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Abstract— Upcoming satellite imaging spectroscopy missions
will deliver spatiotemporal explicit data streams to be exploited
for mapping vegetation properties, such as nitrogen (N) content.
Within retrieval workflows for real-time mapping over agri-
cultural regions, such crop-specific information products need
to be derived precisely and rapidly. To allow fast processing,
intelligent sampling schemes for training databases should be
incorporated to establish efficient machine learning (ML) models.
In this study, we implemented active learning (AL) heuristics
using kernel ridge regression (KRR) to minimize and optimize
a training database for variational heteroscedastic Gaussian
processes regression (VHGPR) to estimate aboveground N con-
tent. Several uncertainty and diversity criteria were applied
on a lookup table (LUT) composed of aboveground N content
and corresponding hyperspectral reflectance simulated by the
PROSAIL-PRO model. The best-performing AL criteria were
Euclidian distance-based diversity (EBD) resulting in a reduction
of the LUT training data set by 81% (50 initial samples plus
141 samples selected from a pool of 1000 samples). This reduced
LUT was used for training VHGPR, which is not only a
competitive algorithm but also provides uncertainty estimates.
Validation against in situ N reference data provided excellent
results with a root-mean-square error (RMSE) of 1.84 g/m2 and
a coefficient of determination (R2) of 0.92. Mapping aboveground
N content over an agricultural region yielded reliable estimates
and meaningful associated uncertainties. These promising results
encourage the transfer of such hybrid workflows into space and
time within the frame of future operational N monitoring from
satellite imaging spectroscopy data.

Index Terms— Active learning (AL), Gaussian processes (GP),
hybrid retrieval methods, kernel ridge regression (KRR),
nitrogen.
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I. INTRODUCTION

W ITH current and upcoming satellite imaging spec-
troscopy missions, unique data streams of hyperspectral

measurements from the Earth surface will be provided in
almost real time. Agriculture will be one of the key applica-
tions where up-to-date information about the crop status and
development is required. Sufficient provision and subsequent
uptake of nitrogen (N) by the plant influences crop growth
and thus yield quality [1]. Crop N mapping from imaging
spectroscopy data is considered as an efficient way to enable
site-specific fertilization measures and consequently to assure
sustainable management and production [2]. Within a plant,
N is a major component of amino acids, the building blocks of
proteins [3]. Hence, when it comes to N mapping, vegetation
N should be derived from proteins rather than from the
traditionally used chlorophyll–N relationship [4].

With respect to quantitative methods for retrieving biophys-
ical and biochemical vegetation traits from Earth observation
data [5], hybrid workflows have evolved as one of the most
promising approaches [6], [7]. These approaches combine
physics described by radiative transfer models (RTMs) with
the speed and efficiency of machine learning (ML) algorithms.
In such a scheme, lookup tables (LUT) are generated from
RTM simulations. Then, the ML algorithm learns the (nonlin-
ear) relationship between the pairs of reflectance and vegeta-
tion trait of interest. These training databases have to fulfill,
on the one hand, the prerequisite of realistically representing
the canopy structural and biochemical properties, and on the
other hand, being small enough to avoid long computational
times required by some ML regression algorithms. Hence,
this approach demands a balanced training data set with a
tradeoff between optimized accuracy and a minimum amount
of samples.

When it comes to hyperspectral data analysis with ML,
dimensionality reduction (DR) is a key issue. DR can be
accomplished in both spectral and sampling domains [8]. Spec-
trally, feature engineering and feature extraction methods offer
the possibility to reduce data space and thus to remove noise
and redundant data. These techniques have been exhaustively
analyzed in the context of vegetation properties retrievals from
imaging spectroscopy data [8], [9]. Instead, reduction in the
sampling domain has been rarely discussed for this purpose
and is rather applied within classification [10]. Training ML
regression over large randomly sampled data sets can lead
to poor prediction performances due to the negative impacts
of noise, redundancy, and outliers. Moreover, in particular,
kernel-based ML algorithms go along with high computational
costs if training data are too abundant, which limits their
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applicability within hybrid retrieval schemes [11]. In order to
reduce and optimize the available data pool for high train-
ing utility, active learning (AL) heuristics can be employed
[10], [12]. AL is a subfield of ML seeking to optimize
models to improve performance through intelligent sampling
of training data sets [13]. In the context of solving regression
problems with ML, different query frameworks have been
proposed [12], [13] to be grouped into main AL methods
of: 1) diversity, e.g., [14]; 2) uncertainty, e.g., [15]; and
3) density, e.g., [16]. So far, diversity and uncertainty selection
strategies have been successfully tested by a few studies within
terrestrial Earth observation analysis [11], [17], [18]. For
instance, AL heuristics were investigated on simulated RTM
data, but without evaluating the resulting models on in situ
reference data [11].

