1) coupling the radiative transfer models PROSPECT-PRO and SAIL for the generation of a wide range 
of vegetation states as training data, (2) using dimensionality reduction to deal with collinearity, (3) applying an 
AL technique in combination with Gaussian process regression (GPR) for fine-tuning the training dataset on in 
field collected data, and (4) adding non-vegetated spectra to enable the model to deal with spectral heterogeneity 
in the image. The final CNC model was successfully validated against field data achieving a low root mean square 
error (RMSE) of 3.4 g/m2 and coefficient of determination (R2) of 0.7. The model was applied to a PRISMA image 
acquired over agricultural areas in the North of Munich, Germany. Mapping aboveground CNC yielded reliable 
estimates over the whole landscape and meaningful associated uncertainties. These promising results demon
strate the feasibility of routinely quantifying CNC from space, such as in an operational context as part of the 
future CHIME mission.   

1. Introduction 

With current and upcoming satellite imaging spectroscopy missions, 
unique data streams of hyperspectral measurements from the Earth 
surface will be provided in almost real-time. After the two initial 
experimental Hyperion/EO-1 and CHRIS/PROBA missions, two pri
marily science-driven spaceborne sensors, such as the launched PRe
cursore IperSpettrale della Missione Applicativa (PRISMA) (Loizzo et al., 
2019) and planned Environmental Mapping and Analysis Program 
(EnMAP) (Guanter et al., 2015), started to pave the way for future sci
entific and operational hyperspectral missions. Among these missions 

are the FLuorescence EXplorer (FLEX) (Drusch et al., 2017), the NASA 
Surface Biology and Geology observing system (SBG) (National Acade
mies of Sciences, 2018) and the Copernicus Hyperspectral Imaging 
Mission for the Environment (CHIME) (Nieke and Rast, 2019). Apart 
from FLEX being a scientific mission dedicated to vegetation fluores
cence retrieval, all these hyperspectral missions will observe reflected 
sunlight across a wide range of wavelengths from visible to shortwave 
infrared (SWIR) domains (”VSWIR”, approximately 400–2500 nm) with 
the purpose of providing mapping and monitoring services for multiple 
civil and environmental domains. Effectively, exploitation of hyper
spectral data enables quantitative estimation of key biophysical and 
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biochemical variables beyond relative vitality indicators that were also 
provided by conventional broadband satellite missions (Hank et al., 
2019). Agriculture has been identified as a key domain where repetitive 
hyperspectral data can provide up-to-date and unique spatiotemporal 
information about the crop status and development (Hank et al., 2019). 
Thanks to imaging spectroscopy technology, the focus widened from 
estimating structural variables and chlorophyll pigments towards the 
quantification of specific plant compounds and nutrients, such as ni
trogen (N) (Homolová et al., 2013). N strongly influences crop growth 
and quality, and hence only with the determination of crop N status, 
proper fertilizer management can be realized. In this respect, mapping of 
crop or canopy nitrogen content (CNC) from remote sensing data is 
considered as an efficient way to enable site-specific fertilization mea
sures, and consequently assuring high quality grain production (Lemaire 
et al., 2008; Baret et al., 2007). 

When it comes to N mapping, the majority of reported methods 
relied on the apparently strong link between chlorophyll content and N 
(Berger et al., 2020). However, within a plant, chlorophyll pigments 
contain only a small fraction of N, representing less than 2% of the total 
leaf N (Kokaly et al., 2009). For this reason, the chlorophyll–N rela
tionship often showed only moderate correlations between species and 
growth stages across ecosystems (Homolová et al., 2013). Instead, pro
teins are the major nitrogen-containing biochemical constituents, with 
rubisco holding up to 50% of N in green leaves (Chapin et al., 1987; 
Elvidge, 1990; Kokaly et al., 2009). Moreover, leaf chlorophyll content 
decreases after mature growth stages whereas leaf N is translocated to 
other plant organs, such as fruits. This leads to a nonlinear relationship 
between leaf chlorophyll content and plant nitrogen throughout the 
growth cycle (Berger et al., 2020). The benefit of using protein-related 
spectral wavelengths in the SWIR for N retrieval was confirmed by 
several studies (Dunn et al., 2016; Herrmann et al., 2010), relying on the 
more robust link between N and proteins. 

A recent review paper summarized earlier attempts and provided a 
pathway towards successful CNC mapping (Berger et al., 2020). In short, 
it was proposed that: (1) instead of the relationship between N and leaf 
chlorophyll content, leaf protein content is a more meaningful proxy for 
N (Féret et al., 2021); (2) these relationships should be primarily 
exploited in the SWIR (1300–2500 nm) due to absorption features of 
proteins located in this spectral domain (Curran, 1989), implying that 
the SWIR is more successful for CNC retrieval than the conventional 
visible to near infrared (VNIR) region, and (3) imaging spectroscopy 
sensors should be preferred over multispectral sensors, since they pro
vide the required continuous spectral coverage to capture the subtle 
spectral signatures related to proteins, (e.g. Herrmann et al., 2010; 
Serrano et al., 2002). Moreover, recent progress in leaf optical properties 
modeling whereby spectral decomposition of leaf dry matter content 
into nitrogen-based proteins and other carbon-based constituents (CBC) 
has been explicitly parameterized, opened the path to develop 
physically-sound CNC retrieval models (Wang et al., 2018; Féret et al., 
2021). Pursuing this research line for mapping applications, some 
experimental studies have already demonstrated the feasibility of pro
ducing local CNC maps from airborne hyperspectral data (Berger et al., 
2020; Camino et al., 2018; Verrelst et al., 2020; Wang et al., 2018). 
Though we are on the verge of gaining access to routinely acquired 
hyperspectral images from space, the first landscape CNC map obtained 
from spaceborne imaging spectroscopy data based on the physical 
protein-N relation is still to be awaited for. 

The first new-generation spaceborne sensor that meets the re
quirements for this application is PRISMA of the Italian Space Agency 
(ASI). The PRISMA spacecraft, which was launched on 22 March 2019 
into its target sun-synchronous orbit, represents a pre-operational and 
technology demonstrator mission (Rast and Painter, 2019). The mission 
aims to offer data for multiple applications within environmental 
monitoring and resources management, among those agriculture. The 
design of the sensor is based on a pushbroom type concept providing 
hyperspectral data in 239 bands at variable spectral bandwidths 

between 6 and 12 nm. Ground sampling distance (GSD) is 30 m and data 
on a 30-km swath are provided with an orbit repeat cycle of 29 days 
(Loizzo et al., 2019). Following the precursor missions like PRISMA and 
EnMAP, the CHIME sensor will be designed with the goal to provide 
routine hyperspectral observations through the Copernicus Programme 
(Rast and Painter, 2019), hence complementing the multispectral 
Sentinel-2 mission starting between 2025 and 2030 (Ustin and Mid
dleton, 2021). CHIME is foreseen to provide imaging spectroscopy data 
with high radiometric accuracy in the range from 400–2500 nm (over 
200 bands in appr. 10 nm width), with a GSD of 30 m and repeat cycle of 
22 (11) days with 1 (2) satellite(s) in a sun synchronous orbit. Moreover, 
a set of downstream-products, among others vegetation functional traits, 
will be offered to users as part of the mission catalogue to encourage the 
operational use of the data. To create these downstream products, new- 
generation retrieval methods need to be prepared for operational pro
cessing of spaceborne hyperspectral data. In this respect, hybrid work
flows have evolved as one of the most promising approaches (Verrelst 
et al., 2019; Brede et al., 2020): these methods blend physics described 
by radiative transfer models (RTM) with the speed and efficiency of 
machine learning (ML) algorithms. Within such a scheme, training data 
sets are generated from RTM simulations. Then, the ML algorithm learns 
the (nonlinear) relationship between the pairs of reflectance and vege
tation trait of interest. These training data bases have to fulfill the pre
requisites of representing the canopy structural and biochemical 
properties realistically on the one hand, and of being small enough to 
avoid long training and run-time required by some ML regression al
gorithms on the other. Accordingly, this approach demands for a 
balanced training dataset with a trade-off between optimized informa
tion content in respect to the full data set, and a minimum amount of 
samples. 

