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a b s t r a c t

Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison
of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and
physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC), col-
lected at the agricultural site of Barrax (Spain), was used to evaluate different retrieval methods on their
ability to estimate leaf area index (LAI). With regard to parametric methods, all possible band combina-
tions for several two-band and three-band index formulations and a linear regression fitting function
have been evaluated. From a set of over ten thousand indices evaluated, the best performing one was
an optimized three-band combination according to ðq560 � q1610 � q2190Þ=ðq560 þ q1610 þ q2190Þ with a
10-fold cross-validation R2

CV of 0.82 (RMSECV : 0.62). This family of methods excel for their fast processing
speed, e.g., 0.05 s to calibrate and validate the regression function, and 3.8 s to map a simulated S2 image.
With regard to non-parametric methods, 11 machine learning regression algorithms (MLRAs) have been
evaluated. This methodological family has the advantage of making use of the full optical spectrum as
well as flexible, nonlinear fitting. Particularly kernel-based MLRAs lead to excellent results, with varia-
tional heteroscedastic (VH) Gaussian Processes regression (GPR) as the best performing method, with a
R2

CV of 0.90 (RMSECV : 0.44). Additionally, the model is trained and validated relatively fast (1.70 s) and
the processed image (taking 73.88 s) includes associated uncertainty estimates. More challenging is
the inversion of a PROSAIL based radiative transfer model (RTM). After the generation of a look-up table
(LUT), a multitude of cost functions and regularization options were evaluated. The best performing cost
function is Pearson’s v-square. It led to a R2 of 0.74 (RMSE: 0.80) against the validation dataset. While its
validation went fast (0.33 s), due to a per-pixel LUT solving using a cost function, image processing took
considerably more time (01:01:47). Summarizing, when it comes to accurate and sufficiently fast pro-
cessing of imagery to generate vegetation attributes, this paper concludes that the family of
kernel-based MLRAs (e.g. GPR) is the most promising processing approach.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Spatio-temporally explicit, quantitative retrieval methods for
vegetation bio-geophysical characteristics are a requirement in a
variety of ecological and agricultural applications. Optical Earth
observing satellites, endowed with a high temporal resolution,
enable the retrieval and hence monitoring of plant
bio-geophysical variables (Moulin et al., 1998; Dorigo et al.,
2007). With forthcoming super-spectral Copernicus Sentinel-2
(S2) (Drusch et al., 2012) and Sentinel-3 missions (Donlon et al.,
2012) an unprecedented data stream for land monitoring will soon
become available to a diverse user community (Malenovsky et al.,
2012; Berger et al., 2012). The expected vast Sentinel data stream
will require enhanced processing techniques that are accurate,
robust and fast.

In preparation to S2’s launch, a wide variety of biophysical vari-
able retrieval approaches dedicated to process the expected data
stream have been proposed. These methods address retrieval of
leaf chlorophyll content, leaf area index (LAI), canopy chlorophyll
l meth-
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content and fractional vegetation cover. Proposed methodologies
using simulated S2 data range from vegetation indices (Delegido
et al., 2011, 2013; Clevers and Kooistra, 2012; Hill, 2013;
Schlemmera et al., 2013; Vincini et al., 2014) to machine learning
regression algorithms (Verrelst et al., 2012b, 2013b; Rivera
Caicedo et al., 2014a) until the inversion of radiative transfer meth-
ods (Richter et al., 2009; Atzberger and Richter, 2012; Rivera et al.,
2013; Laurent et al., 2014; Verrelst et al., 2014). However, a pitfall
with these studies is that they are based on different field datasets
and study sites. Hence, the performance of the proposed retrieval
methods cannot be quantitatively compared, and the validity of
the different retrieval methods relative to the others remains
unknown. Clearly, a systematic evaluation is a strong requirement.

Beyond S2 studies, biophysical variable retrieval methods can
be categorized, typically in either of the following four general cat-
egories (Verrelst et al., submitted for publication):

1. Parametric regression methods: Parametric methods assume an
explicit relationship between spectral observations and a
bio-geophysical variable. Thus, explicit parameterized expres-
sions are defined typically by utilizing statistical or physical
knowledge of the variable to be extracted and the spectral
response it induces. Typically a band arithmetic formulation is
defined as a vegetation index and subsequently linked to the
variable of interest based on a fitting function.

2. Non-parametric regression methods: Regression functions are
directly determined by non-parametric methods, according to
information derived from the available data without any
assumption about data distribution or variable interrelations.
In contrast with parametric regression methods, no explicit
choice has to be made about spectral band relationships, trans-
formation(s) or fitting functions.

3. Physically-based methods: Physically-based algorithms are
applications of physical laws and applied to established
cause-effect relationships. They infer model variables based
on specific knowledge, such as that contained in radiative trans-
fer functions.

4. Hybrid methods: Hybrid methods combine elements of statisti-
cal (typically non- parametric) and physically-based methods.
Hybrid models exploit the generic properties of
physically-based methods combined with the flexibility and
computational efficiency of non-parametric non-linear regres-
sion methods.

Cited retrieval method categories have extensively been
reviewed as well as qualitatively evaluated, based on the following
general criteria: (1) potential to retrieve vegetation
bio-geophysical properties; (2) the ability to generate multiple
outputs; (3) the possibility to describe model transparency; (4)
mapping speed; and, (5) the ability to provide retrieval
uncertainties (Verrelst et al., this issue). No evaluation, however,
of their performance was made because each of these
methods was applied in different studies and hence used different
datasets.

This brings us to the following main objective of this work: To
quantitatively evaluate the predictive accuracy and processing
speed of parametric, non-parametric and physically-based retrie-
val methods using identical datasets in the retrieval of a biophys-
ical variable. By doing so, we evaluated the three method
categories on their capability for LAI estimation. In principle, these
methods are not restricted to a specific variable. In view of the
expected S2 data stream, this study was applied to map LAI from
experimental S2 data.

In the following sections we introduce first the generic para-
metric regression methods based on vegetation indices
(Section 2.1). Subsequently, we introduce a broad range of
Please cite this article in press as: Verrelst, J., et al. Experimental Sentinel-2 LAI
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nonparametric regression methods in Section 2.2, and finally we
introduce radiative transfer model (RTM) inversion strategies in
Section 2.3. Section 3 presents the experimental setup envisaged
for comparing the different methods. Subsequently, Section 4
describes the application of the various methods in this study
and their evaluation, while Section 5 presents accuracies, process-
ing speed and mapping results. This paper closes with a discussion
on the performance of the methods (Section 6) and conclusions
(Section 7).
2. Methods

2.1. Parametric regression methods

Parametric regression methods explicitly determine parameter-
ized expressions relating a limited number of spectral bands with
vegetation bio-geophysical variables of interest. This family of
approaches has long been most popular in optical Earth
Observation, especially parameterized relations based on vegeta-
tion indices (VIs). VIs are defined with the objective to enhance
spectral features sensitive to a vegetation property while reducing
disturbance by combining a few spectral bands into a VI (Glenn
et al., 2008). The principle basically entails mathematically defined
combinations of spectral bands regressed with a bio-geophysical
variable using a fitted function. The problem with this approach
is that decisions have to be made that may impact on the perfor-
mance of the estimation: i.e. band selection, index formulation
and type of fitting function (Rivera Caicedo et al., 2014b).

