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Forthcoming superspectral satellite missions dedicated to land monitoring, as well as planned imaging
spectrometers, will unleash an unprecedented data stream. The processing requirements for such large
data streams involve processing techniques enabling the spatio-temporally explicit quantification of veg-
etation properties. Typically retrieval must be accurate, robust and fast. Hence, there is a strict require-
ment to identify next-generation bio-geophysical variable retrieval algorithms which can be molded into
an operational processing chain. This paper offers a review of state-of-the-art retrieval methods for quan-
titative terrestrial bio-geophysical variable extraction using optical remote sensing imagery. We can cat-
egorize these methods into (1) parametric regression, (2) non-parametric regression, (3) physically-based
and (4) hybrid methods. Hybrid methods combine generic capabilities of physically-based methods with
flexible and computationally efficient methods, typically non-parametric regression methods. A review of
the theoretical basis of all these methods is given first and followed by published applications. This paper
focusses on: (1) retrievability of bio-geophysical variables, (2) ability to generate multiple outputs, (3)
possibilities for model transparency description, (4) mapping speed, and (5) possibilities for uncertainty
retrieval. Finally, the prospects of implementing these methods into future processing chains for opera-
tional retrieval of vegetation properties are presented and discussed.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Vegetation bio-geophysical variable extraction, quantitatively
retrieved and spatio-temporally explicit, is required in a variety
of ecological and agricultural applications. Earth observation satel-
lites in the optical domain enable the retrieval and monitoring of
plant bio-geophysical variables (Moulin et al., 1998; Dorigo et al.,
2007). The forthcoming super-spectral ‘Copernicus’ Sentinel-2
(Drusch et al., 2012) and Sentinel-3 missions (Donlon et al.,
2012), as well as the planned EnMAP (Stuffler et al., 2007),
HyspIRI (Roberts et al., 2012), PRISMA (Labate et al., 2009) and
ESA’s candidate FLEX (Kraft et al., 2012) imaging spectrometer mis-
sions will produce large data streams for land monitoring, which
will soon become available to a diverse user community (Berger
et al., 2012; Malenovsky et al., 2012). This vast data stream
requires enhanced processing techniques that are accurate, robust
and fast. The last few decades witnessed a variety of retrieval
methods for vegetation attribute extraction coming into existence.
Only a few made it to the status of genuine operational processing
chain. Many others remained in an experimental state.

This paper provides a qualitative review of recently developed
methodologies to estimate vegetation properties based on optical
remote sensing (RS), covering the visible to shortwave infrared
(SWIR) spectral region. By nature, bio-geophysical variables are con-
tinuous. Hence, methods which yield per-pixel estimations will be
discussed, and which are potentially applicable in highly
automated processing chains. Quantification of surface bio-
geophysical variables with optical RS always relies on a model,
enabling the interpretation of spectral observations and their trans-
lation into a surface bio-geophysical variable. Statistically, this boils
down to a regression problem (Fernandes and Leblanc, 2005).
Bio-geophysical variable retrievals, as described in terrestrial RS lit-
erature, are typically grouped in two categories: (1) the statistical (or
variable-driven) category; and (2) the physical (or radiometric
review.
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data-driven) category (Baret and Buis, 2008). Over the last decade,
however, both methodological categories expanded into subcate-
gories and combinations thereof. Exemplary is the increasing num-
ber of elements of both categories which have been integrated into
hybrid approaches. Hence, a systematic categorization is a strong
requirement. Retrieval methods can be binned in the following four
methodological categories:

(1) Parametric regression methods: Parametric methods assume
an explicit relationship between spectral observations and
a specific bio-geophysical variable. Thus, explicit parameter-
ized expressions are built, typically by relying on statistical
or physical knowledge of the variable and the spectral
response. Typically a band arithmetic formulation is defined
(e.g., a vegetation index) and then linked to the variable of
interest based on a fitting function.

(2) Non-parametric regression methods: Non-parametric meth-
ods directly define regression functions according to infor-
mation from RS data. Hence, in contrast to parametric
regression methods, a non-explicit choice is to be made on
spectral band relationships, transformation(s) or fitting
functions. These last ones can further be split into linear or
non-linear regression methods.

(3) Physically-based methods: Physically-based algorithms are
applications of physical laws establishing cause-effect rela-
tionships. Model variables are inferred based on specific
knowledge, typically obtained with radiative transfer
functions.

(4) Hybrid methods: A hybrid-method combines elements of
non-parametric statistics and physically-based methods.
Hybrid models make use of the generic properties of
physically-based methods combined with the flexibility
and computational efficiency of non-parametric non-linear
regression methods.

This review paper aims to (1) provide a systematic overview
of state-of-the-art bio-geophysical variable retrieval methods,
and (2) evaluate strengths and weaknesses of these methods for
operational application. This paper focuses on methods estab-
lished for vegetation variable retrieval, typically leaf area index
(LAI) and leaf chlorophyll content (LCC), which are very fre-
quently applied terrestrial bio-geophysical products based on
optical RS (Song, 2013). Yet, in principle the methods presented
are applicable to the retrieval of other vegetation properties as
well. For an overview of retrievable leaf biochemical and canopy
bio-geophysical variables from superspectral or hyperspectral
sensors we refer to Ustin and Gamon (2010) and Malenovsky
et al. (2012). The four categories mentioned above will be
reviewed in the next sections. For each of the categories, their
general properties will be outlined and their use in mapping
applications reviewed. Finally, the most important features of
these categories will be discussed. The increasing occurrence of
non-parametric methods in the recent literature makes us focus
strongly on them. The review paper emphasizes on methods
directly applicable to a remote sensing image. In principle, how-
ever, these methods can also be applied for time series analysis
or be implemented in larger assimilation schemes. Also, the large
majority of reviewed retrieval methods assumes the availability
of surface reflectance, which implies an atmospheric correction
prior to application of proposed methods (see Bassani et al.
(2010) and Ruddick et al. (2014) for a review on atmospheric cor-
rection methods). A conclusion section will finalize this paper
with recommendations fostering powerful bio-geophysical vari-
able retrieval strategies that are applicable in next-generation
operational processing schemes.
Please cite this article in press as: Verrelst, J., et al. Optical remote sensing and t
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2. Parametric regression methods

Parametric regression methods explicitly determine parameter-
ized expressions relating a limited number of spectral bands with a
bio-geophysical variable of interest. This family of approaches has
long been most popular in optical RS. These methods make use of
subtle spectral features to reduce undesired effects, typically those
related to variations of other leaf or canopy properties, soil reflec-
tance, sun and view geometry and atmospheric composition. The
principle entails mathematically defined combinations of spectral
bands regressed with a bio-geophysical variable using a fitting
function. The fitted function can be either linear or non-linear,
e.g. an exponential, power, or polynomial fitting function. A
scheme of a generalized parametric regression procedure is illus-
trated in Fig. 1.
2.1. Discrete spectral band approaches: vegetation indices

Parametric statistical approaches based on vegetation indices
(VIs) are by far the oldest, most studied and largest group of vari-
able estimation approaches. They are also the simplest ones. VIs
are defined to enhance spectral features sensitive to a vegetation
property while reducing disturbance by combining some spectral
bands into a VI (Glenn et al., 2008; Clevers, 2014). The VI methods
have been traditionally developed for sensors configured with only
a few (broad) spectral bands. It is beyond the scope of this work to
list all published VIs (see Le Maire et al., 2004, 2008, for an over-
view), though they can be categorized according to their mathe-
matical definition. Some popular VI formalizations are:

� Two-band VIs, encompassing the majority of VIs, e.g., the simple
ratio (SR) (Jordan, 1969), the normalized difference vegetation
index (NDVI) (Rouse et al., 1974), the photochemical reflectance
index (PRI) (Gamon et al., 1992), the optimized soil adjusted
vegetation index (OSAVI) (Rondeaux et al., 1996), the chloro-
phyll index (Gitelson et al., 2003).
� Three-band VIs with, e.g., the triangular VI (TVI) (Broge and

Leblanc, 2001), the modified chlorophyll absorption in reflec-
tance index (MCARI) (Daughtry et al., 2000), the transformed
CARI (TCARI) (Haboudane et al., 2002), the structure insensitive
pigment index (SIPI) (Penuelas et al., 1995).
� Four or more band VIs, which are typically a combination of two

VIs such as the TCARI/OSAVI (Haboudane et al., 2002).