Earlier work in preparation of the scientific FLEX fluorescence 
mission paved the path of hybrid models in an operational imaging 
spectroscopy context (De Grave et al., 2020). As part of the FLEX pro
cessing chain, a hybrid workflow was developed for the retrieval of 
established essential biophysical and biochemical variables, such as leaf 
chlorophyll content (Cab), leaf area index (LAI), fraction of absorbed 
photosynthetically active radiation (FAPAR) and fractional vegetation 
cover (FVC). The pursued approach was to generate a training data base 
from the RTM Soil Canopy Observation, Photochemistry and Energy 
fluxes (SCOPE) (Van der Tol et al., 2014), which was used to train 
Gaussian process regression (GPR) (Rasmussen and Williams, 2006) 
algorithms. GPR as a probabilistic ML was preferred as key algorithm 
due to its ability to provide associated uncertainty estimates along with 
the predictions. This special feature enables to assess the fidelity of 
developed models when transferring them into other space and times, 
thus reducing the need of reference data collections for model calibra
tion and validation (Verrelst et al., 2013). Just as any other regression 
algorithm, GPR suffers from spectral collinearity when too many similar 
bands are fed into the algorithm. To circumvent collinearity, an elegant 
solution is to apply dimensionality reduction (DR) techniques, typically 
principal component analysis (PCA) (Rivera-Caicedo et al., 2017; Jolliffe 
and Cadima, 2016). Hence, combining simulated training data together 
with PCA and GPR allows the development of hybrid models that enable 
fast processing of hyperspectral data into vegetation traits. This concept 
of training hybrid models with principal components instead of original 
spectra was previously successfully tested and applied in earlier model 
developments using GPR (De Grave et al., 2020) and other ML algo
rithms (e.g. neural networks) (Danner et al., 2021) for hyperspectral 
data conversion into vegetation products. 

Apart from DR in the spectral domain, further gain in mapping 
performance and processing speed can be obtained by exploring DR in 
the sampling domain. A solution to the sampling reduction problem is 
given by semi-supervised approaches, in which unlabeled samples are 
exploited during the design of the regression model (Pasolli et al., 2012). 
These techniques are also known as active learning (AL), aiming to 
optimize training datasets through intelligent sampling by means of an 
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iterative procedure. The progress of AL methods for terrestrial vegeta
tion traits estimations from Earth observation data has been summarized 
in a review paper (Berger et al., 2021). 

Altogether, with the ambition of contributing to the planned CHIME 
mission by developing efficient retrieval models, a similar workflow is 
proposed, yet customized with hybrid models using AL for the retrieval 
of a variety of vegetation traits (Verrelst et al., 2021). In this context, a 
range of established vegetation traits will be provided (De Grave et al., 
2020), but also more challenging traits which can only be obtained from 
hyperspectral data, such as CNC will be targeted (E.S.A., 2019). CNC is 
probably the most important variable to quantify in an agricultural 
context; nonetheless, to the best of our knowledge, CNC has not yet been 
routinely retrieved from space due to missing operational satellite im
aging spectroscopy missions in the past. In this respect, the PRISMA 
mission provides an ideal benchmark for the demonstration of these 
new-generation retrieval algorithms. Specifically, this brings us to the 
following objectives of our study: (1) to develop a hybrid retrieval 
strategy targeting CNC based on a list of defined criteria; and (2) to test 
mapping capabilities of the final CNC retrieval model by applying it to a 
PRISMA scene. With this work we aim to present the first landscape CNC 
map from space with an algorithm generally applicable in the opera
tional context of the future CHIME mission. 

2. Material & methods 

2.1. Experimental site and imaging spectroscopy data 

2.1.1. Munich-North-Isar campaigns 
For our study, data of the German Munich-North-Isar (MNI) cam

paigns located in the North of Munich, in Southern Germany (N 48◦16′, 
E 11◦42′) were explored. MNI represents an agricultural consolidated 
long-term test site for the preparation of the future EnMAP mission 
(Danner et al., 2019; Wocher et al., 2018). EnMAP will cover a 30-km- 
wide area in the across-track direction with GSD of 30 m and 242 
bands ranging from 400 to 2500 nm, which is very alike to PRISMA and 
future CHIME missions. With the relatively high signal-to-noise ratio 
around 180:1 and a spectral sampling interval around 10 nm in the 
SWIR, the sensor also provides optimal features for CNC retrieval based 
on the N - protein relationship (Berger et al., 2020). At the MNI site, 
extensive weekly trials including field spectroscopy and destructive 
measurements were carried out on winter wheat (Triticum aestivum) and 

corn (Zea mays) fields during the growing periods of 2017 and 2018 (see 
Fig. 1). In each field, a 30 × 30 m grid of nine 10 x 10 m squares was 
marked out corresponding to the elementary sampling unit (ESU) of a 
future EnMAP pixel, which also coincides with the spatial resolution of 
PRISMA data. Hyperspectral signatures of the canopy (within the 
350–2500 nm range) were measured before the biomass sampling at 
each date using the Analytical Spectral Devices Inc. (ASD; Boulder, CO, 
USA) FieldSpec3 JR Spectroradiometer. Specifically, sampling consisted 
of five nadir measurements per ESU at a stable height above the canopy 
using a 25◦ field of view of the fiber optic cable. During the measure
ments, the sensor was slowly moved over the crop target while keeping 
the nadir angle. This procedure was required to obtain representative 
spectral signals capturing the full heterogeneity of the canopy including 
soil background reflectance. Finally, all spectra from the ESUs were 
averaged to obtain a representative value for the pseudo EnMAP pixel. 
Processing of proximal spectral sensing data included removal of bands 
in the water absorption region, splice-correction, white reference base
line calibration, and slight smoothing using a Savitzky-Golay filter 
(Wocher et al., 2018). Collected spectral data were subsequently 
resampled to the PRISMA band settings using full width at half 
maximum (FWHM) Gaussian information. 