In recent years, several new possibilities have evolved in ML
regression with Gaussian processes (GPs) [19], being one of
the main interesting kernel-based ML methods for vegetation
properties retrievals; GPs excel other ML algorithms through
delivering competitive prediction accuracy and their interesting
property to provide associated uncertainty intervals of the esti-
mates [20], [21]. In the study of [22], crop N content was esti-
mated by training variational heteroscedastic GP models over
a PROSAIL-PRO simulated database with optimized spectral
band setting. Still, far too many training samples were used
through missing optimization which impacted mapping speed.
Previous studies with neural networks and LUT-based inver-
sion even suggested LUT sizes from 8000 to 100 000 com-
binations of input parameters [23], [24], which represents an
unfeasible size for kernel-based ML algorithms. Altogether,
AL methods provide an efficient solution for optimizing RTM
sampling in view of developing cost-effective kernel-based ML
retrieval models. The objective of our study was therefore
to propose an intelligent LUT sampling scheme exploiting
available AL heuristics for the estimation of vegetation N
content. By means of these methods, we expect to enhance
mapping speed and, to the best, also N retrieval accuracy.
This progress toward optimized training samples may permit
to implement the established models within hybrid retrieval
workflows in the frame of a future operational N monitoring
system from satellite imaging spectroscopy data.

II. MATERIAL AND METHODS

A. Radiative Transfer Modeling

We used the PROSPECT-PRO leaf optical properties
model [25] capable of separating leaf dry mass per unit leaf
area (LMA) into protein content (Cp) and carbon-based con-
stituents. PROSPECT-PRO was coupled with the 1-D canopy
reflectance model Scattering by Arbitrarily Inclined Leaves,
4SAIL [26], to PROSAIL-PRO for generation of an LUT
training database. The coupled model simulates reflectance at
the canopy scale as a function of diverse biophysical [e.g., leaf
area index (LAI) and average leaf inclination angle] and leaf
biochemical input parameters (e.g., leaf chlorophyll content,
leaf carotenoid content, or leaf equivalent water thickness).
Leaf nitrogen content can be directly calculated from Cp
with the protein-to-nitrogen conversion factor of 4.43 [27].
Furthermore, LAI is used to upscale from leaf to canopy level.
Finally, “aboveground N content” in [g/m2] was calculated in
the LUT, as suggested by Berger et al. [22]. This study also

provides full information about the generation of the training
database (LUT), which was exploited in our study. Briefly,
the LUT was established by randomly generating 1000 combi-
nations of PROSAIL-PRO model input parameters (sampling
and ranges, see [22]) and simulating corresponding spectral
reflectance of ten specific bands. The band selection was based
on the property of automatic relevance determination (ARD)
covariance in a wrapper strategy using the GP-based band
analysis [22]. By means of a sequential backward band
removal (SBBR) algorithm [9], bands corresponding to the
future satellite mission Environmental Mapping and Analysis
Program (EnMAP) were selected, with central band positions
at 786, 1556, 1568, 1579, 1623, 1656, 1667, 1762, 2124,
and 2234 nm. Hence, with one exception, the best-performing
bands are situated in the shortwave infrared (SWIR) domain,
where protein absorption occurs [4].