The main advantage of VIs is their inherent simplicity. VI based
methods found their origin in the first applications of broadband
sensor satellites. Only a small set of spectral bands were available
at that time and computational power was limited. With the
advent of narrowband imaging spectrometers, with a few hundred
spectrally narrow bands, paths for new extraction approaches of RS
based information were developed. Optimized band information
extraction algorithms based on established index formulations
(e.g. simple ratio, normalized difference) were developed. By corre-
lating all possible band combinations according to two-band
indices, leading to 2D correlation matrices, it became feasible to
visually identify optimal band combinations (e.g., Thenkabail
et al., 2000; Le Maire et al., 2004, 2008; Mariotto et al., 2013;
Rivera et al., 2014b). The so-called optimized or generic VIs permit-
ted to select a ‘best performing index’. Nevertheless, when apply-
ing this technique in studies making use of narrowband
(hyperspectral) imaging, best performing identical spectral band
combinations have rarely been reported. This suggests that opti-
mized indices are strongly case specific (Gonsamo, 2011;
Heiskanen et al., 2013; Mariotto et al., 2013). Hence, narrowband
he retrieval of terrestrial vegetation bio-geophysical properties – A review.
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VIs can be successfully optimized for local applications, but seem
to lack generic capacity.

2.2. Parametric approaches based on quasi-continuous spectral band
configurations

Since a limited number of spectral bands is used, none of the
above cited VIs makes use of available information to its full extent
for quasi-continuous spectral datasets. This is a disadvantage when
using contiguous radiometric image information. Attempts to
improve full extraction of critical information from a
quasi-continuous signal led to the development of so-called shape
indices. These indices, listed below, extract shape related informa-
tion from atmospherically corrected spectral signatures for a speci-
fic spectral region. They are then correlated with a bio-geophysical
variable.

� Red-edge position (REP) calculations. Mathematically, the REP is
the position of a wavelength at the maximum of the first deriva-
tive of the reflectance spectrum in the red-edge region
(between 670 and 780 nm). The red-edge position is known to
be sensitive to bio-geophysical variable variations. On the one
hand it is sensitive to LCC, influencing the reflectance of vegeta-
tion in the visible part of the spectrum (Delegido et al., 2011).
On the other hand, it is sensitive to LAI, mainly influencing
the reflectance in the NIR (Delegido et al., 2013). Therefore,
REP related methods are typically used to derive canopy
chlorophyll content (CCC) – being the product of LAI and LCC
– (Clevers and Kooistra, 2012). Many approaches have been pro-
posed to use this region as a sensitive indicator, including: (1)
high-order curve fitting (Baret et al., 1992; Broge and Leblanc,
2001; Clevers et al., 2002); (2) inverted Gaussian models
(Miller et al., 1990); (3) linear interpolation and extrapolation
(Guyot et al., 1988); (4) Lagrangian interpolation (Dawson and
Curran, 1998), and (5) Rational function application
(Baranoski and Rokne, 2005).
� Integration-based indices. Some authors proposed to calculate

finite integrals for specific spectral regions, typically covering
a part of the visible and the red-edge region, into a (normalized)
index (Broge and Leblanc, 2001; Oppelt and Mauser, 2004;
Mutanga et al., 2005; Malenovský et al., 2006; Delegido et al.,
2010).
� Derivative-based indices. Instead of integration, the derivative of

a spectral region can be calculated and transformed into an
index. Various approaches have been published (Sims and
Gamon, 2002; Penuelas et al., 1994; Elvidge and Chen, 1995;
Zarco-Tejada et al., 2002). A systematic evaluation of first
derivative-based indices was performed by Le Maire et al.
(2004). These authors made a comparison between
derivative-based and conventional indices using the leaf model
PROSPECT. They concluded that derivative-based indices are
not necessarily better than conventional and properly elabo-
rated indices.
Please cite this article in press as: Verrelst, J., et al. Optical remote sensing and t
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� Continuum removal. Whereas the techniques above focus on a
specific spectral region, continuum removal is typically applied
over the full spectrum. This technique normalizes reflectance
spectra allowing to compare individual absorption features
with a common baseline (Clark and Roush, 1984). The contin-
uum removal transformation enhances and standardizes the
specific absorption features related to vegetation properties.
Applications of the method in vegetation science are maps of
chlorophyll (Broge and Leblanc, 2001), nitrogen content
(Mutanga and Skidmore, 2004, 2007; Schlerf et al., 2010;
Mitchell et al., 2012), foliar water condition (Stimson et al.,
2005) and grassland biomass (Cho et al., 2007).

2.3. Experimental and generic design of parametric methods: inherent
limitations

The aforementioned methods share the property of being gen-
eralized as a regression function calibrated with in situ experimen-
tal data. Due to their empirical nature, these regression models are
developed under various experimental setups, at different scales
(leaf, plant, canopy), for different sensors (e.g., broadband vs. nar-
rowband) and under different environmental conditions.
Consequently, empirical methods cannot be translated into other
observation configurations without losing predictive power. Their
performance can be hampered by disturbing factors, e.g., differ-
ences in surface properties and sun and viewing geometry
(Verrelst et al., 2008, 2010). Hence, while being successful in the
extraction of vegetation variables designed for local conditions,
they are of limited applicability in a broader operational setting.
The lack of a generic capacity has been partly remediated by opti-
mizing VIs and their associated regression models through the use
of large datasets generated by leaf and canopy radiative transfer
models (RTMs) (Ceccato et al., 2002; Zarco-Tejada et al., 2001,
2005; Haboudane et al., 2004; Le Maire et al., 2004, 2008).
Nevertheless, it is still problematic that simulated, transformed
data originating from a few discrete bands do not fully reflect the
complexity of real world observation conditions. Reducing simu-
lated datasets into simple VI formulations leads to remaining spec-
tral information left unexploited. Hence, the following aspects
should be considered:

(i) Band selection. Typically, parametric models are mathemati-
cal functions based on discrete bands, or at best a subset of
full spectral information. How do we evaluate with high
enough accuracy whether the most sensitive spectral bands
– with respect to bio-geophysical variable retrieval – have
been selected? This question is especially relevant in view
of variable retrieval from hyperspectral datasets.