For N determination, wheat plants covering an area of 0.25 m2 and 
three corn plants were cut and weighed. Row distance and plants per 
meter were recorded simultaneously. Biomass samples were brought to 
the lab, where the combustion method was applied using the elemental 
analyzer vario EL cube (Elementar, Germany). For this, samples were 
oven-dried at 105 ◦C until constant dry weight could be determined after 
24 h (Berger et al., 2020). Samples were grinded and N concentration (N 
%), being mass of absorbing materials (dry matter) per unit dry mass in 
[mg/g] or [%], was measured. Aboveground N content in [g/m2] was 
finally calculated by multiplying N% with plant organ-specific dry mass 
per unit ground area in [g/m2]. A total number of 30 measurements was 
available for validation, composed of leaves plus stalks N content of 
wheat and corn. Table 1 indicates the crop type, dates of biomass 
sampling, growth stages, measured ranges, mean values and standard 
deviations (SD) of aboveground N content for leaves plus stalks. 

Due to the inability of radiation to detect N content of thick tissues, 
measured CNC of fruits, present at mature growth stages, was excluded 
from our validation data set (Berger et al., 2020) (see also discussion 
section). 

Fig. 1. PRISMA illustration of the North of Munich and zoom-into MNI test site with winter wheat and corn fields (2017 and 2018), shown in false color-infrared (R: 
865.6 nm, G: 650.5 nm, B: 554.3 nm). Provided by Matthias Wocher, LMU Munich. 

J. Verrelst et al.                                                                                                                                                                                                                                 



ISPRS Journal of Photogrammetry and Remote Sensing 178 (2021) 382–395

385

2.1.2. PRISMA data 
For mapping application, a PRISMA scene was acquired from the 

area in the North of Munich, Germany, on August 01, 2020 (see Fig. 1). 
Though the image could not be acquired simultaneously to the in situ 
data collection, it fully included the MNI test site and also other agri
cultural areas. With a GSD of 30 m, the spatial resolution of PRISMA 
corresponds to the future EnMAP and CHIME sensors. The standard L2D 
PRISMA reflectance image was pre-processed using different R packages 
(Team et al., 2013) to obtain smooth spectra. Firstly, the findpeaks 
function included in the pracma package (Borchers, 2015) was applied 
to each pixel to exclude random spikes occurring at specific wave
lengths. The threshold for the peak detection was set to 0.018. Secondly, 
noisy spectral regions were systematically excluded (i.e., 535–550 nm, 
755–780 nm, 810–855 nm, 885–970 nm, 1015–1050 nm, 1080–1165 
nm, 1225–1285 nm, 1330–1490 nm, 1685–1700 nm, 1725–1750 nm, 
1780–1960 nm, and 1990–2030 nm) based on the visual comparison 
against ground spectra collected on homogeneous targets (i.e., vegeta
tion, asphalt, crop residues) with a field spectroradiometer (SR-4500; 
Spectral Evolution, USA). A spline smoothing interpolation was then 
applied using the SplineSmoothGapfilling function implemented in the 
FieldSpectroscopyCC package (Wutzler et al., 2016) to obtain cleaned 
PRISMA spectra. Finally, the atmospheric water absorption regions 
located at 1350–1510 nm and 1795–2000 nm were excluded. Fig. 2 il
lustrates the applied corrections on one examplarily PRISMA spectrum 

before and after cleaning and smoothing. 

2.1.3. Spectral equivalence of data sets 
To ensure high equivalence of all spectral data sets (i.e., field spec

trometer, PRISMA and simulated spectra, see also Section 2.2.1) some 
further processing steps were required. If in any dataset bands were of 
poor quality due to artifacts (e.g. noise in water absorption regions), 
these bands were subsequently removed from all (three) datasets. 
Altogether, some bands in the blue visible (400–470 nm), water ab
sorption regions (1345–1510 and 1795–2000 nm) and at the upper limit 
of the SWIR range (2143–2500 nm) were excluded, leading to a total of 
207 valid bands to be explored from 470 to 2143 nm. This slight 
reduction of the spectral range in particular in the SWIR is only a minor 
limitation, since most important spectral information is still available: in 
the study of Berger et al. (2020) a band selection algorithm was applied 
to investigate optimal spectral domains for CNC retrieval. The algorithm 
was based on the GPR property of automatic relevance determination 
(ARD) covariance using a wrapper strategy (Verrelst et al., 2016). All 
identified optimal spectral bands to estimate CNC from future EnMAP 
sensor data comprised those used in our study with one exception (2234 
nm). 

2.2. Theory, models and retrieval concept 

The applied methodology is built upon foundations in leaf and can
opy radiative transfer modeling in combination with concepts in the 
field of machine learning and imaging processing. The pursued work
flow is conceptualized in Fig. 3, and further elaborated in the sections 
below. 

2.2.1. Radiative transfer modeling 
The essence of hybrid retrieval strategies for vegetation traits 

retrieval is that a ML regression algorithm is trained by simulated data 
coming from coupled leaf-canopy RTMs. In this way, a retrieval model is 
built for a specific variable from simulations covering a wide range of 
leaf-canopy states. The aim is to render the final model sufficiently 
generic for being applicable in an operational processing chain for 
global applications (Verrelst et al., 2015; Verrelst et al., 2019). 

For the simulations, we used the PROSPECT-PRO leaf optical prop

Table 1 
Statistics of in situ samples: crop type, dates, number of measurements (No.), 
range of BBCH growth stages, measured ranges, mean and SD (in brackets) of 
leaves plus stalks N content of winter wheat (Triticum aestivum) and corn (Zea 
mays) at MNI location.  

Crop/ Date No. BBCH Range in [g/ 
m2] 

N content in [g/ 
m2] 

Triticum aestivum, 29/ 
03–06/07 2017 

9 25–83 2.6–19.9 13.9 (5.8) 

Triticum aestivum, 12/ 
04–13/07 2018 

7 28–87 4.6–16.5 10.9 (4.6) 

Zea mays, 13/06–15/09 
2017 

8 13–85 0.9–12.1 6.6 (3.5) 

Zea mays, 15/06–22/08 
2018 

6 30–87 7.9–21.5 16.8 (4.7)  

Fig. 2. a) RGB false colour composition of a PRISMA subset before pre-processing, vertical stripes are clearly visible in the image; b) RGB false colour composition of 
a PRISMA subset after pre-processing; c) Example of a vegetation PRISMA spectra before (red line) and after (blue line) pre-processing. The red dots mark the bands 
that were removed by the smoothing procedure on this specific pixel. The blue dots indicate the bands used for the spline smoothing interpolation. The shaded grey 
areas indicate the spectral regions that were removed after the spline smoothing interpolation to obtain the final PRISMA spectra. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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erties model (Féret et al., 2021) capable of separating leaf dry matter or 
leaf mass per unit leaf area (LMA) into leaf protein content (Cp) and CBC. 
PROSPECT-PRO was coupled with the 1D canopy RTM Scattering by 
Arbitrarily Inclined Leaves, 4SAIL (Verhoef and Bach, 2007), to 
PROSAIL-PRO for generation of a training data base. The coupled model 
simulates reflectance at the canopy scale as a function of diverse bio
physical (e.g. LAI and average leaf inclination angle) and leaf 
biochemical input parameters (e.g. Cab, Cp, leaf carotenoid content or 
leaf equivalent water thickness). Briefly, 1000 combinations of 
PROSAIL-PRO model input parameters were randomly generated and 
corresponding reflectance was simulated. See Table 2 for sampling and 
ranges of model input parameters and the study of Berger et al. (2020) 

for full information about the generation of the training data base. Leaf 
nitrogen content can then be directly calculated from Cp with the 
protein-to-nitrogen conversion factor of 4.43 (Yeoh and Wee, 1994), and 
LAI was used to upscale from leaf to canopy level (see Eq. 1). Finally, 
simulated ”aboveground N content”, denoted here as CNC, in [g/m2], 
was added (Berger et al., 2020): 