Prior to the selection of a VI model for the retrieval of biophys-
ical variables from remote sensing imagery, a systematic assess-
ment of possible band combinations, VI formulations and curve
fitting procedures is required. An attractive approach therefore is
calculating all possible band combinations according to VI formu-
lations. For instance, the most often applied vegetation index is
the generic Normalized Difference Index ðNDIa;bÞ. The NDI calcu-
lates all possible two-band narrowband combinations according
to the formulation:

NDIa;b ¼ ðqb � qaÞ=ðqb þ qaÞ ð1Þ

where qa;b is reflectance in the a and b bands for the entire optical
spectral range. These so-called generic spectral indices permit the
selection of a best performing index when correlated with a biogeo-
physical variable using a validation dataset. With regard to vegeta-
tion or spectral index formulation (VI or SI), an extensive review
was conducted by le Maire et al. (2004). Typically, indices can be
classified into four categories:

1. Indices using a single reflectance or a difference between reflec-
tances at two wavelengths;

2. Simple ratio of reflectances (SR);
3. Normalized difference ratios of reflectances (ND);
4. Indices based on reflectance signature derivatives.

These indices can be generalized by evaluating them for all opti-
cal wavelengths. Most of them rely on two-band formulations. A
typical problem of two-band spectral indices is that they rapidly
lead to saturated values of the biophysical property in question.
This can be partly overcome, by optimizing band selection
(Delegido et al., 2011, 2013). Alternatively, three-band spectral
indices (3BSIs) have been proposed to avoid the saturation prob-
lem in many two-band spectral indices (Wang et al., 2012).
Table 1 provides common types of published indices as identified
by le Maire et al. (2004) and more authors who published more
recently.
estimation using parametric, non-parametric and physical retrieval meth-
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Table 1
Common types of published indices as identified by le Maire et al. (2004) and other authors (see ‘Source’). In the table a, b, and c represent wavelengths.

Based on Type Formula Source

Reflectances q qa

Reflectances SR qa=qb

Reflectances ND ðqa � qbÞ=ðqa þ qbÞ
Reflectances mSR ðqa � qcÞ=ðqb � qcÞ
Reflectances mND ðqa � qbÞ=ðqa þ qb � 2qcÞ
Reflectances 3BSI ðqa � qcÞ=ðqb þ qcÞ This study
Reflectances 3BSI Wang ðqa � qb þ 2qcÞ=ðqa þ qb � 2qcÞ Wang et al. (2012)
Reflectances 3BSI Tian ðqa � qb � qcÞ=ðqa þ qb þ qcÞ Tian et al. (2013)
Derivatives DVI qa � qb

Table 2
Evaluated non-parametric regression algorithms.

Name algorithm Core algorithm Source

Principal component
regression (PCR)

Matrix inversion Wold et al. (1987)

Partial least squares
regression (PLSR)

Matrix inversion Geladi and
Kowalski (1986)

Neural Network (NN) Levenberg–Marquardt
algorithm

Hagan and Menhaj
(1994)

Regression tree (RT) Sorting & grouping Breiman et al.
(1984)

Boosting trees (BoT) Least squares
boosting + RT

Friedman et al.
(2000)

Bagging trees (BaT) Bootstrap aggregation
(bagging) + RT

Breiman (1996)

Relevance vector machine
(RVM)

Bayesian statistical
inference

Tipping (2001)

Extreme learning machine
(ELM)

Pseudo matrix
inversion

Huang et al. (2006)

Kernel ridge regression (KRR) Matrix inversion Suykens and
Vandewalle (1999)

Gaussian processes
regression (GPR)

Bayesian statistical
inference

Rasmussen and
Williams (2006)

Variational Heteroscedastic
(VH) GPR (VH-GPR)

Bayesian statistical
inference

Lazaro-Gredilla
et al. (2013)
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These indices are subsequently correlated to field data of a vari-
able of interest, e.g. LAI. Regarding selected fitting functions, a vari-
ety of functions (e.g., linear, exponential, logarithmic, polynomial)
have been evaluated in Rivera Caicedo et al. (2014b). The impact of
fitting functions as opposed to the impact of band selection
appeared to be marginal. Therefore, in this paper we restricted
the fitting method to ordinary least-squares linear regression.
2.2. Non-parametric regression methods

Non-parametric algorithms are optimized with a training phase
based on existing data. These include model weights (coefficients),
which are adjusted to minimize the estimation error of the vari-
ables to be extracted. An important advantage of this methodology
is that it is usually based on full optical spectral datasets, i.e. they
make use of all available optical spectral information.

To develop regression models with an optimal generic capacity
requires that their data structure has to be exploited efficiently.
This typically requires the definition of a flexible model able to
combine the different data structure features in a non-linear
way. Non-parametric algorithms can be split into linear and
non-linear regression methods, the latter is also commonly
referred to as machine learning regression algorithms (MLRAs)
(see Verrelst et al. (2012b)).

A list of evaluated non-parametric regression methods is pro-
vided in Table 2. More information about their algorithms can be
found in the cited papers. A comprehensive description is provided
in Verrelst et al. (this issue). The algorithms have been brought
Please cite this article in press as: Verrelst, J., et al. Experimental Sentinel-2 LAI
ods – A comparison. ISPRS J. Photogram. Remote Sensing (2015), http://dx.doi
together in one toolbox, called SimpleR (Camps-Valls et al., 2013)
available at http://www.uv.es/gcamps/code/simpleR.html.
2.3. Physically based methods

Physically-based model inversion methodologies are based on
physical laws and established, well-founded, physical knowledge
of variable relationships. The inversion of a physically-based
canopy RTM with actual (full-spectrum) remote sensing data is
considered as a physically sound approach for the retrieval of
bio-geophysical variables of terrestrial surfaces because the
approach is generic (Dorigo et al., 2007). Nevertheless, these
approaches are not straightforward. The inversion of canopy
RTMs is intrinsically undetermined and hence ill-posed. This
makes physically-based retrievals of vegetation properties a chal-
lenging task. Several strategies have been proposed to mitigate
the problem of ill-posedness, most of them relying on
lookup-table (LUT)-based inversion strategies (e.g. Knyazikhin
et al., 1998; Weiss et al., 2000; Darvishzadeh et al., 2008).
LUT-based inversion requires simulations of the spectral reflec-
tances for a large yet limited range of RTM variable values. The
inversion problem is thereby transformed into the identification
of a modeled reflectance set most resembling a measured one,
querying the LUT (Liang, 2007). A LUT query is typically performed
by applying a cost function. The cost function generates a value for
one or multiple RTM input variables set by minimizing the
summed differences between simulated and measured reflec-
tances for all wavelengths. Various regularization strategies have
been proposed to optimize the robustness of the LUT-based inver-
sion routines (Verrelst et al., submitted for publication). For
instance:

1. The use of the mean or median of multiple best solutions in the
inversion, as opposed to a single best solution (Combal et al.,
2002; Richter et al., 2009; Darvishzadeh et al., 2011; Verrelst
et al., 2014); and

2. The addition of Gaussian noise to account for uncertainties
linked to measurements and models (Richter et al., 2009,
2011; Verrelst et al., 2014).