(ii) Formulation. Transformation of spectral information accord-
ing to a mathematical expression should lead to an optimal
sensitivity of the spectral signal with respect to the variable
of interest. Typically, established algorithms like the NDVI
type of indices are used. Here again the question must be
he retrieval of terrestrial vegetation bio-geophysical properties – A review.
rs.2015.05.005
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posed as how to assess whether an applied formulation is
the most accurate one with respect to bio-geophysical vari-
able retrieval.

(iii) Fitting function. A regression function expressing the rela-
tionship between a VI and a bio-geophysical variable is
selected. Regression modeling is typically an exercise of least
squares fitting. Here as well, the question emerges whether a
selected fitting function is the most suitable one.

Consequently, it remains uncertain whether regression func-
tions are used optimally when applying an established parametric
approach (as published in the literature) to process RS imagery into
a bio-geophysical product. Moreover, since parametric approaches
are based on relatively simple mathematical definitions – as
opposed to more advanced methods – uncertainty intervals for
the retrieval on a per-pixel basis are not provided. In absence of
an uncertainty estimate, the performance of a parametric regres-
sion method is hard to judge in an operational environment.
Accordingly, parametric regression methods are inadequate to
deliver global or operational bio-geophysical products. A strength
and weakness analysis of parametric regression methods is listed
in Table 1.

3. Non-parametric regression methods

Optimization of non-parametric regression methods makes use
of a learning phase based on training data. The model includes
weights (coefficients) adjusted to minimize the estimation error
of the variables extracted. An important advantage of the more
advanced methods is the use of full-spectrum information. In con-
trast to parametric methods, an explicit selection of spectral bands
or transformations is not required. A flexible model is able to com-
bine different data structure features in a non-linear way, conform
requirements. However, model definition with a too flexible
Table 1
Strengths and weaknesses of parametric regression methods in view of the
operational mapping of vegetation attributes.

Strengths Weaknesses

� Simple and comprehensive
regression models; limited
knowledge of the user required
� Fast processing
� Computationally inexpensive

� Makes poor use of available infor-
mation within the spectral obser-
vation interval. At most a
spectral subset is used. Therefore,
these methods tend to be more
noise-sensitive as compared to
full-spectrum ones (Atzberger
et al., 2010)
� Parametric regression defines

boundary conditions based on
the level of selected bands, formu-
lations and regression function
� Tendency for overspecialization

(i.e. models are specific to the
dataset used for model
characterization)
� Sensor-specific models (i.e. a

direct transfer to other sensors is
usually not possible)
� A parametric function accounts

for one variable at a time
� There is only a limited portability

with respect to different measure-
ment conditions or sensor charac-
teristics (Baret and Guyot, 1991)
� Uncertainty estimates are not pro-

vided. Hence the quality of the
output maps remains unknown
� Need for collecting field data (i.e.

measurement campaigns are
necessary)

Please cite this article in press as: Verrelst, J., et al. Optical remote sensing and t
ISPRS J. Photogram. Remote Sensing (2015), http://dx.doi.org/10.1016/j.isprsjp
capacity may incur the problem of over-fitting the training dataset.
To avoid this pitfall, model weights are defined by jointly minimiz-
ing the training set approximation error while limiting model com-
plexity. A scheme of a generalized non-parametric regression
procedure is illustrated in Fig. 2. This section only reviews experi-
mental mapping applications based on field data. The section is
subdivided into linear and non-linear non-parametric models.

3.1. Linear non-parametric models

A linear non-parametric regression model is usually chosen
because of optimal performance and simplicity. It may, however
not be the best choice when dealing with complex datasets
exhibiting non-linear attribute relationships, as is often the case
with multi- or hyperspectral imagery. Canonical linear regression
methods typically rely on the estimation of co-variances. This
can be problematic when input data quantity is limited with
respect to the dimensionality of the dataset. This is known as the
‘curse of dimensionality’ (Hughes, 1968). To alleviate co-linearity,
often linear methods are applied after a dimensionality reduction.
In what follows, a number of classical linear approaches in RS
applications are reviewed:

� Stepwise multiple linear regression (SMLR) recursively applies
multiple regression a number of times. Each step removes a
variable eliciting the weakest correlation. At the end of the
recursive process, a variable set is obtained that is optimally
explaining the RS data distribution.
� Principal components regression (PCR) is a regression analysis

method based on principal components analysis (PCA) estimat-
ing regression coefficients (Wold et al., 1987). Solutions from
PCR are generated performing linear regression of the most rel-
evant components (called scores) obtained after applying PCA.
� Partial least squares regression (PLSR) tackles the co-linearity

problem differently than PCR (Geladi and Kowalsi, 1986).
Applying PCR, regression is performed using PCA scores. These
projections are obtained using only input patterns, not outputs.
In contrast, PLSR builds the regression model on projections
obtained using the partial least squares (PLS) approach. It elicits
the directions of maximum input–output cross-covariance.
Therefore, PLSR takes both input patterns and output variables
into account.
� Ridge (regulated) regression (RR). As in PCR and PLSR, ridge

regression is a linear least squares regression method, devel-
oped to deal with co-linearity (Hoerl and Kennard, 1970). RR
deals with it by allowing a degree of bias in the estimates.
Therefore, it adds a small positive value k to the diagonal ele-
ments of the input data covariance matrix. It can be shown that
RR obtains biased estimates compared to standard linear
regression, but with a lower variance (Hastie et al., 2009).
Hence, RR requires finding an optimal value for k. Typically,
v-fold cross validation is used to reach near optimal values.
� The least absolute shrinkage and selection operator (LASSO) is a

regression method penalizing the regression coefficients abso-
lute size (Tibshirani, 1996). By this penalization some of the
variable estimates may be exactly zero. The larger the penalty,
the more the estimates will tend toward zero. This is a conve-
nient approach to automatically perform variable (band) selec-
tion, or to deal with correlated predictors.

SMLR is often used for the selection of spectral bands carrying
relevant information related to vegetation attributes (Fourty and
Baret, 1997; Yoder and Pettigrew-Crosby, 1995; Dorigo et al.,
2007). Lately, SMLR has been compared with alternative regression
techniques. For instance, Darvishzadeh et al. (2008a) found that
PLSR yielded better results when estimating LAI and leaf and
he retrieval of terrestrial vegetation bio-geophysical properties – A review.
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canopy chlorophyll content. Ramoelo et al. (2011) applied both
regression algorithms to estimate foliar nitrogen and phosphorus
in combination with continuum removal using field spectrometry.
SMLR and PLSR have been found performing comparably when
estimating soil properties (Bartholomeus et al., 2012). By estimat-
ing canopy nitrogen, Miphokasap et al. (2012) demonstrated that
the model developed by SMLR yielded a higher correlation coeffi-
cient with nitrogen content than model applications based on nar-
rowband VIs, suggesting that non-parametric (full-spectrum)
models tend to be more powerful than parametric models.

PLSR is one of the most widely applied non-parametric
approaches to map vegetation properties. For instance, Coops
et al. (2003), Huang et al. (2004) and van der Heijden et al.
(2007) applied PLSR to estimate foliage nitrogen content with
hyperspectral data. Gianelle and Guastella (2007) used PLSR to
derive grassland phytomass and its total (percentage) nitrogen
content with hyperspectral data. Cho et al. (2007) and Im et al.
(2009) applied PLSR to estimate bio-geophysical properties of
crops (LAI, stem biomass and leaf nutrient concentrations), while
Wolter et al. (2009) applied PLS to map forest structural variables
(canopy diameter, tree height, crown closure). Hansen et al. (2002)
and Ye et al. (2007, 2008) applied PLSR for yield prediction pur-
poses. Mapping speed and availability in common imaging pro-
cessing packages may explain the popularity of PLSR.