CNC = (LAI⋅Cp⋅10, 000)
/

4.43 (1)  

Bi-directional canopy reflectance was simulated with the PROSAIL-PRO 
model using PRISMA spectral configuration and excluding noisy bands 
as identified in the image pre-processing steps. In this way, simulated 
reflectance, in situ collected signatures and spaceborne imaging spec
troscopy data were spectrally equivalent (see Section 2.1.3). Note that 
the size of the training dataset of 1000 samples (i.e. CNC with corre
sponding reflectance), which may appear small compared to classical 
look-up table approaches (e.g. Richter et al., 2009), is justified by the 
fact that a standard implementation of a GPR can not cope with thou
sands of samples within reasonable time. The processing time rises 
exponentially with increasing size as the computation involves the 
inversion of a N x N matrix, where N is the number of simulations 
(Rasmussen and Williams, 2006). Yet this apparent limitation is well 
compensated by the kernel-based algorithms, where for each estimation 
the new input is compared with all the (training) samples contained in 
the model. Hence, a GPR requires a relatively small training dataset to 
identify the nonlinear relationships between spectral observations and 
variables of interest, and then delivers highly competitive results 
compared to other machine learning methods, such as neural networks 
(Lazaro-Gredilla et al., 2014; Rivera-Caicedo et al., 2014). This has been 
confirmed by several studies using the same or similar sampling sizes for 
GPR training data sets, e.g. Upreti et al. (2019),Verrelst et al. (2020) and 
Pipia et al. (2021). 

2.2.2. Gaussian process regression 
Gaussian process regression (Rasmussen and Williams, 2006) is 

chosen as core algorithm in the hybrid retrieval scheme since it has 
proven good performance in variable retrieval studies (Verrelst et al., 
2012; Verrelst et al., 2013; Verrelst et al., 2015b). See also reviews of 
Verrelst et al. (2015, 2019, 2016) for a rationale of using GPR as opposed 
to alternative statistical methods. 

Notationally, the GPR model establishes a relation between the input 
(B-bands spectra) x ∈ RB and the output variable (vegetation trait to be 
retrieved) y ∈ R of the form (Equ. 2): 

ŷ = f (x) =
∑N

i=1
αiK(xi, xj), (2) 

Fig. 3. Workflow of hybrid mapping strategy for PRISMA CNC mapping. NV: non-vegetated.  

Table 2 
Parameterization of leaf (PROSPECT-PRO) and canopy (4SAIL) models, with 
notations, units, ranges and distributions of inputs used to simulate the spectral 
training database. x: mean, SD: standard deviation. Ranges and distributions 
come from Berger et al. (2020).  

Model variables Units Range 
(min–max) 

Distribution  

Leaf variables (PROSPECT − PRO):   
N Leaf structure 

parameter 
unitless 1.0–2.5 Uniform  

Cab  Leaf chlorophyll 
content 

[μg/ 
cm2]  

0–80 Uniform  

Cw  Leaf water 
content 

[cm] 0.001–0.02 Uniform  

Cxc  Leaf carotenoid 
content 

[μg/ 
cm2]  

0–15 Uniform  

Canth  Leaf 
anthocyanin 
content 

[μg/ 
cm2]  

0–2 Uniform  

Cp  Leaf protein 
content 

[g/ 
cm2] 

0.001–0.0025 Gaussian (x: 
0.0015, SD: 
0.0005)   

CBC Carbon-based 
constituents 

[g/ 
cm2] 

0.001–0.01 Uniform  

Canopy variables (4SAIL):  
LAI Leaf area index [m2/ 

m2] 
0.1–7 Gaussian (x: 3, SD: 

2)   
αsoil  Soil scaling 

factor 
unitless 0–1 Uniform  

ALA Average leaf 
angle 

[◦]  30–70 Uniform  

HotS Hot spot 
parameter 

[m/m] 0.01–0.5 Uniform  

SZA Sun zenith angle [◦]  30   
OZA Observer zenith 

angle 
[◦]  0    
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where {xi}
N
i=1 are the spectra used in the training phase, αi ∈ R is the 

weight assigned to each one of them, and K is a function evaluating the 
similarity between the test spectrum x and all N training spectra, xi =

[x1
i , x2

i ,…, xB
i ]

⊤
, i = 1,…,N. We used a scaled Gaussian kernel function 

(Equ. 3): 

K(xi, xj) = νexp

(

−
∑B

b=1

(xb
i − xb

j )
2

2σ2
b

)

+ δij⋅σ2
n, (3)  

where ν is a scaling factor, B is the number of bands, σb is a dedicated 
parameter controlling the spread of the relations for each particular 
spectral band b, σn is the noise standard deviation and δij is the Kro
necker’s symbol. The kernel is thus parametrized by signal (ν, σb) and 
noise (σn) hyperparameters, collectively denoted as θ = {ν,σb,σn}. 

For training purposes, we assume that the observed variable is 
formed by noisy observations of the true underlying function y = f(x) +
∊. Moreover we assume the noise to be additive independently identi
cally Gaussian distributed with zero mean and variance σn. Let us define 
the stacked output values y = (y1,…, yn)

⊤, the covariance terms of the 
test point k* = [k(x*, x1),…, k(x*, xn)]

⊤, and k** = k(x*, x*) represents 
the self-similarity of x*. From the previous model assumption, the output 
values are distributed according to Equ. 4: 
(

y
f (x*)

)

∼ N

(

0,

(
K + σ2

nI k*

k⊤
* k**

))

. (4)  

For prediction purposes, the GPR is obtained by computing the posterior 
distribution over the unknown output y*,p(y*|x*,D ), where D ≡ {xn, yn|

n = 1,…,N} is the training dataset. Interestingly, this posterior can be 
shown to be a Gaussian distribution, p(y*|x*,D ) = N (y*|μGP∗,σ2

GP∗), for 
which one can estimate the predictive mean (point-wise predictions), see 
Equ. 5: 

μGP∗ = k⊤* (K + σ2
nI)− 1y, (5)  

and the predictive variance (confidence intervals) as in Equ. 6: 

σ2
GP∗ = k** − k⊤

* (K + σ2
nI)− 1k*. (6)  

The corresponding hyperparameters θ are typically selected by Type-II 
Maximum Likelihood, using the marginal likelihood (also called evi
dence) of the observations, which is also analytical. When the derivatives 
of the log-evidence are also analytical, which is often the case, conju
gated gradient ascent is typically used for optimization (see Rasmussen 
and Williams (2006) for further details). 