B. AL Heuristics

AL heuristics from the two groups of uncertainty and
diversity were applied in our study. Methods have been
described before [11] and will be only shortly summarized
here: uncertainty criteria select samples with greater disagree-
ments between the different explanatory variables, including
variance-based pool of regressors (PAL) [28], entropy query by
bagging (EQB) [29], and residual regression AL (RSAL) [30].
In contrast, the group of diversity criterion is based on the
principle to include samples that are distant from the available
training samples. Hereby, Euclidean distance-based diversity
(EBD) [18], angle-based diversity (ABD) [31], and cluster-
based diversity (CBD) [32] were tested. In-depth explanation
and equations are given in [11]. Moreover, all mentioned AL
methods can be accessed and tested within the in-house soft-
ware package ARTMO (https://artmotoolbox.com/). As part of
this study, ARTMO’s AL module has been made more user-
friendly by enabling: 1) running the AL algorithms against
external validation data and 2) allowing users to distinguish
between included and nonincluded samples selected by diverse
AL methods (MLRA toolbox v.1.25).

C. Validation Data

Data from two different campaigns were pooled together to
provide a larger variety of testing data, enhancing the validity
of the established models in terms of retrieval accuracy. First,
data of the German Munich-North Isar (MNI) campaigns in the
North of Munich, in Southern Germany (N 48◦16′, E 11◦42′)
were explored. There, extensive weekly field trials, includ-
ing field spectroscopy and (non)destructive measurements on
winter wheat (Triticum aestivum) and corn (Zea mays), were
carried out during the growing periods of 2017 and 2018 at
two test sites. Wheat plants covering an area of 0.25 m2

aboveground were cut, weighed, and brought to the lab. In case
of corn, three plants were cut and weighed, but only one
plant was taken to the lab. Row distance and plants per meter
were recorded. In the lab, the combustion method was applied
using the vario EL cube device. Samples were oven-dried
at 105 ◦C until the constant dry weight was reached (and
determined) after 24 h [22]. Samples were grinded and N
concentration (N%), referring to mass of absorbing materials
(dry matter) per unit dry mass, given in [mg/g] or [%],
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which was measured. N% of each plant organ (leaves, stalks,
and fruits) was then converted into aboveground N content
in [g/m2] by multiplying N% with plant organ-specific dry
mass per unit ground area in [g/m2]). From this campaign,
15 N samples were randomly chosen composed of leaves plus
stalks N content of wheat and corn.

Second, a data set from the Majadas de Tiétar research
station, a Mediterranean tree-grass ecosystem located in cen-
tral Spain (N 39◦56′, W 5◦46′), was exploited. Grass samples
were collected in June and July 2018 following the field pro-
tocols generated in the SynerTGE project [33], [34]. Nitrogen
analyses were performed at the Department of Environment,
Spanish National Institute for Agricultural and Food Research
(INIA). Destructively sampled grass biomass was analyzed by
the dry combustion method to obtain N%. The strategy to
obtain canopy N content was different compared to the MNI
site. In Majadas, LMA [g/cm2] and LAI [m2/m2], estimated
by manual scanning of grass samples and using gravimetric
methods [35], were used to upscale leaf-based N content
to the canopy to obtain aboveground N content in [g/m2].
Information about the campaign was provided through per-
sonal communication with Dr. M. Pilar Martín from SpecLab
Laboratory, Spanish National Research Council. From this
campaign, 36 N samples were used. Therefore, a total num-
ber of 51 N samples was available for testing the validity
of the developed method against ground-based in situ data.
During both campaigns, hyperspectral signatures of the canopy
within the 350–2500-nm range were collected at each date of
biomass sampling using the Analytical Spectral Devices Inc.
(ASD; Boulder, CO, USA) FieldSpec FR3. Spectral settings
corresponding to the ten abovementioned selected EnMAP
spectral bands (Section II-A, [22]) were configured out of
these measurements. In this way, LUT and in situ measured
spectral samplings were equivalent.

For mapping, an airborne imaging spectroscopy acquisition
with the HyMap sensor over Barrax agricultural region, La
Mancha, Spain (coordinates 30◦3′N, 2◦6′W), was used. This
flight line is described in various earlier studies [9], [36].