So far, RR and LASSO techniques hardly made it to applications
for vegetation properties mapping. However, a few sparse exam-
ples are worth mentioning. Addink et al. (2007) used RR to map
LAI and biomass. In another study both techniques were compared
with PLSR (Lazaridis et al., 2011) and also with random forests
(Zandler et al., 2015). Interestingly, RR and LASSO appeared to per-
form better than the other methods at least in general. Hence, it is
remarkable that these techniques have not been applied more
often. None of these linear non-parametric methods has even been
incorporated in operational or global retrieval schemes. On the
other hand, the linear methods are increasingly replaced by their
non-linear counterparts. For instance, RR has been replaced by ker-
nel ridge regression (KRR) (Suykens and Vandewalle, 1999), and
PLS has been redesigned into a kernel version, i.e. the KPLSR, which
proved to be more powerful than traditional PLSR for chlorophyll
concentration estimation (Arenas-García and Camps-Valls, 2008).
In Section 3.2.3 we will address the family of kernel methods.

3.2. Non-linear non-parametric models

For the last few decades, a diversity of non-linear,
non-parametric models has been developed, going beyond linear
transformation techniques. These methods, also referred to as
machine learning regression algorithms (MLRAs), apply
non-linear transformations. They assume that relationships
between image features are non-explicit. An important method-
ological advantage is the capability to capture non-linear relation-
ships of image features without explicitly knowing the underlying
Please cite this article in press as: Verrelst, J., et al. Optical remote sensing and t
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data distribution. Hence, they are developed without assuming a
particular probability density distribution; therefore, they work
well with different data types. They also offer the possibility to
incorporate a priori knowledge and they have the flexibility to
enable the combination of different data types into the analysis.

3.2.1. Decision tree learning
Decision tree learning is based on decision tree predictive mod-

eling. A decision tree is based on a set of hierarchical connected
nodes. Each node represents a linear decision based on a specific
input feature. A classical decision tree algorithm cannot cope with
strong non-linear input–output transfer functions. In that case, a
combination of decision trees can improve results. Two approaches
are available in this application field:

� Bagging decision trees are an early ensemble method based on
building multiple decision trees by iteratively replacing resam-
pled training data and voting for the decision trees leading to a
consensus prediction (Breiman, 1996).
� The Random Forests (RF) approach applies a set of decision trees

to improve prediction accuracy (Breiman, 2001).

Initially, only a few decision tree feasibility studies were pre-
sented in the scientific literature (e.g., Hansen et al., 2002; Im
et al., 2009, 2012; Viedma et al., 2012). Nonetheless, decision trees
are used more frequently in classification than in regression appli-
cations. Only lately the random forests approach gains popularity
in applications with mapping of a diverse range of vegetation attri-
butes e.g., biomass (Le Maire et al., 2011; Mutanga et al., 2012;
Adam et al., 2014; Vaglio Laurin et al., 2014), canopy cover
(Coulston et al., 2012; Gessner et al., 2013), LAI (Vuolo et al.,
2013) and canopy nitrogen (Li et al., 2014). These studies typically
demonstrate the higher efficiency of the random forests method
compared with the more conventional parametric and linear
non-parametric methods.

3.2.2. Artificial neural networks (ANNs)
Artificial neural networks (ANNs) in their basic form are essen-

tially fully connected layered structures of artificial neurons (AN).
An AN is basically a pointwise non-linear function (e.g., a sigmoid
or Gaussian function) applied to the output of a linear regression.
ANs with different neural layers are interconnected with weighted
links. Hence, in case only one AN is used in an ANN, results will be
similar (or only slightly better) than those obtained with linear
regression (LR). An ANN is formally defined by three structural
entities: (1) The interconnection pattern between the different
AN layers; (2) The learning process which updates the weights of
the interconnections, and (3) The activation function that converts
the ANs weighted input with its output activation.

The most common ANN structure is a feed-forward ANN, where
information flows in a unidirectional forward mode. From the
input nodes, data pass hidden nodes (if any) toward the output
he retrieval of terrestrial vegetation bio-geophysical properties – A review.
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nodes. No cycling or looping is defined in this type of ANN. This
ANN type focuses on training with experimental (field) data.
Feed-forward ANNs have a long track record in mapping vegetation
properties based on RS data (Kavzoglu and Mather, 2003). Since the
mid-90s ANNs have been applied for vegetation attribute mapping
(Jin and Liu, 1997; Paruelo and Tomasel, 1997; Francl and
Panigrahi, 1997; Kimes et al., 1999). The superiority of ANNs com-
pared to linear models (e.g. those based on VIs) has been demon-
strated repeatedly in experimental studies. This boosted the
popularity of the method. Actually, ANNs became the most popular
MLRA during the last decade leading to multiple applications in
experimental and operational hybrid settings (see Section 5).
Successful applications include the estimation of foliage nitrogen
concentrations (Huang et al., 2004) and LAI (Jensen et al., 2012)
from hyperspectral data. In both cited studies, the higher efficiency
of the ANN approach compared with other linear non-parametric
models (e.g. PLSR) has been demonstrated.

Alternative powerful, yet more complex, structures involve
recurrent artificial neural networks (RANNs) and radial basis func-
tion neural networks (RBFNN), which only recently went into
application to map vegetation properties (Chai et al., 2012; Li
et al., 2013; Wang et al., 2013). Due to the complexity of ANNs,
the incentive increasingly is to replace them in many applications
with alternative, simpler to train MLRAs. When compared with
kernel-based MLRAs (see Section 3.2.3), feed-forward ANNs per-
form with an unstable ‘modus operandi’, generating outliers and
ranging from excellent to poor performance (Verrelst et al.,
2012b). The problem of ANNs is that their performance is typically
determined by their design. Too few or too many layers and/or ANs
may significantly reduce their accuracy.

3.2.3. Kernel methods
Kernel methods in machine learning owe their name to the use

of kernel functions. Kernels quantify similarities between input
samples of a dataset (Shawe-Taylor and Cristianini, 2004).
Similarity reproduces a linear dot product (scalar) computed in a
possibly higher dimensional feature space, yet without ever com-
puting the data location in the feature space. For the last decade,
kernel methods were introduced in bio-geosciences and RS appli-
cations (Camps-Valls and Bruzzone, 2009). Its best known family
member is the ‘support vector machine’ (SVM) for data classifica-
tion. For regression and bio-geophysical variable retrieval, several
kernel-based algorithms have been developed. Among them are
support vector regression (SVR), relevance vector machines
(RVM), kernel ridge regression (KRR) and Gaussian processes
regression (GPR). These methods have recently been applied in
bio-geophysical variable estimation for land, ocean and atmo-
sphere applications (Camps-Valls and Bruzzone, 2009;
Gómez-Chova et al., 2011; Camps-Valls et al., 2011). Let us briefly
review the main features of these methods.