With respect to EO mapping applications, GPR is simple to train and 
works well with a relative small data set, as opposed to other methods 
like neural networks or random forests. GPR often outperformed these 
other non-parametric regression methods in remote sensing applica
tions, which may be among others due to the use of the ARD kernel 
function rendering the model quite flexible. Furthermore, GPR provides 
information about the level of uncertainty (or confidence intervals) 
associated with the estimates, e.g. in form of a confidence map that 
provides insight in the robustness of the retrieval (Verrelst et al., 2013), 
and about the relevance of bands, which can be used for identifying the 
sensitive spectral regions (Verrelst et al., 2016; Camps-Valls et al., 2016; 
Camps-Valls et al., 2019). As a final remark, in this work we used the 
Matlab implementation of GPR as opposed to earlier works using codes 
coming directly from Rasmussen and Williams (2006), see also Verrelst 
et al. (2012,). The Matlab version offers a few extra options, such as a 
variety of kernel functions. These options enable to optimize the training 
phase more efficiently, leading to a gain in training run time (e.g., by 
using squared exponential kernel). While this gain is small when 
training a model only one time (in the order of seconds), it becomes 
substantial when GPR is implemented in an iterative process with AL. 

2.2.3. Active learning 
AL aims to optimize training datasets through intelligent sampling by 

means of an iterative procedure. In the context of regression for 
terrestrial EO data analysis, AL techniques are typically categorized into 
two groups: uncertainty and diversity (Verrelst et al., 2016). In a recent 
survey (Berger et al., 2021) it was observed that choosing samples ac
cording to their diversity often led to optimal results. Particularly the 
Euclidean distance-based diversity (EBD) method was found top per
forming in most reviewed studies, and therefore we adapted this method 
for our study. The EBD method (Douak et al., 2013) selects those sam
ples out of the pool that are distant from the already included ones in the 
training set, using squared Euclidean distance (Equ. 7): 

dE = ‖xu − xl‖
2
2, (7)  

where xu is a sample from the candidate set, and xl is a sample from the 
training set. All distances between samples are computed and then the 
most remote are selected. An additional optimization option was 
introduced in Verrelst et al. (2020). Thereby, the AL algorithm is run 
against external validation data. In this way, the training data base be
comes optimized against real data. Both, uncertainty and diversity 
methods, have been implemented as an AL module into ARTMO’s ma
chine learning regression algorithms toolbox (https://artmotoolbox. 
com/) (Rivera-Caicedo et al., 2014). 

2.2.4. Delineation of the hybrid retrieval workflow 
Once having the training data and validation data prepared, the 

crucial part of developing generic and robust hybrid models can be 
found in the training strategy. Ultimately, the final model needs to 
comply with the following criteria, i.e. being: (i) able to deal with 
collinearity and noise present in hyperspectral data; (ii) able to provide 
fast and light models; (iii) generally applicable to a wide range of 
vegetation states for processing complete heterogeneous scenes. 
Accordingly, the following workflow was pursued: First, the spectral 
training data was compressed to 20 principal components using PCA, 
accounting for criterion (i) (Rivera-Caicedo et al., 2017). Based on 
earlier experiences with VSWIR hyperspectral data, 20 components 
were evaluated as an adequate trade-off between simplifying the 
training step while preserving the relevant spectral variability and thus 
information content of the variable of interest (De Grave et al., 2020; 
Danner et al., 2021). Second, in order to establish fast and light retrieval 
models (criterion ii), sampling reduction by AL methods was performed. 
A fast algorithm is essential when integrating the above step into the AL 
strategy, as it requires many iterations. Therefore, the training was done 
with the Matlab version of GPR representing the fastest option among all 
tested GPR versions. The efficient and fast EBD method was selected as 
most suitable AL method, see also Berger et al. (2021). Hence, from the 
pool of 1000 labeled samples (pairs of simulated reflectance and CNC), 
10% were randomly selected as the initial training data set and the 
process was repeated for up to 1000 iterations. Following each iteration, 
a new sample was selected by the EBD method and added to the training 
data. When all distances between samples are computed, the sample 
with the largest distance is selected (Verrelst et al., 2016). In our pro
cedure, this new sample was only added when performance improved as 
evaluated by the root mean square error (RMSE) against the provided 
validation data. The whole process was repeated until all samples of the 
training data set were evaluated. The corresponding goodness-of-fit 
statistics (e.g., RMSE, R2) for each sample subset were recorded. 

The sampling strategy for generation of the training data set simu
lated by the PROSAIL-PRO model allows a wide range of vegetation 
states. However, an additional step was required to completely fulfill 
criterion (iii): To ensure that the model is able to deal with heteroge
neous surfaces, 24 distinct non-vegetated spectra were added to the 
reduced training data set. These spectra were directly selected from the 
PRISMA image and covered all kinds of non-vegetated surfaces, 
including bare soil, water bodies and man-made surfaces. Given that 
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these spectra are generally smoother and significantly different from the 
simulated vegetation spectra, the finally trained model should be able to 
sufficiently interpret the full spectral variability present in a hyper
spectral image, and thus to correctly infer the traits of interest. Addi
tionally, it was tested whether adding Gaussian noise (ranging from 1 to 
5%) to the spectra of the final training dataset would further optimize 
the performance, e.g., similar as in Brede et al. (2020), De Grave et al. 
(2020), Verrelst et al. (2020). Internal results suggested that noise did 
not improve retrieval performance, implying that the here developed 
AL-based models do not require artificial noise on simulated spectral 
datasets. 

3. Results 

3.1. Optimized sample selection for CNC modeling 

A semi-supervised active learning strategy was applied to optimize 
the training samples for the GPR-based model building. Calculations 
relied on the EBD technique, with RMSE providing the selection crite
rion, as demonstrated in Fig. 4 (left Y-axis). Thereby, the EBD-GPR al
gorithm explored the full data pool, which was composed of 1000 
simulations transformed to 20 PCA components with corresponding 
CNC values. The figure also nicely shows the effect of the training data 
size on final CNC models’ accuracy: starting with the initial dataset of 
100 samples, each time one new sample was added by the algorithm, 
evaluated against in situ data and then only kept if the models’ accuracy 
improved. Whereas the sample-by-sample iteration process required a 
few minutes using the Matlab GPR, training the final model took merely 
a few seconds (see Table 3). 

Optimal results were obtained after adding 36 samples to the 100 
starting samples (RMSE: 3.26 g/m2; R2: 0.72). It should hereby be 
remarked that lowering the RMSE does not necessarily go along with an 
improvement of R2, as can be read on the right Y-axis of Fig. 4. Although 
it follows the same general trends as RMSE, the pattern provided by R2 is 
more irregular, indicating it as a less reliable measure than RMSE for AL 
testing. When repeating the procedure without AL (i.e., 1000 samples), 
it led to poorer validation results (RMSE: 6.40 g/m2; R2: 0.41) and a 
longer training time (appr. 18 s) (Table 3). Accordingly, the 136 samples 
selected by EBD were employed for training the CNC-GPR algorithm. 