Another widely applied regularization technique is the intro-
duction of a priori information, e.g. per land cover type. This tech-
nique is not tested here since we focus only on methods
immediately applicable to the complete image. Alternatively, dif-
ferent cost functions deal with different distribution classes, allow-
ing us to deal with outliers and non-linear distortions in a better
way than the commonly used least squares estimation distance
(LSE) (Rivera et al., 2013; Verrelst et al., 2014). A wide range of dis-
tances/metrics has been developed in the fields of mathematics,
statistics and physics. They all represent the ‘‘closeness’’ between
two functions, though the nature of these functions can be differ-
ent (Leonenko et al., 2013). Most of these functions require one
estimation using parametric, non-parametric and physical retrieval meth-
.org/10.1016/j.isprsjprs.2015.04.013
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or two parameters to be tuned. That may hamper their use in oper-
ational processing chains. Therefore only those cost functions
without additional parameters were analyzed in earlier work
(Rivera et al., 2013). It led to a selection of 10 potentially promising
cost functions. To describe the problem in a statistical way let us
accept that D½P;Q � represents the distance between two functions,
where P ¼ ðpðk1Þ; . . . ; pðknÞÞ is the reflectance signature derived
from satellite data and Q ¼ ðqðk1Þ; . . . ; qðknÞÞ is the LUT containing
simulated reflectances with k1; . . . ; kn representing n spectral
bands. The purpose is to find the best estimate by solving the min-
imization problem using different statistical distances as presented
in Table 3.
3. Experimental and simulated data

3.1. Sentinel-2

ESA’s S2 satellites capitalize on technology and experience
acquired with the SPOT and Landsat missions dating from the past
decades (Drusch et al., 2012). S2 is a polar-orbiting, super-spectral
high-resolution imaging mission. The mission is envisaged to fly a
pair of satellites, with the first planned to be launched in 2015.
Each S2 satellite carries a Multi-Spectral Imager (MSI) with a swath
width of 290 km. It provides a versatile set of 13 spectral bands
spanning from the visible and near infrared (VNIR) to the short-
wave infrared (SWIR), featuring four bands at 10 m, six bands at
20 m and three bands at 60 m spatial resolution (Table 4). S2 incor-
porates three bands in the red-edge region, centered at 705, 740
and 783 nm. The S2 satellite pair aims at delivering data from all
land surfaces and coastal zones every five days and under
cloud-free conditions, and typically every 15–30 days considering
the presence of clouds. To serve the objectives of Copernicus
(The European Earth Observation Programme) S2 satellites will
provide data for the generation of high-level operational products
(level 2b/3) such as land-cover and land-change detection maps
and geophysical variables maps.
3.2. Field data

To quantitatively compare the three different categories of retrie-
val methods cited earlier, a joint reference dataset is to be used. For
this purpose the widely used SPARC dataset (Delegido et al., 2011,
2013) is chosen. The SPectra bARrax Campaign (SPARC) field dataset
encompasses different crop types, growing phases, canopy geome-
tries and soil conditions. The SPARC-2003 campaign took place from
12 to 14 July in Barrax, La Mancha, Spain (coordinates 30�30N,
28�60W, 700 m altitude). Bio-geophysical parameters have been
measured within a total of 108 Elementary Sampling Units (ESUs)
for different crop types (garlic, alfalfa, onion, sunflower, corn, potato,
sugar beet, vineyard and wheat). An ESU refers to a plot, which is
sized compatible with pixel dimensions of about 20 m � 20 m. In
the analysis no differentiation between crops was made.

Green LAI has been derived from canopy measurements made
with a LiCor LAI-2000 digital analyzer. Each ESU was assigned
one LAI value, obtained as a statistical mean of 24 measurements
(8 data readings � 3 replica) with standard errors ranging from
5% to 10% (Fernández et al., 2005). Strictly speaking, assuming a
random leaf angle distribution, the impact of clumping has been
assessed only partially using the LiCor and its corresponding soft-
ware. Hence, effective LAI is given as an output variable. For all
ESUs, LAI ranges from 0.4 to 6.2 (m2 single sided leaf surface)/(m2

ground surface). To be able to compare statistical methods with the
physical method, bare soils were not included in the validation
dataset since the inversion of canopy RTMs is only relevant for fully
vegetated land cover types.
Please cite this article in press as: Verrelst, J., et al. Experimental Sentinel-2 LAI
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During the campaign, airborne hyperspectral HyMap
flight-lines were acquired for the study site, during the month of
July 2003. HyMap flew with a configuration of 125 contiguous
spectral bands, spectrally positioned between 430 and 2490 nm.
Spectral bandwidth varied between 11 and 21 nm. The pixel size
at overpass was 5 m. The flight-lines were corrected for radiomet-
ric and atmospheric effects according to the procedures of Alonso
and Moreno (2005) and Guanter et al. (2005). A RGB map of the
used flight-line is provided in Fig. 5.

Finally, a calibration dataset was prepared, referring to the cen-
tre point of each ESU and its corresponding LAI values. HyMap data
were then spectrally resampled to the band settings of S2. Note
that the spatial size of HyMap is kept as such that no spatial infor-
mation is lost when interpreting the maps obtained.
4. Methods application and evaluation

4.1. Cross-validation sampling for parametric and non-parametric
regression

Field data are required for the parametric and non-parametric
methods to be trained and calibrated, resulting in a fitting function
between vegetation index values and LAI measurements. The vali-
dation of these methods was based on a k-fold cross-validation
technique (Snee, 1977). The k-fold cross-validation requires the
dataset to be randomly divided into k equal-sized sub-datasets.
From these k sub-datasets, k-1 sub-datasets are selected as a train-
ing dataset and a single k sub-dataset is used as a validation data-
set for model testing. The cross-validation process is then repeated
k times, with each of the k sub-datasets used as a validation data-
set. The results from each of these iterative validation steps are
then combined to produce a single estimation value. This way, all
data are used for both training and validation, and each single
observation is used for validation exactly once. In this study, we
used a 10-fold (k = 10) cross-validation procedure.
4.2. LUT-based inversion strategy

With regard to RTM inversion approaches, the full SPARC field
dataset was used to evaluate the various LUT-based inversion
strategies. Hence, contrary to the approaches discussed earlier,
the full field dataset was used only for validation purposes, i.e.
no need for a cross-validation sampling.

The simulated dataset has been produced by coupling the
PROSPECT-4 with the 4SAIL RTM’s. These coupled RTM’s are fast,
invertible and do represent homogeneous plant cover well on flat
surfaces such as those present at Barrax. Both models, commonly
referred to as PROSAIL, have been used extensively over the past
few years for a variety of applications (Jacquemoud et al., 2009).
PROSPECT-4 simulates leaf reflectance and transmittance for the
optical spectrum from 400 to 2500 nm with a 1 nm spectral reso-
lution and as a function of biochemistry and anatomical structure
of the canopy and its leaves. It consists of four parameters, being
leaf structure, leaf chlorophyll content (LCC), equivalent water
thickness and dry matter content (Feret et al., 2008). 4SAIL calcu-
lates top-of-canopy reflectance. The 4SAIL input variables are:
LAI, leaf angle distribution, the diffuse/direct irradiation ratio, a
hotspot parameter and the sun-target-sensor geometry. The spec-
trally dependent input consists of leaf reflectance and transmit-
tance, as simulated with PROSPECT-4 and a moist and dry soil
reflectance spectrum. The soil spectra are an average of bare soil
spectral signatures as calculated from bare moist and dry soil pix-
els identified in the imagery.