� Support vector machines (SVMs) are supervised learning models
with associated learning algorithms. They analyze data and per-
form pattern recognition and are applied in classification and
regression analysis as well. A support vector machine con-
structs a hyperplane or a set of hyperplanes in a high or even
infinite dimensional space. Intuitively, one expects a good sep-
aration by application of a hyperplane, eliciting the largest dis-
tance to the nearest training data point of any class (the
so-called functional margin). Generally, the larger the func-
tional margin, the lower the generalization error of the classi-
fier. A regression version of SVM was proposed by Vapnik
et al. (1997).
� Kernel ridge regression (KRR), also known as least squares sup-

port vector machines (LS-SVM), is a family of supervised learn-
ing methods for data analysis and pattern recognition. The KRR
Please cite this article in press as: Verrelst, J., et al. Optical remote sensing and t
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and in particular the LS-SVM are applicable in classification and
regression analysis. In their latest versions, solutions are found
solving a set of linear equations as opposed to solving a convex
quadratic programming problem for classical SVMs (Suykens
and Vandewalle, 1999).
� Relevance vector machines (RVM) are based on Bayesian infer-

ence to find parsimonious solutions for regression and classifi-
cation. The RVM has an identical functional layout as a
support vector machine, but it provides probabilistic outputs.
Compared with SVMs, the Bayesian formulation of the RVM
avoids sets of free variables for the SVM (usually requiring
cross-validation-based optimizations). However, RVMs typi-
cally provide much less support vectors than SVMs, which
may lead to unstable behaviour (Tipping, 2001).
� Gaussian processes regression (GPR) is based on Gaussian pro-

cesses (GPs), which generalize Gaussian probability distribu-
tions in a function’s space. A GP is stochastic since it describes
the properties of functions. As in Gaussian distributions, a GP
is described by its mean (which for GPs is a function) and
covariance (a kernel function) as well. This represents an
expected covariance between function values at a given point
(Rasmussen and Williams, 2006).

While SVMs have been introduced for classification purposes in
the mid-90s, only recently support vector regression (SVR) gained
popularity for the retrieval of continuous vegetation attributes. For
instance, Karimi et al. (2008) applied the SVR to estimate various
crop (physiological) variables (plant height, leaf nitrogen content,
and LCC) with hyperspectral data. The same approach was applied
by Yang et al. (2011b). They found that SVR performance was bet-
ter compared to linear non-parametric methods. Verrelst et al.
(2012b) compared SVR with more recent kernel-based methods
(KRR and GPR) to retrieve bio-geophysical variables (LAI, LCC and
vegetation cover) from simulated Sentinel-2 and Sentinel-3 data.
However, SVR did not really perform as the best approach. SVR
required considerably more computational training (time) than
the alternative regression algorithms. Mainly the number of free
hyperparameters to be tuned seemed to impact performance
reduction. Although this review is restricted to retrieval methods
applied to terrestrial surface variables, for RVM only one mapping
application has been identified being in the field of ocean chloro-
phyll content estimation. Camps-Valls et al. (2006) argue that
SVR entails deficiencies that can theoretically be alleviated by the
RVM. Results suggest that RVMs offer a good trade-off between
accuracy and solution sparsity, additionally becoming less sensi-
tive and dependent on the selection of free-of-tuning variables.
An innovative formulation of the RVM, incorporating prior knowl-
edge of the problem, were presented and tested. This led to more
exact results than with the standard RVM formulations, SVRs and
ANNs.

Of the emerging powerful kernel-based regression methods, KRR
is an interesting one due to its good performance. Wang et al. (2011)
compared KRR for LAI estimation with linear non-parametric meth-
ods (multiple linear regression and PLSR). They concluded that KRR
yielded the most accurate estimates. Peng et al. (2011) used KRR for
the detection of chlorophyll content using hyperspectral imagery.
KRR proved to be an efficient regression function estimator. In
Verrelst et al. (2012b), KRR performed similarly to other
kernel-based methods (SVR, GPR) while establishing its model con-
siderably faster within a moderate number of training cases.

Contrary to other methods, the training phase in GPR takes
place in a Bayesian framework. Verrelst et al. (2012a) compared
GPR with parametric methods based on established and generic
VIs. GPR not only outperformed parametric linear regression meth-
ods, but also offered interesting additional features: (1) an indica-
tion of band relevancy for each variable; (2) a weight for the most
he retrieval of terrestrial vegetation bio-geophysical properties – A review.
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Table 2
Strengths and weaknesses of non-parametric regression methods in view of the
operational mapping of vegetation attributes.

Strengths Weaknesses

� Full-spectrum methods. They
make use of the complete optical
spectral information
� Advanced, adaptive (non-linear)

models
� Methodologically accurate and a

robust performance is possible
� Some MLRAs cope well with data-

sets showing redundancy and
high noise levels
� Once trained, imagery can be pro-

cessed time efficiently
� Some of the non-parametric

methods (e.g. ANNs, decision
trees) can be trained with a high
number of samples
(typically > 1,000,000)
� Some MLRAs provide insight in

model development (e.g. GPR:
relevant bands; decision trees:
model structure)
� Some MLRAs provide multiple

outputs (e.g. PLRS, ANN, SVR,
GPR and KRR)
� Some MLRAs provide uncertainty

� Training can be computationally
very demanding
� Risk of generating over-compli-

cated models, hence their gener-
alization level being decreased.
Sensor-specific models (i.e. a
direct transfer to other sensors
is usually not possible)
� Some regression algorithms are

difficult (or even impossible) to
train with a high number of
samples
� Expert knowledge is required,

e.g. for tuning. However, tool-
boxes exist automating some of
the steps
� Most of the methods are consid-

ered black boxes
� Some regression algorithms elicit

instability with datasets having
statistics deviating from the
datasets used for training
� Need for collecting field data (i.e.

measurement campaigns are
necessary)
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relevant spectra contained in the training data set; and (3) proba-
bilistic outputs, i.e. a mean estimate and associated uncertainty
interval. These features go far beyond what is typically available
from parametric or non-parametric approaches. GPR has subse-
quently been compared with competitive MLRAs (SVR, KRR,
ANN). GPR not only slightly outperformed the other MLRAs, but
is also computationally more efficient since the generated models
were obtained considerably faster than SVR or ANN (but slower
compared to KRR) (Verrelst et al., 2012b). The associated uncer-
tainty estimates provide information on the success of transporting
a locally trained model to other sites and/or observation conditions
(Verrelst et al., 2013a, 2013b). Recently, Lazaro-Gredilla et al.
(2013) refined the GPR method further, proposing a
non-standard variable approximation allowing for accurate infer-
ences in signal-dependent noise scenarios. The so-called varia-
tional heteroscedastic GPR (VHGPR) appears to be an excellent
alternative for standard GPR. Meanwhile GPR has found its way
in more advanced vegetation trait estimations. Roelofsen et al.
(2014) applied GPR to map salinity, moisture and nutrient concen-
trations. These in turn were used as inputs for plant association
mapping. Nonetheless, GPR applications are still limited to local
settings described by relatively small training datasets. The chal-
lenge for the coming years is to foster a further implementation
of this methodology in operational processing schemes (see
Section 5).
intervals (e.g. GPR)
3.2.4. Bayesian networks
Bayesian networks (BNs) are a class of probabilistic models,