Fig. 5 additionally compares the CNC model results when adding 24 
non-vegetated spectra (Fig. 5, right), which led to slightly poorer vali
dation results against in situ field data as opposed to without non- 
vegetated spectra (Fig. 5, left). Moreover, a stronger saturation effect 
occurs in case of the more heterogeneous training data set, mainly 

caused by the corn data at late mature growth stages. Nevertheless, this 
option was chosen for mapping the full heterogeneous PRISMA scene in 
order to fulfill criterion (iii), i.e. to ensure that the model is able to deal 
with a diversity of spectral signatures. Goodness-of-fit results of all three 
validation set ups are provided in Table 3. 

In an attempt to inspect the spectral similarity between this final 
training data set (EBD with added non-vegetated spectra) and in situ 
validation dataset from MNI campaign, both data sets were statistically 
compared. Fig. 6 illustrates averaged spectra, with standard deviation 
and ranges in partly transparent colors. It can be observed that the 
training data match closely with the validation data. The broader range 
of the training data set implies a sufficient degree of generalization to 
ensure a generally-applicable model. Finally, the CNC-GPR model for 
mapping application is the result of applying both spectral dimension
ality reduction (PCA with 20 components) and EBD-based sample 
reduction to the training data, with the addition of non-vegetated 
spectra (i.e., 160 samples in total) in order to accurately process 
scenes of heterogeneous landscapes. 

3.2. Application of PRISMA imagery to CNC mapping 

Eventually, the final CNC-GPR model was applied to the PRISMA 
image over the area in the North of Munich. Since the model is so light, 
processing of the complete image (1237x1208 pixels) took merely four 
seconds as processed with a contemporary computer (Windows 10 En
terprise v.19041.572 64-bits OS, i7-9700 K CPI 3.60 GHz, 32 GB RAM). 
The scene covers a wide variety of different surface types, including the 
Northern part of the city of Munich, some lakes, the Munich airport, and 
the river Isar, flowing from South to North through the whole scene, 
with surrounding natural vegetation and forests (Fig. 7, top). The ma
jority of the scene is characterized by areas of intense agricultural usage. 
The CNC map clearly shows the agricultural fields with high nitrogen 
content (Fig. 7, top). Highest values may be provided by corn fields, 
which reach a mature growth stage at the beginning of August. Also, the 
natural vegetation along the river and the forested area (in the bottom 
right) reveal rather high CNC. The map underneath (Fig. 7, bottom) 
demonstrates the associated relative uncertainties (expressed as coeffi
cient of variation, in %). Generally, sufficiently low uncertainties are 
achieved, with higher values over the non-vegetated surfaces where 
CNC reaches close-to-zero values. Hence, the associated uncertainty 
map can serve as a quality layer, e.g. to exclude uncertain areas. 

Therefore, for a better interpretation of the CNC mapping result, a 
subset over such an agricultural area, including the MNI test site, was 
processed (Fig. 8), using the uncertainty information as a spatial mask. 
For this, a threshold of 20% as defined by the Global Climate Observing 
System (GCOS, 2011) was applied for exclusion of the most uncertain 
model results. With this threshold only the croplands with medium and 
high CNC are detected. Though no in situ CNC validation data is avail
able yet, it is known that the corn field from 2018 (see Fig. 1) was again 
planted with corn in 2020. With CNC values around the maximum (20 
g/m2), the map shows plausible estimates for the actual growing period. 
Further, the rather low uncertainty provided by the GPR retrieval model 
for the majority of this region provides fidelity in the obtained mapping 
results. 
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Fig. 4. Goodness-of-fit results (RMSE, R2) using AL (EBD) against validation 
data. The AL sequence started with 100 samples and stopped with 136 samples. 

Table 3 
Goodness-of-fit statistics of CNC-GPR models as trained with EBD-reduced 
training data set with and without 24 non-vegetated (NV) spectra, as well as 
training with full data pool, all validated against MNI in situ data. CPU time for 
training and testing (seconds).  

Model set up RMSE (g/ 
m2) 

NRMSE 
(%) 

R2 train 
(s) 

test (s)  

GPR 3.26 15.88 0.72 0.57 0.0061  
GPR  + 24NV 

spectra 
3.42 16.63 0.69 2.18 0.0044  

GPR full 6.40 31.49 0.41 17.93 0.0038   

J. Verrelst et al.                                                                                                                                                                                                                                 



ISPRS Journal of Photogrammetry and Remote Sensing 178 (2021) 382–395

389

4. Discussion 

4.1. Hybrid retrieval workflow 

To enable CNC estimation from space, a hybrid retrieval workflow 
was proposed based on a simulated training data set, which was opti
mized by means of dimensionality reduction both in the sampling and 
spectral domains, and then trained with the probabilistic ML algorithm 
GPR. The applied workflow was based on an innovative leaf optical 
properties model (PROSPECT-PRO, Féret et al., 2021), using the spectral 
information of protein content to estimate CNC. This is in contrast to 
numerous previous attempts, which were based upon the relation of N 
and chlorophyll content, hence relying on spectral signals in the visible 

and near infrared domains (Hansen and Schjoerring, 2003; He et al., 
2016; Tian et al., 2011). The feasibility of the protein-based approach 
using the SWIR spectral range has been demonstrated in two previous 
studies simulating EnMAP spectral configurations (Berger et al., 2020; 
Verrelst et al., 2020). As it was proposed in Verrelst et al. (2020), here 
we introduced the additional option of AL for efficient CNC estimation 
from a spaceborne hyperspectral acquisition. 

A major challenge within any hybrid approach lies in the generation 
of training data for the ML regression algorithms. Although promising 
CNC retrieval results can be obtained with empirical data (Cilia et al., 
2014; Pullanagari et al., 2016) or within an end-to-end processing chain 
using solely simulated data (Verrelst et al., 2021), applying a hybrid 
model on real, sometimes noisy data, is more challenging. Some studies 

Fig. 5. Measured vs estimated CNC along 1:1-line including uncertainty intervals for EBD-reduced training data set (left), and EBD-reduced  + 24 added non- 
vegetated (NV) spectra (right). 
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to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. PRISMA image (01/08/2020) resampled to CHIME bands and processed into CNC in [g/m2] (top) with associated relative uncertainties in [%] (bottom).  
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suggested to add noise to the simulated (training) spectra, significantly 
improving prediction performance for biophysical variable retrievals 
(Danner et al., 2021; Brede et al., 2020). While adding noise can indeed 
account for different uncertainty sources, instead our results suggest that 
the implementation of intelligent sampling through AL methods can be 
key to tackle this problem, as it will be further discussed in the next 
section. 