The imposed boundaries and distributions of the PROSAIL vari-
ables are illustrated in Table 5. These were obtained from the
estimation using parametric, non-parametric and physical retrieval meth-
.org/10.1016/j.isprsjprs.2015.04.013
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Table 3
Ten cost functions used in the current study.

Cost function Algorithm

Least absolute error DðP;QÞ ¼
Pkn

kl¼1 pðklÞ � qðklÞj j
Shannon (1948) DðP;QÞ ¼ �

Pkn
kl¼1

pðklÞþqðkl Þ
2

� �
log pðklÞþqðklÞ

2

� �
þ 1

2

Pkn
kl¼1pðklÞlogðpðklÞÞ þ

Pkn
kl¼1qðklÞlogðqðklÞÞ

� �

L-divergence lin D½P;Q � ¼
Pkn

kl¼1pðklÞ lnðpðklÞ þ qðklÞÞ lnðqðklÞ � ðpðklÞ þ qðklÞÞÞ ln pðkl ÞþqðklÞ
2

� �

Bhattacharyya divergence D½P;Q � ¼ � log 1þ
Pk1

kl¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðklÞqðklÞ

p
� 1

2 ðpðklÞ þ qðklÞ
� �

Jeffreys–Kullback–Leibler D½P;Q � ¼
Pkn

kl¼1 pðklÞ � qðklÞð Þ lnðpðklÞÞ � lnðqðklÞÞð Þ
Neyman chi-square D½P;Q � ¼

Pkn
kl¼1

ðpðkl Þ�qðklÞÞ2
qðklÞ

Pearson chi-square D½P;Q � ¼
Pkn

kl¼1
ðqðklÞ�pðklÞÞ2

pðkl Þ

Normal distrubution-LSE D½P;Q � ¼
Pkn

kl¼1 pðkiÞ � qðkiÞð Þ2

Geman and McClure DðP;QÞ ¼
Pkn

kl¼1
ðpðklÞ�qðklÞÞ2

ð1þðpðkl Þ�qðklÞÞ2Þ

Exponential D½P;Q � ¼
Pkn

kl¼1qðklÞ exp � pðklÞ�qðkl Þ
qðkl Þ

� �
� 1

� �

Table 4
Sentinel-2 MSI band settings.

Band # B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12
Band center (nm) 443 490 560 665 705 740 783 842 865 945 1375 1610 2190
Band width (nm) 20 65 35 30 15 15 20 115 20 20 30 90 180
Spatial resolution (m) 60 10 10 10 20 20 20 10 20 60 60 20 20

Table 5
Range and distribution of input parameters used to establish the synthetic canopy reflectance database for use in the LUT.

Model parameters Units Range Distribution

Leaf parameters: PROSPECT-4
N Leaf structure index Unitless 1.3–2.5 Uniform
LCC Leaf chlorophyll content [lg/cm2] 5–75 Gaussian (�x: 35, SD: 30)
Cm Leaf dry matter content [g/cm2] 0.001–0.03 Uniform
Cw Leaf water content [cm] 0.002–0.05 Uniform

Canopy variables: 4SAIL
LAI Leaf area index [m2/m2] 0.1–7 Gaussian (�x: 3, SD: 2)
asoil Soil scaling factor Unitless 0–1 Uniform
ALA Average leaf angle [�] 40–70 Uniform
HotS Hot spot parameter [m/m] 0.05–0.5 Uniform
skyl Diffuse incoming solar radiation [fraction] 0.05 –
hs Sun zenith angle [�] 22.3 –
hv View zenith angle [�] 20.19 –
/ Sun-sensor azimuth angle [�] 0 –

Similar variable ranges/values/distributions were used according to field configurations and related studies (Rivera et al., 2013; Verrelst et al.,
2014). �x: mean, SD: standard deviation.

J. Verrelst et al. / ISPRS Journal of Photogrammetry and Remote Sensing xxx (2015) xxx–xxx 5
measurement campaigns and/or other studies which used the
same crops (Rivera et al., 2013; Verrelst et al., 2014). The boundary
conditions were selected to describe the characteristics of all crop
types used in the study, with each variable 10 times sampled.
Gaussian input distributions were generated for LAI and LCC to
put more emphasis on the variable values being present in the
actual growth stages of the crops. These variables were 100 times
sampled. Sun and viewing conditions correspond with the measur-
ing conditions at satellite overpass. All possible combinations have
been calculated from the leaf and canopy input ranges as defined in
Table 5. Since the sum of all the combinations led to an unrealisti-
cally large number of simulations (10 billion), a LUT size of 10,000
TOC (Top-Of-Canopy) reflectance realizations has been randomly
chosen in accordance with the approach of Darvishzadeh et al.
(2012).

Similarly as in Rivera et al. (2013) and Verrelst et al. (2014),
apart from the evaluated cost functions (Table 3) also the addition
of a Gaussian noise component and the occurrence of multiple
solutions in the inversion were investigated. A range of 0–20%
noise (with steps of 1%) applied to the simulations and a mean of
Please cite this article in press as: Verrelst, J., et al. Experimental Sentinel-2 LAI
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multiple solutions of best matching simulated spectra with a range
of 0–5% (with steps of 0.25%) were evaluated on inversion effi-
ciency impact.
4.3. ARTMO and retrieval validation

This study was conducted within an in-house software package
named ARTMO (Automated Radiative Transfer Models Operator)
(Verrelst et al., 2012c). ARTMO embodies a suite of leaf and canopy
radiative transfer models (RTMs) including PROSAIL and several
retrieval toolboxes, i.e. a spectral indices toolbox, (Rivera Caicedo
et al., 2014b), a machine learning regression algorithm toolbox
(Rivera Caicedo et al., 2014a), and a LUT-based inversion toolbox
(Rivera et al., 2013). The ARTMO package runs in MATLAB and
can be downloaded at: http://ipl.uv.es/artmo/.

The ability of parametric and non-parametric estimation was
evaluated by examining the cross-validation estimate of the
root-mean-squared error (RMSE) and the coefficient of determina-

tion (R2), which are averaged 10-fold. For the RTM inversion
estimation using parametric, non-parametric and physical retrieval meth-
.org/10.1016/j.isprsjprs.2015.04.013
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Table 6
Cross-validation statistics (mean (�x) and standard deviation (SD) of RMSECV and R2

CV ) and processing speed for the best performing index per index formulation. Results are ranked
according to R2

CV .