D. Experimental Setup

In a first step, six AL heuristics and random sampling (RS)
were tested on the LUT focusing on performance and differ-
ences between the AL methods. For this procedure, a kernel
ridge regression (KRR) [37] algorithm was applied, which
presents the optimal kernel-based method to perform costly
simulations [5]. KRR minimizes the squared residuals in a
higher dimensional feature space and can be considered as the
kernel version of the regularized ordinary least-squares linear
regression [38]. The linear regression model is defined in a
Hilbert space, H, of very high dimensionality, where samples
were mapped to H via a mapping function φ(xi ). Due to
this simplicity, KRR is not only a competitive ML regression
method (see [36]), and it is also very fast. Hence, KRR is an
ideal ML method to combine with AL to seek for an optimal
number of samples. From the pool of 1000 labeled samples
(pairs of simulated reflectance and N content), 5% of the data
were randomly selected as the initial training data set and the
process was repeated for up to 1000 iterations to ensure a
low impact of the initial choice and reach statistically reliable
results. Following each iteration, a new sample was added to

Fig. 1. Workflow of AL mapping strategy for efficient vegetation N mapping.

the training data selected according to diversity or uncertainty
criteria of the respective AL method. For instance, in the
case of EBD, squared Euclidean distance is calculated. When
all distances between samples are computed, the farthest is
selected [11]. In our procedure, this new sample is only added
when performance improves as evaluated by root-mean-square
error (RMSE) against the validation data. The whole process
was repeated until all samples of the LUT were evaluated.
Finally, the added samples and corresponding goodness-of-fit
statistics (e.g., RMSE, R2) were recorded for each AL method.

The optimal performing samples were then used to train
a variational heteroscedastic GP regression (VHGPR) model.
These models deal with heteroscedastic noise using a mar-
ginalized variational approximation [39] and thus may provide
most realistic estimates of uncertainty [22], [40]. For both
kernel-based ML algorithms, we have used the radial basis
function (RBF) kernel. Before training the final VHGPR
model, we added 5% noise to the simulated spectra, as pro-
posed for hybrid retrieval procedures to generalize the model
and to prevent overfitting on the pure (ideal) RTM outputs [7].
Following optimization of the LUT with the AL methods, in a
next step, the reduced LUT was used to demonstrate map-
ping applications. For this, we subsequently trained VHGPR
and retrained KRR. The applied workflow is conceptualized
in Fig. 1.

III. RESULTS

A. AL-Based LUT Selection

Applying AL criteria on the 1000 pool samples required
only a few minutes using fast KRR. The AL selection criterion
was based on the reduction of RMSE, as can also be observed
in Fig. 2 (left). Note that AL algorithms work in a way that
a sample is only accepted if it leads to RMSE improvement
against the validation data; otherwise, the procedure is stopped.
Optimal results were obtained by the EBD method after adding
141 samples to the 50 starting samples (RMSE: 2.81 g/m2

and R2: 0.76). EBD also belongs to the fastest methods.
In the figure, it can also be noted that other methods found
even a fewer number of samples, but they were not able to
reach the low errors as obtained by EBD. It should hereby be
remarked that a lowering of the RMSE does not necessarily
go along with an improvement of R2, as can be viewed
in Fig. 2 (right). Although the R2 patterns are more irregular,
it follows the general trends as RMSE, with the highest R2

obtained by the EBD method. The second best result was
achieved by PAL that added the same amount of samples (141)
but with a slightly poorer accuracy (RMSE: 3.00 g/m2 and
R2: 0.77). Yet, PAL needs the longest runtime, which renders
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Fig. 2. (Left) RMSE and (Right) R2 for N retrieval using six different
AL methods and RS applied on a PROSAIL-PRO LUT with KRR.

TABLE I

GOODNESS-OF-FIT STATISTICS OF KRR AND VHGPR MODELS

(AS TRAINED WITH EBD-REDUCED LUT AND 5% NOISE ADDED)
AGAINST VALIDATION DATA AND CPU TIME

FOR TRAINING AND TESTING (SECONDS)

it less interesting for operational retrieval. For instance, PAL
needed 4.7 times longer for sample selection than the EBD
method. To demonstrate the efficiency of the AL algorithms,
RS procedure was applied for comparison. Hereby, each time
a random sample was added, which initially led to rapid
improvement of prediction accuracy but was unable to improve
further after only 29 samples were added (RMSE: 3.80 g/m2

and R2: 0.59). Except for RSAL and ABD, optimized
LUTs by all AL methods achieved increased N prediction
accuracy.