4.2. Mapping CNC from space 

To assure high mapping accuracy, three different criteria have been 
applied to the proposed workflow, as also listed in Section 2.2.4. A first 
(i) requirement was to deal with collinearity and noise being typically 
present in hyperspectral data. To tackle these issues, PCA was chosen to 
reduce the dimensionality of the spectral dataset to a lower feature 
space, and to increase processing efficiency, ensuring at the same time a 
minimum of information loss (Jolliffe and Cadima, 2016). It seems ad
vantageous to condense spectral information into components as 
opposed to relying on feature selection, as in Berger et al. (2020), yet this 
topic has to be further analyzed. The spectral information content used 
to establish components is surely higher than of single wavelengths. 
Moreover, the impact of noise can be better minimized when using 
feature transformation (or engineering), such as PCA, instead of single 
bands for model building. Several studies demonstrated that 20 com
ponents are more than sufficient to ensure high theoretical estimation 
accuracy for LAI when using GPR algorithms (Rivera-Caicedo et al., 
2017; De Grave et al., 2020; Danner et al., 2021). In fact, the majority of 
variance (around 99%) of the training data is already covered within the 
first 10 components (e.g., in our final model over 99% was achieved 
with first seven components). At the same time, subtle but relevant in
formation can be contained in the remaining components. If this is the 
case, then the ML algorithm (GPR) gives more relevance to it, though 

this comes with the risk that rather noisy information is exploited. Here, 
the CNC variable is composed of LAI and leaf protein content, with the 
latter having several subtle absorption features in the SWIR. Hence it 
was decided to keep this high number of components to ensure that 
maximized variance of the created features (components) is captured by 
the GPR model. 

A second (ii) requirement is to provide fast and light models. While 
hybrid models are already fast as opposed to radiometric based model 
inversion strategies (e.g., see Verrelst et al., 2015b; Verrelst et al., 2015), 
further optimization can be achieved with AL. Earlier studies with AL 
techniques in hybrid workflows demonstrated that with intelligent 
sampling the training data set could be adapted to the variable of in
terest, which led to smaller training data sets, and thus lighter and faster 
retrieval models (Verrelst et al., 2016; Verrelst et al., 2020; Upreti et al., 
2019; Pipia et al., 2021; Berger et al., 2021), which also facilitates 
storage within software toolboxes. As further benefit, the AL algorithm 
EBD proved to be a successful strategy to optimize the training dataset 
without the need to add artificial noise to the spectral data. In our study, 
a range of Gaussian noise did not lead to further improvements, which is 
remarkable, as in prior studies this was always an essential step to adapt 
hybrid models to cope with (noisy) real space-based reflectance data (e. 
g. De Grave et al., 2020; Estévez et al., 2020). Moreover, GPR trained 
over AL-reduced datasets provided not only higher retrieval results but 
also lower uncertainties as opposed to training with full data pools 
(Berger et al., 2021). This was also confirmed by our results when using 
the full training data set without AL: the resulting CNC map showed 
relative uncertainties over 100% for the majority of pixels (not shown). 
Besides, image processing was more than three times slower (appr. 13 s). 
See also Berger et al. (2021) for a more in-depth discussion on the ad
vantages of using AL heuristics in hybrid retrieval models. 

A third (iii) requirement is to strive for developing models that are 
generally applicable to a wide range of vegetation states, hence being 
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Fig. 8. Subset of the PRISMA CNC map in [g/m2]. Areas with relative uncertainty of more than 20% were masked out.  
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robust and generic for mapping full heterogeneous landscapes. Among 
others, this can be achieved with AL. To avoid overspecialization, a 10% 
initial dataset was applied within the AL procedure, which is a higher 
share compared to the initial data used by prior AL studies (Verrelst 
et al., 2016; Verrelst et al., 2020). Internal tests suggested that this initial 
10% to start AL is an optimal trade-off to balance the final model be
tween being sufficiently generic and adequately adapted to real data 
(results not shown). Since the AL sampling selection is run against in situ 
data, it is also essential that the field dataset is sufficiently broad. Hence, 
the collection of good quality field data remains an important part of the 
retrieval algorithm development. Fig. 6 indicates that the CNC model 
was trained over a wide range of vegetation states well embracing the in 
situ data set. To cope with spectral heterogeneity within a scene, the CNC 
model was trained with additional non-vegetated spectra (coming from 
bare soil, water, man-made surfaces, etc.), which led to slightly poorer 
validation results against in situ data. This is not surprising given that 
these added spectra broadened the training data set to unknown spectra 
compared to the in situ data base. Yet, it is an essential part of developing 
a generally applicable hybrid model for achieving meaningful image- 
wide retrievals (see also examples with Sentinel-2 (Estévez et al., 
2020; Estévez et al., 2021) and − 3 (De Grave et al., 2020)). 

Optimization of the above-mentioned criteria led to the final CNC- 
GPR model that was applied to the PRISMA image. The obtained CNC 
map clearly shows the agricultural fields with high CNC, fields and 
natural vegetation with medium CNC, and low to non-vegetated surfaces 
with hardly any CNC. Although there was no in situ ground data set for 
validation available at the time of the image acquisition, plausibility of a 
mapping result can be also interpreted without physical validation. For 
instance, the relatively narrow intra-field distributions of the estimated 
variable along with spatially consistent mapping results are an indirect 
measure for the accuracy of the model, see also discussion in Atzberger 
and Richter (2012). Moreover, the obtained map can be interpreted 
together with the associated uncertainty provided by the GPR (Fig. 7, 
bottom). This map provides confidence in the CNC map, with overall 
low relative uncertainties, i.e. below 20%. Uncertainty information 
provided by GPR models is an attractive feature, as it can be used to 
mask out uncertain areas and to provide corresponding maps (see 
Fig. 8). Additionally, uncertainty maps can be used to identify spectra of 
surface types not considered in the training database (Verrelst et al., 
2013). For instance, uncertainties could assist in deciding whether 
complementary training data is required, e.g. to account for very com
plex vegetation structures. Likewise, it could be identified whether 
spectral signatures from non-vegetated surfaces should be added to 
improve the training data set and enhance confidence of the mapping 
accuracy. Furthermore, the associated uncertainties provide informa
tion of the models’ transferability when applying the model to images at 
different locations and from other observation dates. The possibility to 
quantify the transferability is the very essence for selecting GPR as the 
core retrieval algorithm of hybrid model developments. When un
certainties stay below a certain threshold, the requirement for time- 
consuming ground campaigns for collection of in situ reference data 
for model evaluation can be minimized (Verrelst et al., 2013). 

Previous attempts to estimate CNC from spaceborne imaging spec
troscopy, in particular from Hyperion sensor data, led to similar or less 
good results (Abdel-Rahman et al., 2013; Miphokasap and Wannasiri, 
2018; Tian et al., 2011). For instance, Abdel-Rahman et al. (2013) tested 
random forest (RF) regression algorithms for prediction of sugarcane 
leaf N concentration, achieving R2 of 0.67. In the study by Miphokasap 
and Wannasiri (2018), stepwise multiple linear regression (SMLR) and 
support vector regression (SVR) were applied to establish CNC retrieval 
models, leading to R2 from 0.67 to 0.78. Although these studies already 
demonstrated feasibility of CNC estimation from spaceborne imaging 
spectroscopy data, the applied models were calibrated exclusively on in 
situ collected N data, meaning that these models were limited to specific 
sensor data, vegetation type and geographical location. Moreover, no 
full map over the whole landscape was provided. Further, the 

experimental character of these studies strongly limits the comparability 
of the results with the here presented generic model. Mainly, they relied 
on the apparent correlation between chlorophyll content and N (Tian 
et al., 2011). This assumption has certain operational advantages, e.g. in 
respect of the strong spectral chlorophyll absorption features in the 
visible wavelength range, which is typically covered by optical sensors. 
Nevertheless, quantitative non-destructive retrieval of N content via the 
leaf proteins is expected to be more reliable and robust due to the strong 
linkage between plant protein and nitrogen contents (Berger et al., 2020; 
Féret et al., 2021). This linkage is mainly to be found in the SWIR region 
due to several absorption features corresponding to proteins (i.e. be
tween 1500 nm and 2400 nm), and in the NIR domain with two addi
tional features (910 nm and 1020 nm) (Curran, 1989; Berger et al., 
2020; Féret et al., 2021). 