Index name Formulation Best bands RMSECV R2
CV

Processing speed (s)

mux (SD) �x (SD)

3BSI Tian ðqa � qb � qcÞ=ðqa þ qb þ qcÞ qa: 560, qb: 1610, qc: 2190 0.615 (0.123) 0.823 (0.114) 0.118
mND ðqa � qbÞ=ðqa þ qb � 2qcÞ qa: 560, qb: 1610, qc: 2190 0.671 (0.114) 0.792 (0.110) 0.065
mSR ðqa � qcÞ=ðqb � qcÞ qa: 560, qb: 1375, qc: 2190 0.686 (0.107) 0.787 (0.114) 0.063
3BSI ðqa � qcÞ=ðqb þ qcÞ qa: 560, qb: 1375, qc: 2190 0.691 (0.107) 0.776 (0.116) 0.039
SR qa=qb qa: 443, qb: 560 0.725 (0.202) 0.766 (0.142) 0.020
DVI qa � qb qa: 560, qb: 2190 0.748 (0.112) 0.740 (0.149) 0.036
2BSI ðqb � qaÞ=ðqb þ qaÞ qa: 1610, qb: 2190 0.777 (0.130) 0.739 (0.144) 0.020
3BSI Wang ðqa � qb þ 2qcÞ=ðqa þ qb � 2qcÞ qa: 443, qb: 560, qc: 665 0.770 (0.125) 0.730 (0.133) 0.051
R qa qa: 865 0.923 (0.123) 0.618 (0.129) 0.037

Fig. 1. Measured vs. estimated LAI values along the 1:1-line of the best performing
VI model (see Table 6). The different colors indicate the 10-fold subsets. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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strategies RMSE and R2 were calculated directly using all validation
data. Processing speed of the retrieval methods and mapping were
logged as well. All analysis was performed using a 64 bit processor
(Intel� Core™ i7-4700MQ CPU@ 2.40 GHz, 16 GB RAM).
5. Results

5.1. Parametric regression based on vegetation indices

All possible band combinations for the two-band and
three-band formulations according to Table 1 have been analyzed
for the S2 bands using the SPARC field dataset. Because of the large
number of band combinations (156 for two-band combinations
and 2041 for three-band combinations) only the best performing
index per formulation is listed in Table 6. Multiple indices per for-
mulation may perform almost equally well, but the overall goal of
this study was to compare in particular the different categories of
retrieval methods. Therefore, best performing combinations are
presented only. In total, 10,686 indices have been evaluated.
Generally, the best-performing three band indices outperformed
the more conventional best-performing two-band indices. This
implies that there is no reason to limit this exercise to two-band
indices. Only the three-band index according to Wang et al.
(2012) performed more poorly than the two-band indices.
Another observation is that the type of formulation can play an
important role. When inspecting the standard deviation (SD) of
the cross-variation results, the simple ratio (SR) formulation per-
formed considerably less stable (i.e. larger SD) than normalized
Please cite this article in press as: Verrelst, J., et al. Experimental Sentinel-2 LAI
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formulations. Regarding three-band normalized formulations, the
3BSI according to Tian et al. (2013) proved to perform more suc-
cessful than the other types of 3BSI formulations with about the
same stability. The index was optimized as follows:
ðq560 � q1610 � q2190Þ=ðq560 þ q1610 þ q2190Þ. From Table 6 it is
shown that the selected spectral bands are encountered as well
in other optimized indices. All indices - due to their simplicity -
have in common that they are extremely fast in processing. The
10 k-fold cross-validation calibration and validation of the func-
tions occurred practically instantly.

The scatter plot of estimated versus measured LAI values is
shown in Fig. 1. Despite a relatively high R2

CV (0.82) it can be noted
that LAI saturation at high LAI values still occurs. It again underli-
nes the minor ability of indices in dealing with LAI estimates of
densely packed canopies. However, other curve fitting types (e.g.
exponential, polynomial, logarithmic) or indices with four or more
bands may be able to alleviate this problem somewhat (Rivera
Caicedo et al., 2014b).
5.2. Non-parametric regression algorithms

Table 7 displays the cross-validation results of the
non-parametric regression algorithms for the S2 bands using the
SPARC dataset, again ranked according to R2

CV results. Of interest
is that the large majority of non-parametric regression algorithms
outperforms the vegetation indices, especially the (nonlinear)
machine learning algorithms (MLRAs). Most of these MLRAs are
from the family of kernel methods. These are characterized by
non-linear transformations. Top-performing MLRAs are variational
heteroscedastic Gaussian processes regression (VH-GPR) and ker-
nel ridge regression (KRR), bagging trees, relevance vector machine
(RVM) and extreme vector machine (EVM). These methods explain
about 90% of observed variance in LAI. Particularly the excellent
performing algorithms KRR and the GPR families are of interest.
KRR is of interest because of its high processing speed, especially
because, unlike GPR, only a kernel parameter is used and thus
the covariance (kernel) function is far more simple. GPR is of inter-
est, even though it is computationally more demanding, due to its
ability to provide additional information such as ranking of rele-
vant bands as well as uncertainties (Verrelst et al., 2012b,a).
Though still providing accurate estimates, neural networks (NN)
and RVM are considerably slower. NN was rather slow when devel-
oping a model because many hyperparameters were to be tuned
(number of hidden units, learning rate, and momentum term).
The linear non-parametric regression models such as principal
component regression (PCR) and partial least squares regression
(PLSR), while being extremely fast, performed considerably poorer
than their nonlinear counterparts. These methods cannot cope
with complex nonlinear relations.
estimation using parametric, non-parametric and physical retrieval meth-
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Table 7
Cross-validation statistics (mean (�x) and standard deviation (SD) of RMSECV and R2

CV ) and processing speed for each non-parametric regression algorithm. Results are ranked
according to R2

CV .

Algorithm RMSECV R2
CV

Processing speed (s)
�x (SD) �x (SD)

VH-Gaussian processes regression (VH-GPR) 0.436 (0.137) 0.902 (0.085) 1.695
Gaussian processes regression (GPR) 0.440 (0.132) 0.900 (0.085) 0.767
Kernel ridge regression (KRR) 0.453 (0.127) 0.897 (0.079) 0.092
Bagging trees (BaT) 0.472 (0.119) 0.887 (0.085) 1.380
Relevance vector machine (RVM) 0.458 (0.129) 0.886 (0.081) 28.322
Extreme learning machine (ELM) 0.506 (0.124) 0.879 (0.072) 0.780
Neural Network (NN) 0.561 (0.160) 0.849 (0.092) 4.614
Partial least squares regression (PLSR) 0.584 (0.126) 0.827 (0.123) 0.010
Boosting trees (BoT) 0.619 (0.152) 0.826 (0.084) 0.947
Regression tree (RT) 0.601 (0.169) 0.825 (0.147) 0.089
Principal component regression (PCR) 0.803 (0.141) 0.686 (0.144) 0.003
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Fig. 2. Measured vs. estimated LAI values along the 1:1-line of the best performing
non-parametric model (see Table 7). The different colors indicate the 10-fold
subsets.
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Fig. 3. Sigmas of the generated VH-GPR model. The lower the sigma the more
important the band.
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Compared to VI-results, it can be suggested that the majority of
non-parametric regression methods perform more stable than the
parametric methods when considering the lower standard devia-
tions (SD) of the R2

CV results. That is also visualized in the scatter
plot of the best performing method, VH-GPR (Fig. 2). This MLRA
is well able to overcome the saturation effect. Apart from a few
outliers, all estimates are closer to the 1:1-line, even for LAI mea-
surements above 5. Especially the very low LAI value estimates
(<1) are accurately predicted. The same excellent performance
was observed for the GPR and KRR approaches. Another interesting
Please cite this article in press as: Verrelst, J., et al. Experimental Sentinel-2 LAI
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feature of the GPR family to inspect is their ability to provide
insight in band relevance when developing the regression
model. Differences between samples are given by GPRs for
each band typically using a covariance function defined as:

Kðxi; xjÞ ¼ exp � kxi�xjk2

2r2

� �
. The r can be interpreted as the relevance

of band b. Intuitively, high values of r mean that relations largely
extend along that band, hence suggesting a lower informative
content. On the other hand, the lower the r the more relevant
the band (Verrelst et al., 2012a,b). This is also illustrated in
Fig. 3. Of interest is that the most relevant bands were encountered
in the red edge and the SWIR, which is in agreement with
earlier observations (Delegido et al., 2011, 2013; Rivera Caicedo
et al., 2014b).
5.3. LUT-based RTM inversion

LUT-based RTM inversion is a challenging exercise because a
RTM has to be selected first, then a LUT has to be configured
together with a cost function and finally regularization options
have to be defined. These decisions may impact the inversion per-
formance. Here we report on the evaluation of 10 cost functions.
The best-performing configurations per cost function are listed in
Table 8 again sorted according to the R2 statistic. Additionally,
RMSE and processing speed are provided. At best, a R2 of 0.74 is
obtained, which is similar to that of the two-band indices.
However, to achieve the best performance results, the insertion
of quite some noise to the simulated data was required. It accounts
for the uncertainties linked to measurements and LUT configura-
tion. Typical for this case is that the R2 is comparable with the per-
formance of two-band indices but RMSE is significantly higher than
the RMSECV of vegetation indices (Table 6). Inversion processing is
relatively fast (each inversion scheme <1 s), but still about ten
times slower than when vegetation indices are used.

Two interesting observations can be made from Fig. 4. First, the
inversion scheme faces difficulties, when sparsely vegetated sur-
faces are retrieved. Samples with LAI measurements below a value
of one are systematically overestimated. This may be due to a poor
selection of bare soil profiles in the LUT generation, inducing mis-
matching. A second observation deals with densely vegetated sur-
faces. LAI measurements above four are systematically
underestimated by the inversion scheme. This is suggested to be
due to saturation effects, a well-known phenomenon with
PROSAIL simulations (Bacour et al., 2006; Weiss et al., 2007;
Garrigues et al., 2008). Both over- and under-estimations demon-
strate that LUT-based inversions are a challenging approach,
requiring optimizations for many aspects.
estimation using parametric, non-parametric and physical retrieval meth-
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Table 8
Optimized noise, multiple solutions and validation statistics (RMSE and R2) and processing speed for each cost function. Results are ranked according to R2.

Cost function % Noise % Multiple solutions RMSE R2 Processing speed (s)

Pearson chi-square 15 0.50 0.802 0.745 0.331
Jeffreys–Kullback–Leibler 18 0.50 0.799 0.734 0.473
L-divergence lin 16 0.25 0.794 0.734 0.757
Shannon (1948) 16 0.25 0.794 0.734 0.903
Bhattacharyya divergence 15 0.25 0.795 0.734 0.427
Neyman chi-square 18 0.25 0.806 0.717 0.334
Least absolute error 20 0.25 0.875 0.690 0.312
Normal distrubution-LSE 13 0.50 0.865 0.677 0.325
Geman and McClure 13 0.50 0.865 0.677 0.360
Exponential 13 0.50 0.868 0.674 0.445

Fig. 4. Measured vs. estimated LAI values along the 1:1-line of the best LUT-based
inversion scheme (see Table 8).

Fig. 5. S2 RGB map of the original HyMap flightline and LAI map as generated by
the best performing vegetation index regression model (see Table 6). R: red (B4:
665 nm), G: green (B3: 560 nm), B: blue (B1: 443 nm). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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5.4. Final LAI maps

The best performing retrieval strategy for each retrieval cate-
gory (parametric, non- parametric and physically-based) have
been applied to map simulated Sentinel-2 imagery. Additionally,
processing time to generate a map has been recorded. They are
listed in Table 9. Large differences between the three methods
were obtained. Due to its simplicity, retrievals based on vegetation
indices are extremely fast. It takes less than 4 s to generate a map.
The machine learning VH-GPR approach, led to the most accurate
performance. Its sophisticated retrieval method, however, led to
a slower mapping speed (1 min and 14 s), though 3 maps were
generated in that time lapse (i.e. mean estimate, absolute uncer-
tainty and relative uncertainty map). On the other hand,
LUT-based inversions took considerably more time to generate
the same map, i.e., 1 h, 1 min and 47 s. The slow mapping speed
is due to the pixel-by-pixel evaluation with LUT entries. This low
processing time is a significant drawback, e.g., in cases of opera-
tional applications or when maps are required in near real-time.

The LAI map as generated by the optimized 3BSI Tian index is
shown in Fig. 5. In the obtained map the irrigated circular agricul-
tural fields are clearly differentiated, including within-field vari-
ability. The non-vegetated areas are marked by LAI close to zero.
Table 9
Best performing parametric, non-parametric and LUT-based inversion method and
associated mapping speed.

Retrieval algorithm RMSE R2 Mapping speed (s)

Tian 3-band formulation 0.615 0.823 3.847
VH-GPR 0.436 0.902 73.884
Pearson chi-square inversion 0.802 0.745 3706.965
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While the obtained map seems to make physical sense, the prob-
lem inherent to vegetation indices is that no information about
retrieval uncertainties is provided. Moreover, the validation data-
set was taken only over vegetated areas. Hence, the validity of
the map as a whole remains questionable. From all considered
regression techniques, VH-GPR was evaluated to reach the highest
accuracies. Moreover, thanks to its Bayesian backbone, the GPR
family has unique additional features: (1) It reveals the most rele-
vant bands for the development of the model (Fig. 3)). (2) It pro-
vides uncertainty intervals associated with the mean predictions
(l) (Fig. 6).
estimation using parametric, non-parametric and physical retrieval meth-
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Fig. 6. LAI map (mean estimates; l) (left), associated uncertainties (expressed as standard deviation (SD) around the l) (centre), and relative uncertainties (expressed as
coefficient of variation ðCV ¼ SD

l � 100Þ in %) (right) as generated by the best performing non-parametric regression model (see Table 9).
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In the associated uncertainty map (Fig. 6, centre1), lower r (dark
blue) indicates higher retrieval certainties from the trained model.
The generation of uncertainty estimates allows insight into the pixel
by pixel approach when applied to any imagery. It thus enables the
interpretation for which land covers retrievals are associated with a
large certainty and also those areas where land cover would benefit
from additional sampling.

It should be kept in mind that r is also related to the magnitude
of the mean estimates (l). For this reason relative uncertainties
(r=l) may provide a more meaningful interpretation. That map
is also shown in Fig. 6 (right). It can be observed that LAI is
retrieved with a high relative certainty over the circular areas.
Typically, relative uncertainties below 20% are achieved for several
of those areas, which falls within the accuracy threshold as pro-
posed by Global Climate Observing System (GCOS) (GCOS, 2011).
Note that on the fallow areas or bare soils, retrievals have a rather
high relative uncertainty. By applying a threshold those more
uncertain retrievals can be masked out. Hence, uncertainty maps
can function as a spatial mask that enables displaying only pixels
with a high certainty.