characterized by graphical structures representing information
on domains of uncertainty (Cooper and Herskovits, 1992). BNs
are structured using directed acyclic graphs. Each node in the
graph represents a random variable, while node edges connect
the probabilistic dependencies between variables. In contrast to
graphical models, which are based on uni-directional edges, this
approach is known as the Markov Random Fields methodology.
Results from Bayesian approaches not only demonstrate the pre-
dictive power of a Bayesian network, but also its explanatory
power (or uncertainty). Since the mid-2000’s, BNs have emerged
as powerful retrieval algorithms. Kalacska et al. (2005) used BNs
to estimate LAI using Landsat ETM imagery. Mustafa et al. (2011,
2012) used BNs to improve LAI estimates using MODIS and
ASTER imagery. Both papers conclude that BNs improve the esti-
mation accuracy for LAI by combining a forest growth model and
satellite imagery. A similar approach has been applied by Qu
et al. (2012) estimating LAI time series. Finally, Zhang et al.
(2012) demonstrated that BNs provide improved LAI estimates
compared to MODIS LAI standard product values. An overview of
the strengths and weaknesses of non-parametric regression meth-
ods are listed in Table 2. To the best of our knowledge, none of
these non-parametric methods based on experimental data has
been incorporated into operational or global retrieval schemes.
4. Physically-based models

Physically-based model inversion is based on physical laws and
established cause-effect relationships. Inferences on model vari-
ables are based on generally accepted knowledge embedded in
radiation transfer models (RTMs) and a set of RS image variables.
An extensive evaluation of the physical realism of RTMs is given
by ongoing Radiation Transfer Model Inter-comparisons (the
RAMI exercises) as conceptualized and organized by Pinty et al.
(2001, 2004) and Widlowski et al. (2007, 2013). The inversion of
a canopy RTM with actual (full-spectrum) RS data is considered
as a physically sound approach for the retrieval of
bio-geophysical variables of terrestrial surfaces because the
Please cite this article in press as: Verrelst, J., et al. Optical remote sensing and t
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approach is generic and therefore generally applicable (Dorigo
et al., 2007). Nevertheless, these approaches are not straightfor-
ward. First, an RTM has to be selected whereby a trade-off between
the realism and inversion possibility of the RTM has to be made.
Typically, complex models are more realistic, but they have many
variables and are therefore hard to invert, whereas simpler models
may be less realistic but easier to invert. Secondly, according to the
Hadamard postulates, RTMs are invertible only when a solution is
unique and dependent – in a continuous mode – on the variables to
be extracted. Unfortunately, this boundary condition is often not
met. The inversion of canopy RTMs is mostly under-determined
and ill-posed. The number of unknowns is typically much larger
than the number of independent observations. This makes
physically-based retrievals of vegetation properties a challenging
task. Several strategies have been proposed to mitigate the prob-
lem of ill-posedness, including iterative numerical optimization
methods, lookup-table (LUT) based inversion strategies (e.g.,
Weiss et al., 2000; Knyazikhin et al., 1998; Darvishzadeh et al.,
2008a), or hybrid approaches in which LUTs are generated as input
for machine learning approaches (see Section 5). In the following
section we briefly review some common RTM inversion tech-
niques. A scheme of a generalized LUT-based inversion procedure
is illustrated in Fig. 3.

Numerical optimization: Iterative optimization is a classical tech-
nique to invert RTMs in RS (Jacquemoud et al., 1995; Kuusk, 1998;
Zarco-Tejada et al., 2001). The optimization consists in minimizing
a cost function, which estimates the difference between measured
and estimated variables by successive input variable iteration.
Optimization algorithms are computationally demanding and
hence time-consuming when large remotely-sensed datasets are
inverted. An additional drawback when operationally applying
optimization algorithms is that regularization techniques are
required to achieve accurate results (Zarco-Tejada et al., 2001),
though this can be expected from any inversion method.

Application of a look-up table (LUT) approach speeds up the
inversion process. The RTM generates spectral reflectances for a
large range of combinations of variable values. The inversion prob-
lem is thereby reduced to the identification of the modeled
he retrieval of terrestrial vegetation bio-geophysical properties – A review.
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Fig. 3. Flowchart of a generalized procedure using LUT-based inversion approaches.
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reflectance set that resembles most closely the measured one. This
process is based on querying the LUT (Liang, 2007) and applying a
cost function. A cost function minimizes the summed differences
between simulated and measured reflectances for all wavelengths.
LUT-based inversion has been and still is widely applied. The main
advantage of LUT-based inversion routines over numerical opti-
mization is their computational speed, since the computationally
most demanding part of the inversion procedure is completed
before the inversion itself (Dorigo et al., 2007). Various regulariza-
tion strategies have been proposed to optimize the robustness of
the LUT-based inversion routines:

� The use of prior knowledge to constrain model variables in the
development of a LUT (Combal, 2002; Darvishzadeh et al.,
2008a; Baret and Buis, 2008). At the local scale, prior knowledge
typically involves information on the possible variable ranges
for a land cover class studied (Dorigo et al., 2009; Verrelst
et al., 2012c; Laurent et al., 2013).
� Selection of cost function. The inverse problem of a non-linear

RTM is based on the minimization of a cost function concur-
rently measuring the discrepancy between (i) observed and
simulated reflectance, and (ii) variables to estimate and the
associated prior information (Jacquemoud et al., 2009). To avoid
solutions reaching fixed boundaries, one can use a modified cost
function in the LUT search that takes uncertainty of provided
prior information into account (Combal, 2002; Houborg and
Boegh, 2008; Jacquemoud et al., 2009). Instead, Leonenko
et al. (2013a, 2013b) proposed over 60 different cost functions
dealing with different error distributions. Rivera et al. (2013)
and Verrelst et al. (2014) evaluated about 20 different cost func-
tions and their interaction with Sentinel-2 data regularization
options to improve the retrieval of LAI and chlorophyll content.
The conclusion was that cost functions alone by default did not
lead to optimized performance. The following regularization
options equally play an important role in the robustness and
accuracies of the inversion routine:
� The use of multiple best solutions in the inversion (mean or

median), as opposed to a single best solution (Richter et al.,
2009, 2011; Combal et al., 2002; Koetz et al., 2005;
Darvishzadeh et al., 2011).
� The addition of Gaussian noise to account for uncertainties

linked to measurements and models (Richter et al., 2009,
2011; Koetz et al., 2005).
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� Several studies reported that the relationship between mea-
sured and estimated LAI perceptibly improves when only a
few but well-chosen wavelengths are selected for model inver-
sion (Meroni et al., 2004; Fang and Liang, 2005; Schlerf et al.,
2005; Darvishzadeh et al., 2011).
� Spatial and temporal constraints such as the use of information

from neighbor pixels in the inversion (Atzberger, 2004;
Atzberger and Richter, 2012), or the use of information from a
time series of observations (Koetz et al., 2005; Lauvernet
et al., 2008).