B. Application of Optimized Sampling for N Sensing

Following optimization of the LUT with the EBD method,
the next step was to use LUT for mapping applications.
To render the LUT more suitable for processing real images,
5% noise was added to the simulated reflectance. Goodness-
of-fit results and processing times are provided in Table I.
A first observation is the substantial improvement using
VHGPR as opposed to the earlier KRR results without adding
noise (see Section III-A). This is in line with [7], where
the role of noise was found crucial in optimizing hybrid
approaches. Another interesting observation is the significant
improvement of error measures [RMSE or Normalized RMSE
(NRMSE)] of VHGPR as opposed to KRR with noise (RMSE:
4.00 versus 1.84 g/m2), although R2 results of KRR and
VHGPR are alike (0.90 versus 0.92). Hence, these results
underline the gain in accuracy that can be achieved by using
a more advanced ML algorithm. However, the improved
performances of VHGPR go along with some extra com-
putational cost: training needed about 18 times longer, and
image processing (mapping) with VHGPR was four times
slower than using KRR. Still, VHGPR runs very fast with the
EBD-reduced LUT, generating maps in the order of seconds.
In comparison, in our previous study using the same approach
without implementing AL heuristics, a slightly lower accuracy
was obtained with a similar data set (only MNI, RMSE
of 2.1 g/m2) and a longer runtime [22].

Fig. 3. (Left) Zoom-in of the HyMap flightline showing vegetation N content
in [g/m2] over Barrax with estimates and (Right) absolute uncertainties in
form of standard deviations.

C. Mapping Nitrogen Content Over Agricultural Areas

Finally, the VHGPR model was applied to the exemplary
HyMap flight line over an agricultural area in Barrax, Spain.
Since the model is so light, processing of the flight line
took merely 30 s. When instead applying a VHGPR model
trained over the full LUT, mapping took about four times
longer. Moreover, VHGPR being developed in a Bayesian
framework provides associated uncertainty estimates along
with the mean estimates. As such, information on the per-
pixel performance is obtained. A zoom-in of the estimates
and uncertainties is provided to visualize the obtained maps
(see Fig. 3). The green crops on irrigated parcels show a
pronounced N content. Over the fallow lands, N content was
only estimated where crop residues may have been present.
The uncertainty estimates give a more nuanced impression,
especially over bare soil suggesting to interpret bare soil
areas with higher uncertainties. This is due to the fact that
PROSAIL-PRO generated training data mainly consisted of
vegetative spectra. Bare soil signatures present in the LUT
may not completely reflect real-world conditions. To overcome
this drawback, uncertainty maps could be used to reveal where
bare soil spectra can be extracted and added to the VHGPR
training data set. In comparison, when repeating the mapping
with a randomly sampled subset of the same size, it not only
led to poorer validation results (RMSE: 4.65 g/m2 and R2:
0.87), but also the obtained map was characterized by higher
uncertainties (results not shown).

IV. CONCLUSION

In this study, we showed that intelligent sampling using AL
efficiently reduces the total number of LUT entries, which
significantly speeds up the training process and running of
kernel-based ML regression algorithms. Hence, this would
lead to fast and highly efficient models, especially valid when
it comes to process heavy imageries (either in spatial or
spectral dimension). Variational heteroscedastic GP regression
models trained on optimized RTM-generated LUTs can be the
core of next-generation operational hybrid retrieval schemes
using satellite imaging spectroscopy. In this context, the com-
bination of DR in both the spectral and in the sampling
domain is highly encouraged. In this way, LUT variability for
training can be optimized and long processing times avoided.
Within the ARTMO framework, a suite of leaf and canopy
RTMs are available that can be used for simulating any
input–output combination. Hence, abundant training data pools
can be generated for a wide range of vegetation properties.
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This work has extended this possibility by providing an
updated AL module within ARTMO. It facilitates the develop-
ment of hybrid retrieval models based on intelligent training
data sets coming from RTM simulations and advanced ML
regression algorithms. With the upcoming massive availability
of hyperspectral imagery and the current tendency of data
processing in cloud-computing platforms such as Google Earth
Engine or Amazon Web Service, it becomes imperative to
develop light models that make it possible to process big Earth
observation data within a reasonable time.
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