Finally, the LAI map as generated by LUT-based inversion is
shown in Fig. 7. The same circular fields can be observed, though
in general a much more homogeneous map is generated, partic-
ularly over the non-irrigated areas (cf. Fig. 7). It may however
not be a surprise that the inversion approach faced difficulties
over non-vegetated areas since the LUT was only prepared by
1 For interpretation of color in Fig. 6, the reader is referred to the web version of
this article.
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the vegetation model PROSAIL. Uncertainty indicators were
obtained through mapping of residues in the spectral space.
The residues indicate the distance between the spectral observa-
tion and the best spectral simulation found in the LUT (here,
mean of multiple solutions). The smaller the residue the better
the achieved match, and thus confidence of the retrieval.
Interestingly, this map shows much more spatial variation than
the LAI retrievals, and resembles closely the VH-GPR uncertainty
map. The irrigated, green areas were again retrieved with high
confidence, while the bare soils and fallow lands were retrieved
with a high uncertainty.
6. Discussion

The upcoming Sentinel-2 (S2) missions open opportunities to
implement novel retrieval algorithms in operational processing
chains. Of prime interest are accurate, fast, robust, and sufficiently
flexible retrieval algorithms that make full use of the new S2 MSI
bands. In Verrelst et al. (this issue) qualitative features of paramet-
ric, non-parametric, physical and hybrid methods have been eval-
uated. In this paper we employed a systematic and quantitative
evaluation study of these methods with respect to retrieval accu-
racy and processing speed. This was enabled by using the same
S2 band settings, retrievable variable (LAI) and a validation dataset
that spans a diversity of crop types. In a related study (Verrelst
et al., 2012b) the trade-off between gain in spectral information
at the expense of spatial detail for the different S2 configurations
(10, 20 and 60 m) has been investigated. Such varying spatial res-
olution was not considered in this study.
estimation using parametric, non-parametric and physical retrieval meth-
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Fig. 7. LAI map (mean estimates; l) (left), associated residues (right) as generated
by the best-performing LUT-based inversion scheme (see Table 7).
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The greatest strength of parametric methods, such as vegetation
indices, is their arithmetic simplicity, which leads to very fast pro-
cessing and mapping speeds. Concomitantly, this simplicity has its
limitations (see Verrelst et al. (this issue)). As demonstrated here,
these boil down to a limited predictive performance. The best
two-band index resulted into a R2

CV of 0.74. In fact, when multiple
bands are available there is no reason to limit to two-band indices.
For instance, it was demonstrated that three-band indices led to
improved performance (R2

CV of up to 0.82). At the same time,
although not examined here, it is to be expected that a systematic
analysis of indices based on four or more bands will lead to further
improvements. For instance, S2 enables 26,845 different four-band
combinations.

To put the predictive power of vegetation indices in perspec-
tive with non-parametric methods, in an earlier study a multi-
tude of published as well as generic indices were compared
using Gaussian processes regression (GPR) (Verrelst et al.,
2012a). It was concluded that there is no need to calculate a
vegetation index prior to entering a GPR when the same bands
can be directly entered into the GPR. The individual bands
entered into GPR always led to superior results. Effectively,
when moving away from parametric to non-parametric meth-
ods, a selection of bands, formulation or fitting function no
longer has to be made. These algorithms have the capability
to directly exploit the full spectrum. Particularly the nonlinear
MLRAs proved to be very efficient. Prediction accuracies of R2

CV

up to 0.90 were achieved at a relatively fast processing speed,
i.e. in the order of seconds.
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From the tested MLRAs feedforward neural networks (NNs) are
probably the best-known and many space agencies and monitoring
services already make use of NNs for operational products
(Pozdnyakov et al., 2005; Schiller and Doerffer, 2005; Verger
et al., 2008, 2011). It remains nevertheless to be questioned
whether NNs are the most adequate algorithms to fulfill all these
requirements. In this paper, various alternative MLRAs appeared
to outperform NNs. Although more sophisticated types of NNs
exist (e.g. recurrent artificial NN or radial basis function NNs), feed-
forward NNs face two known disadvantages:

1. They require a relatively long processing time to train a model;
2. They behave relatively unpredictable when used with input

spectra deviating from those presented during the training
stage (Kimes et al., 1998; Atzberger, 2004; Baret and Buis,
2008).

Beyond NNs, the family of GPR was evaluated as a promising
regression algorithm in terms of processing speed and accuracy.
Being based on a Bayesian framework, GPR provides insight in
bands carrying relevant information and also in theoretical uncer-
tainty estimates. As demonstrated earlier in Verrelst et al. (2013a)
these uncertainties proved to be a useful tool for the assessment of
upscaling capabilities of bio-geophysical variables from airborne or
spaceborne platforms and their respective scales. Additionally, the
associated uncertainty estimates also provide information on the
success of transporting a locally trained model to other sites and/or
observation conditions (Verrelst et al., 2013b). On the other hand,
theoretical uncertainties are not intended to replace true accuracy
estimates of the biophysical parameter products but instead pro-
vide complementary information. Physical accuracy estimates are
mandatory and should be provided using comprehensive valida-
tion datasets collected on various sites, such as those coordinated
by the Committee on Earth Observation Satellites (CEOS) Land
Product Validation (LPV) community (Morisette et al., 2006).

When moving from statistical towards physical retrieval meth-
ods, the evaluation of various cost functions and regularization
options lead to identified inversion strategies with best accuracies
in terms of R2 in the order of 0.74. These accuracies are below those
of statistical methods.

It should be emphasized that inversion relies on simulated data
with a turbid medium RTM as boundary condition (i.e. PROSAIL).
Geometric RTMs have not been considered in this paper. The vali-
dation dataset included row crops such as maize, potatoes, onions
and vineyards. In related works (Darvishzadeh et al., 2008; Richter
et al., 2009) it was concluded that PROSAIL fails to invert for a
multi-species canopy covering row crops. Moreover, various types
of uncertainties have been identified leading to suboptimal retrie-
vals with respect to model usage (e.g., 1 D vs. 3 D models),
parametrization and validation data (Combal et al., 2003).
Suggestions for improvements typically refer to the addition of
prior information at the level of individual parcels (e.g.
Atzberger, 2004; Combal et al., 2003; Knyazikhin et al., 1998;
Meroni et al., 2004; Richter et al., 2009; Verrelst et al., 2012c).
On the other hand, while such strategies could be beneficial for
dedicated sites, site-specific information is usually unavailable
for larger areas in an operational context. The applied regulariza-
tion options yield inversion schemes easily applicable over full sce-
nes that cover heterogeneous canopy surfaces. Performance gain is
typically reached in combination with the application of a noise
component and relying on the mean of multiple best solutions
(Rivera et al., 2013; Verrelst et al., 2014). In a recent related study
by Atzberger et al. (2015), however, a similar exercise was
employed where LUT-based inversion was compared against vege-
tation indices and hybrid methods. There it was concluded that
estimation using parametric, non-parametric and physical retrieval meth-
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inversion approaches possess several advantages such as good
accuracy and being generic. Higher accuracies were obtained,
probably because of spending more efforts on LUT configuration,
using a larger LUT size (100,000 entries) and a band selection strat-
egy. At the same time also the drawbacks were addressed, i.e. the
need for an appropriate RTM, information for model parameteriza-
tion, computing skills and computational resources.