Though considered as physically-sound, all cited inversion tech-
niques rely on the existence of experimental data for calibration,
which may limit their applicability in an operational setting.
Furthermore, an inversion method processes imagery on a
pixel-by-pixel basis. That requires intensive number crunching
and hence high end computing hardware. In an ordinary LUT
approach, the dimensions of the table must be large enough to
achieve high accuracy, leading to a slow per-pixel LUT querying.
To speed up LUT search runs, approaches have been developed to
reduce the dimensions of LUTs. For instance, Gastellu-Etchegorry
et al. (2003) developed empirical functions to fit LUT values, so that
a table searching procedure becomes a simple calculation of local
functions. Alternatively, Liang et al. (2005) developed a simple lin-
ear regression instead of a table search routine for each angular bin
in the solar illumination and sensor viewing geometry.
Veroustraete and Verstraeten (2005) and Veroustraete et al.
(2006) proposed to simplify LUTs by parameterizing a
semi-empirical bidirectional reflectance distribution function
(BRDF) (Rahman et al., 1993) determined by 3 (to 4) parameters
using multi-angular reflectance observations. These parameters
(triplets or quartets) are stored in a LUT to be matched with the tri-
plets (or quartets) of the BRDF of an observed pixel. This approach
reduces the dimensionality of the LUT considerably, while retain-
ing the essential angular reflectance information.

Summarizing, numerical or LUT-based inversions remain a
challenge when they are implemented in an operational context:
(1) additional information is required (i.e., input data, a priori infor-
mation, regularization techniques); and (2) the method is compu-
tationally demanding. Nevertheless, LUT-based inversion is the
core algorithm in the operational generation of the global MODIS
LAI products (Myneni et al., 2002). The latest version of MODIS
LAI is Collection 5 (C5), covering the period since 2000. Strengths
he retrieval of terrestrial vegetation bio-geophysical properties – A review.
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and weaknesses of physically-based model inversion routines are
listed in Table 3.
5. Hybrid methods

Having discussed the most fundamental categories of retrieval
methods, this section addresses the hybrid methods. Typically,
hybrid methods combine the generalization level of
physically-based methods with the flexibility and computational
efficiency of advanced non-parametric regression methods. The
basic concept is to apply inverse mapping with a non-parametric
model trained with simulated data generated with RTMs.
Similarly as in LUT-based inversion, an RTM is used in direct mode
to build a LUT representing a broad set of canopy realizations.
Whereas a LUT approach seeks for a simulated spectrum as close
as possible to the measured one, the hybrid approach uses all avail-
able data to train a (non-linear) non-parametric regression model.
A scheme of a generalized hybrid procedure is illustrated in Fig. 4.
First, experimental studies and subsequently operational applica-
tions (Section 5.3) are reviewed.

5.1. Artificial neural networks trained with RTM generated datasets

The awareness in the mid 90’s that ANNs are excellent algo-
rithms to deal with large datasets (e.g. >100,000 samples) led to
the introduction of hybrid methods based on ANNs trained with
RTM-generated data (Smith, 1993; Baret et al., 1995; Gopal and
Woodcock, 1996; Kimes et al., 1998; Weiss and Baret, 1999). The
hybrid approach proved to be successful in various retrieval
schemes. For instance, Gong et al. (1999) and Danson et al.
(2003) inverted LAI from a simulated database; Fang and Liang
(2003) and Atzberger (2004) inverted LAI from Landsat ETM ima-
gery; Kimes et al. (2002) inverted a complex 3D model (DART)
for a wide range of simulated forest canopies using POLDER-like
angular data. While showing promising results, these studies were
still experimental. Only since the mid-2000s this method has been
implemented in operational processing chains with the purpose of
operational, global mapping of bio-geophysical variables (Bacour
Table 3
Strengths and weaknesses of physically-based model inversion methods in view of
the operational mapping of vegetation attributes.

Strengths Weaknesses

� Full-spectrum methods
� Reputation of physically-based

methods (however, note the
impact of regularization factors)
� Generally and globally applicable

(e.g. MODIS products)
� Capability to provide multiple

outputs
� Yields additional information

about uncertainty of the retrie-
vals (e.g. through spectral
residuals)

� Computationally demanding due
to the per-pixel based approach
(however, solutions based on a
priori information have been
developed)
� Retrieval quality depends on the

quality of the RT models, prior
knowledge and regularization
� Quite complex approach: requires

parameterization and optimiza-
tion procedures
� The imposed upper/lower bound-

aries in the LUT have a logical
consequence in that estimated
variables cannot go beyond the
boundaries imposed. This contra-
dicts somewhat the physical
approach as the prior information
has an overwhelming influence
(Baret and Buis, 2008)
� LUT-based inversion methods are

often strongly affected by noise
and measurement uncertainty
(Liang, 2007)
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et al., 2006). In Section 5.3 operational hybrid approaches are dis-
cussed further.

Meanwhile a diversity of ANN-based hybrid methods has been
developed. Most of them use simulations from the canopy RTM
SAIL (Verhoef, 1984). The PROSPECT-SAIL model, further referred
to as PROSAIL, has been applied to provide simulations for the
development of an ANN model. For instance, PROSAIL was applied
for the retrieval of vegetation canopy water content across the con-
tinental United States using MODIS data (Trombetti et al., 2008).
Richter et al. (2009) trained an ANN based on PROSAIL simulations
to estimate LAI using simulated Sentinel-2 data. Noteworthy is the
work of Vohland et al. (2010). These authors compared a numeri-
cally optimized ANN with a LUT-based inversion using PROSAIL
simulations. Prediction accuracies generally decreased in the fol-
lowing sequence: numerical optimization > LUT > ANN. This indi-
cates that an ANN may not always be the best choice for
inversion applications. Yang et al. (2012) compared a
PROSAIL-ANN hybrid approach with a PCA approach for hyper-
spectral data. The authors concluded that a PCA transformation
into a regression function can mitigate the known reflectance sat-
uration effect of dense canopies to some extent. Also other types of
RTMs have been applied. Yang et al. (2011a) trained an ANN with
the canopy RTM INFORM (Schlerf and Atzberger, 2006) to estimate
LAI from multi-source and multi-angular data. It was concluded
that the inversion accuracy of LAI with multi-angular image data
improved by 30% compared with the average accuracy of the LAI
estimated with an inversion based on mono-angular data.
Similarly, Malenovsky et al. (2013) trained an ANN based on
PROSPECT-DART simulations to estimate leaf chlorophyll content
(LCC) from hyperspectral AISA data.

5.2. Alternative MLRA methods trained with RTM generated datasets

Although hybrid strategies traditionally rely on the application
of an ANN, recently the results of feasibility studies have been pre-
sented in which ANNs were replaced by more novel kernel-based
MLRAs. Durbha et al. (2007) retrieved LAI from a MISR dataset
using a support vector regression (SVR) model trained with
PROSAIL data. The same strategy was applied to estimate LCC
based on imaging spectroscopy data (Preidl and Doktor, 2011)
and to estimate LAI from a HJ-CCD image (Pan et al., 2013).
Doktor et al. (2014) used a PROSAIL dataset to train a random for-
ests model to predict LAI and LCC. While some of the MLRA meth-
ods elicit advantages compared to ANN structures (e.g. in models
in a Bayesian framework), they are nonetheless still experimental
and none of them have made it to operational applications yet.

5.3. Operational hybrid approaches

Nowadays, ANNs are commonly used in operational
bio-geophysical variable retrieval schemes. The majority of these
algorithms exhibit a comparable design. This was presented for
the first time by Bacour et al. (2006). Since then, the strategy based
on ANN algorithms has been implemented as a core routine in var-
ious processing chains. A brief overview of operationally generated
products is provided here.