4.3. Study limitations and future challenges 

Despite being developed in a hybrid framework based on a broad 
range of simulated data, a main limitation of the current CNC model 
version is that validation and AL tuning was only possible against one in 
situ dataset. Ideally, reference data should be acquired over multiple 
vegetation types and integrated into the GPR-AL workflow in order to 
provide more robust and generic models. Nonetheless, such data are 
rarely available. The intense campaign carried out at MNI site during 
two growing seasons and on two crop types was extremely labour- 
intensive and the organ-specific N samples can be considered as trust
ful and high quality measurements. Further, it must be noted that the 
relatively high retrieval accuracy could only be obtained against 
measured CNC of crop leaves plus stalks. With hyperspectral data it is 
hard to detect the N content of fruits, in particular of thick corn cobs, 
since solar radiation can not penetrate thick tissues and thus is not able 
to transport information about the N (or other biochemicals) contained 
within corn cobs or wheat ears (Wocher et al., 2018). This was 
demonstrated on the same data base in the study by Berger et al. (2020), 
where the inclusion of fruit N content led to underestimation by the 
developed CNC models. Note that in contrast to most previous studies, 
we concentrated on the estimation of the area-based N content (in g/m2) 
instead of the mass-based measure (i.e., N%). N content is a very 
important trait from a physiological perspective relating N to photo
synthesis and carbon acquisition (Evans, 1989). Moreover, it allows to 
upscale leaf N to the canopy level and is not influenced by the dilution 
phenomenon as N%. For these reasons, it was recommended to retrieve 
the area-based measure to describe optimal N status (Berger et al., 2020; 
Baret et al., 2007). 

Further efforts are foreseen to maximize the performances of 
developed CNC models. For instance, optimal spectral dimensionality of 
the training dataset should be examined. In this respect, it is planned to 
apply PCA to specific spectral regions and test out the information 
content of individual components. In this context, also the retrieval 
accuracy as function of the number of components will be tested against 
larger CNC field data sets. Moreover, due to the relatively large range of 
possible sun zenith angles at different geographic latitudes, it would be 
worth to explore whether information of SZA should be included as 
additional training feature for the ML algorithms, e.g. similar as the 
neural network models implemented in the biophysical processor 
toolbox of the Sentinel Application Platform (SNAP, Weiss and Baret, 
2016). 

Finally, near-term satellite imaging spectroscopy missions will 
advance our understanding of physiological processes and stimulate 
further progress in functional vegetation traits retrieval and mapping 
applications. In this context, instead of relying on proximal sensing 
spectroscopy data, future AL (EBD) methods should be run against 
spaceborne imaging spectroscopy data associated with field measure
ments for model tuning. For instance, from 2022 onwards, the EnMAP 
satellite (Guanter et al., 2015) is expected to co-exist with PRISMA, 
which will strongly enhance the availability of hyperspectral time series 
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data along with other complementary missions. Therefore, it would also 
be important to harmonize the spatial resolutions of the spaceborne 
sensors with field measurements and model simulations. Given these 
improvements pending, consolidating spatially-harmonized and 
spectrally-equivalent time series products can open a promising path for 
progressing towards routine delivery of next-generation global CNC 
products, e.g. as delivered through the future CHIME mission. 

4.4. Perspectives for CHIME 

Lastly, the proposed workflow for CNC mapping is currently under 
investigation within the framework of the planned operational CHIME 
mission. Foreseen to become part of the Copernicus fleet, CHIME shall 
provide free access to routinely acquired Level 1B, 1C and 2A products. 
Along with other vegetation traits models, the CNC model has been 
implemented into CHIME’s end-to-end (E2E) mission performance 
simulator (Verrelst et al., 2021). E2E instrument simulators are software 
tools developed to support satellite mission preparatory activities 
(Kerekes and Landgrebe, 1989; Kerekes and Baum, 2002; Segl et al., 
2012; Vicent et al., 2016). CHIME’s E2E simulator is able to simulate 
realistically and very accurately the complete chain starting from data 
recording, sensor calibration and data pre-processing to sensor products 
up to final surface properties maps, including vegetation traits. In the 
E2E simulator, multiple scenarios can be introduced and validated, e.g. 
varying topography and heterogeneous surfaces, extreme weather and 
atmospheric events, varying sensor or instrumental configurations. One 
of the main advantages of the E2E simulator is that any of the generated 
products can be validated per-pixel against reference input maps. With 
the concurrent availability of real imaging spectroscopy data, real and 
simulated validation exercises will allow adjustments and improvements 
of the developed vegetation traits models. Hence, the here presented 
CNC model is not necessarily the final model to be integrated into the 
CHIME processing chain, and further improvements are already in 
progress, such as the exploitation of the full CHIME spectral range and 
validation and tuning against new data from planned campaigns. Over 
the course of the upcoming years, improved versions are expected to be 
developed, until the mission is launched, and likely beyond. Eventually, 
the E2E processing chain intends to serve as a processor benchmark for 
implementation into an operational processing chain. As such, once the 
processing chain is in place, and the mission launched, the CNC model, 
along with other vegetation traits models (Verrelst et al., 2021; Berger 
et al., 2021), will enable a quasi-instantaneous extraction of a range of 
vegetation products together with associated uncertainties from L2 
reflectance data. 

5. Conclusions 

In this study we developed a novel workflow for operational map
ping of canopy nitrogen content designed for spaceborne imaging 
spectroscopy missions. The workflow builds upon a hybrid method that 
combines advanced RTM and machine learning approaches to ensure 
sufficient general applicability and fast processing. The hybrid method is 
based on simulations coming from PROSAIL-PRO used for training of a 
GPR algorithm. The usage of GPR provides the additional advantage of 
delivering associated uncertainties together with the CNC estimates. To 
customize the CNC-GPR model towards handling successfully real 
PRISMA data, it was required to: (1) make use of dimensionality 
reduction method PCA to condense the spectral data into components, 
(2) explore an active learning technique to specialize and optimize the 
training data set, and (3) add non-vegetated spectra to the final training 
data base to provide generic models for mapping heterogeneous land
scapes. The CNC-GPR model was validated with a high accuracy (RMSE 
of 3.4 g/m2) and was subsequently applied to a PRISMA image over the 
North of Munich. Overall, relatively low uncertainty of the estimates 
was obtained, suggesting transferability of the retrieval model to other 
space and times. With the presented workflow the first CNC map was 

produced from spaceborne imaging spectroscopy data, providing a path 
towards routinely monitoring of canopy nitrogen content over agricul
tural areas in a globally-applicable operational framework. 
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