As with GPR, an advantage of LUT-based inversion is the deliv-
ery of uncertainty estimates. Interestingly, while the LUT-based
uncertainty estimates are obtained through different mechanisms,
the inversion uncertainty indicators show a spatial trend consis-
tent with that of GPR uncertainties. For the RTM inversion, pixels
of vegetated surfaces match closely with the simulated reflectance
database, while pixels of non-vegetated surfaces face more difficul-
ties. Two reasons can be identified for this discrepancy: (1) The
inversion scheme is optimized against validation data, exclusively
collected for vegetated areas. (2) PROSAIL is a canopy reflectance
model and thus only able to detect variations in vegetation proper-
ties. Consequently, a generated LUT and the final inversion scheme
are not optimized to detect variations in fallow and bare soil lands.
For retrievals on imagery with these types of land cover, there is a
requirement to regulate the inversion procedure both for vegetated
as well as non-vegetated targets. In practice, this requires extend-
ing the LUT with variables of soil profiles. This will, however, blow
up the LUT size exponentially and hence significantly slow down
processing speed. To overcome slow processing, alternative meth-
ods not requiring iteratively passing through a LUT, may be more
successful, especially in an operational context. Such methodolog-
ical approach can be found in the family of hybrid methods
(Verrelst et al., this issue).

6.1. Towards a new generation of hybrid methods

Hybrid models exploit the generic properties of physically-based
methods combined with the flexibility and computational efficiency
of MLRA methods. The basic concept is to apply inverse mapping
with a non-parametric model trained with simulated data generated
with RTMs. Similarly as in LUT-based inversion, an RTM is used in
direct mode to build the LUT representing a broad set of canopy real-
izations. Whereas a LUT approach seeks for a simulated spectrum as
close as possible to the measured one, the hybrid approach uses all
available data to train a MLRA. An important research question in
this respect is how well the novel type of MLRAs performs, when
fed with artificial spectra generated by an RT model.

Though hybrid strategies traditionally rely on the application of
an NN, a few examples of more novel MLRAs are encountered in
the scientific literature. Durbha et al. (2007) retrieved LAI from
MISR data using a support vector regression (SVR) model trained
with PROSAIL data. The same strategy was recently applied to esti-
mate LAI from a HJ-CCD image (Pan et al., 2013). Doktor et al.
(2014) used a PROSAIL dataset to train a random forest model to
predict LAI and LCC. While some of the MLRA methods elicit
advantages compared to NN structures (e.g. the models in a
Bayesian framework), they are nonetheless still experimental and
none of them have made it to operational applications yet.

Initial efforts in facilitating this approach have already been
undertaken by implementing a MLRA module into the ARTMO
toolbox, which consists of a suite (toolbox) of RTMs accessible by
one GUI (Verrelst et al., 2012c). As such, MLRA models can be auto-
matically developed with LUTs based on simulated spectra and
their corresponding input parameters (e.g. LAI). Moreover,
ARTMO allows to customize retrieval methods per land cover type.
It is well understood that the models here optimized for croplands
may not be the same ones as when optimizing retrieval algorithms
for more heterogeneous land cover types such as natural vegeta-
tion or forest. Therefore, when having a land cover map available,
Please cite this article in press as: Verrelst, J., et al. Experimental Sentinel-2 LAI
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ideally retrieval strategies should be customized per land cover
type. At a global scale, LAI retrieval algorithms can be configured
per biome or plant functional type, as is currently done for the
MODIS LAI product (Myneni et al., 2002; Yang et al., 2006).

It should nonetheless be noted that, while novel types of MLRAs
such as GPR are successful for small training datasets (e.g. <2000
samples), their computational load impedes the use of large data-
sets. This limitation has to be resolved when aiming at developing
generic models for global applications. For instance, alternative
(sparse) versions of GPR have been proposed that can cope with
handling large scale datasets. Greedy algorithms in active learning
settings can also be an alternative. For example, GPRs trained with
different cross-validation sub-sampling provide a ranked list of the
most informative spectra that can be used to generate a final
model. Computationally lighter models such as KRR are able to
cope better with large datasets. Forthcoming research will move
in these directions and may ultimately reach a robust and generic
retrieval scheme. A follow-up contribution will be dedicated to
these novel hybrid schemes by evaluating MLRAs that are carefully
trained (e.g. through active learning) with RTM data.

7. Conclusions

In preparation of the forthcoming availability of Sentinel-2 (S2)
imagery, a systematic comparison of a multitude of parametric,
non-parametric and physically-based retrieval methods using sim-
ulated S2 data has been performed. An experimental field dataset
of biophysical data, collected at the agricultural site Barrax in
Spain, was used to evaluate various retrieval methods on its ability
to estimate leaf area index (LAI). This led to the following main
findings:

Regarding parametric regression, there is no reason to believe
that the widely used two-band indices are the optimal ones. The
best performing index was a three-band index according to
ðqa � qb � qcÞ=ðqa þ qb þ qcÞ with its most sensitive bands in the
green (560 nm) and the SWIR (1610, 2190 nm). Relatively accurate
cross-validated performances for the validation points were
reached (R2

CV : 0.82; RMSECV : 0.62). However, saturation of LAI does
still occur for LAI values above 5. The main strength of using spec-
tral indices is that LAI mapping proceeded extremely fast. A limita-
tion of parametric regression is that uncertainty estimates are not
provided.

From the 11 tested non-parametric regression methods, the
family of kernel machine learning regression algorithms performed
optimally. The best performing algorithm belonged to the family of
Gaussian processes regression (GPR) (R2

CV : 0.90; RMSECV : 0.44). The
algorithm functions within a Bayesian framework and provides
probabilistic outputs, i.e. mean estimates and associated uncer-
tainty intervals. Also kernel ridge regression (KRR) delivered excel-
lent cross-validated accuracies (R2

CV : 0.90; RMSECV : 0.45).
Additionally, KRR was extremely fast in developing a model and
processing an image. Conversely, the widely used partial least
squares regression (PLSR) and neural networks (NN) were not per-
forming optimally. Moreover, NN was rather slow when develop-
ing a model. Hence, it is recommended to replace these
algorithms by more powerful ones.

LUT-based RTM inversion proved to be more challenging. First,
an adequate RTM had to be chosen and a LUT created by
parametrization of the input variables and boundary conditions.
Each decision taken may impact the inversion performance.
Various cost functions and regularization options were evaluated.
Particularly the insertion of noise to account for uncertainties
linked to measurements and models, improved the inversion pro-
cess. Despite the optimization of the inversion process, the best
performances were not better than an R2 of 0.74 (RMSECV : 0.80).
estimation using parametric, non-parametric and physical retrieval meth-
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The inversion procedure encountered difficulties with: (1) LAI
overestimation for sparse vegetation and (2) LAI underestimation
for dense vegetation. The first problem may be due to the lack of
variability in used soil spectral profiles. The second problem is
most probably due to saturation effects. The generation of LAI
maps using LUT-based inversions was executed considerably
slower than with the statistical algorithms (for example about 50
times slower than with GPR). This is due to the per-pixel iterative
processing of the LUT for inversion purposes. An advantage is that
retrieval uncertainty on estimates is provided through residues.

Comparing the three families of retrieval methods, it can be
concluded that: (1) non-parametric methods, especially the kernel
MLRAs, yielded the most accurate results and (2) parametric meth-
ods processed imagery the fastest for a vegetation bio-geophysical
variable (LAI in this paper). Nevertheless, non-parametric methods
processed imagery slower just in the order of seconds.
Concomitantly, some MLRAs (family of GPR) provide uncertainty
on the estimates. As a conclusion of this paper, given the availabil-
ity of a (rich) field dataset, it is suggested that the family of
kernel-based MLRAs (e.g. GPR) are the most promising algorithms
when it comes to accurate and fast image processing for the map-
ping of vegetation bio-geophysical characteristics.
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