� The MERIS vegetation algorithm is based on the training of
ANNs with a database containing simulations from canopy
and atmosphere RTMs. The ANN estimates LAI, fAPAR (fraction
of absorbed photosynthetically active radiation) and fCover
(vegetation cover fraction) products. PROSAIL was used to sim-
ulate canopy reflectance according to MERIS spectral band spec-
ifications. The data were used to train back-propagation ANNs
for each variable considered. The architecture has been
he retrieval of terrestrial vegetation bio-geophysical properties – A review.
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optimized by two hidden layers of tangent-sigmoid artificial
neurons, corresponding with a total of roughly 340 coefficients
to be adjusted (Bacour et al., 2006).
� The CYCLOPES products are processed in a similar way for the

SPOT-VEGETATION sensor at a resolution of 1/112� (about
1 km at the Equator) every 10 days for the period 1999–2007
(Baret et al., 2007).

5.3.1. Validation of the CYCLOPES products and beyond
The MERIS and CYCLOPES products have been extensively vali-

dated with experimental data as well as compared with other glo-
bal products, e.g. from MODIS (Bacour et al., 2006; Weiss et al.,
2007; Garrigues et al., 2008; Fang et al., 2012b). MODIS and
CYCLOPES LAI products have been improved over time. Therefore
we refer to the latest findings of Fang et al. (2012b) only. It was
reported that the overall mean difference between the best
MODIS C5 and CYCLOPES V3.1 products are within an interval of
±0.10 LAI. Though the LAI product is recommended to the user
community, results indicate that the uncertainty in LAI products
(around ± 1.0 LAI) does not meet the quality requirements (±0.5
LAI) proposed by the Global Climate Observing System (GCOS)
(GCOS, 2011). It has also been elicited that CYCLOPES does not pro-
vide LAI values that are high enough to properly characterize for-
ests (Garrigues et al., 2008).

Apart from validation exercises using field data, theoretical
uncertainties can be used for evaluation purposes as well.
Theoretical uncertainties originate from uncertainties inherent to
input data as well as from model imperfections. They are usually
estimated during the variable retrieval process (Baret et al.,
2007; Knyazikhin et al., 1998; Pinty et al., 2011). An independent
method has recently been proposed by Fang et al. (2012a), in
which the authors apply an uncertainty calculation based on a
triple collocation method (i.e. a method to estimate
root-mean-square errors based on three independent estimates).
The uncertainties of MODIS, CYCLOPES, and GLOBCARBON LAI
products were evaluated based on this method. The main conclu-
sion drawn was that particularly CYCLOPES generally meets
GCOS quality requirements. However, some well-known funda-
mental limitations remain to be tackled:

� While ANNs are proven to be robust algorithms in various oper-
ational processing chains, the retrieval schemes are far from
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perfect. For instance, LAI estimates from CYCLOPES are less
accurate in the higher value range (LAI > 4). This is suggested
to be due to the saturation effect in the radiative transfer simu-
lation and the ANN inversion algorithm (Bacour et al., 2006;
Weiss et al., 2007; Garrigues et al., 2008).
� ANNs are black box models. These tend to behave relatively

unpredictable when used with input spectra deviating from
what has been input during the training stage (Atzberger,
2004; Baret and Buis, 2008; Rivera et al., 2014a).

To mitigate some of the above-identified limitations, Baret
et al. (2013) recently presented the global GEOV1 products,
available from 1999 to present, at a 1/112� spatial grid size, and
a decadal time step. When capitalizing on the development and
validation of existing products, improvements of the global esti-
mates of LAI, fAPAR and fCover have been obtained. Specifically,
the best-performing estimations of MODIS and CYCLOPES
products have been selected, fused and scaled to generate a
new ANN training dataset. This training dataset has subsequently
been applied to SPOT-VEGETATION top-of-canopy (TOC) direc-
tionally normalized reflectances. The resulting GEOV1 products
are labeled with quality control flags and uncertainty estimates.
These products have been validated by Camacho et al. (2013).
These authors reported that GEOV1 products show a reliable spa-
tial distribution, smooth temporal profile, stability from year to
year, and a good dynamic range with a reliable magnitude for
bare soil areas as well as dense forests. GEOV1 outperforms the
quality of reference global products (e.g., MODIS C5, CYCLOPES
V3.1, GLOBCARBON V2 LAI, and JRC SeaWIFS fAPAR) and consti-
tuted a step forward in the development of consistent and accu-
rate global bio-geophysical variables within the land monitoring
core service of Copernicus (Camacho et al., 2013). Worth noting
is that these products are no longer based on simulated training
datasets, but are based on data derived from existing products.
While this approach tends to mitigate the limitations of
PROSAIL (e.g. saturation at LAI > 4), the core retrieval ANN algo-
rithm nonetheless remains unchanged. Therefore, it is question-
able whether ANNs are the most flexible tool for the estimation
of biophysical variables. Training ANNs involves accurate tuning
of several model parameters. This tuning process strongly affects
the final robustness of the model. Therefore, alternatives over-
coming this limitation in ANN training are most welcome.
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6. Discussion

The estimation of vegetation properties with optical RS data is a
broad and steadily expanding field of research and development. In
this review paper an updated summary and discussion on a wide
range of retrieval methods dedicated to the quantification of con-
tinuous bio-geophysical variables has been compiled. In general,
RS retrieval methods can be categorized into four main domains:
(1) parametric regression; (2) non-parametric regression; (3)
physically-based models; and (4) hybrid methods.

These four categories have been qualitatively compared and
evaluated in this paper. They can be compared on the basis of
the following general criteria, i.e.:

(1) The retrievability of vegetation bio-geophysical properties.
(2) Their ability to generate multiple outputs.
(3) The possibility to describe model transparency.
(4) The mapping speed for specific bio-geophysical variables.
(5) Their ability to provide retrieval uncertainties.

The evaluation of these five criteria is summarized in Table 4
and discussed below.
6.1. Retrievability of vegetation bio-geophysical variables

Regarding retrievability of vegetation bio-geophysical variables,
strategies relying on RTM simulations are inherently limited by the
input variables of the RTM. They are known to play a prominent
role in radiative transfer theory and are therefore considered as
so-called state variables (Verstraete et al., 1996). The relationships
between state variables and the spectral reflectance are physically
well understood. Therefore, the argument is often raised that only
state variables can be retrieved with optical RS data (e.g.,
Knyazikhin et al., 2013). Alternatively, state variables are some-
times combined and hence give rise to newly defined variables. A
typical example are leaf biochemical constituents scaled up to
the canopy level by multiplication with canopy LAI (Weiss et al.,
2000; Combal, 2002; Bacour et al., 2006; Dorigo et al., 2009;
Darvishzadeh et al., 2012).

On the other hand, statistical approaches possess the flexibility
to relate reflectance data with any measured bio-geophysical vari-
able� state variable or not. This includes typically leaf biochemical
constituents such as nitrogen or cellulose content. The strength of
the correlation with validation data typically determines the valid-
ity of the statistical model. While this approach may be criticized
because of the absence of a physical basis (Knyazikhin et al.,
2013), statistical approaches are powerful methods to extract
bio-geochemical variables through complex and often indirect
relationships. Particularly (non-linear) non-parametric models
are powerful in extracting information from subtle variations in
reflectance through adaptive, non-linear models. With statistical
models not only variable-specific absorption features can be used
for information extraction, but also secondary relationships with
variables that co-vary with the variable of interest. Using GPR for
instance, secondary relationships can be revealed by the
Table 4
Synthesis of the evaluation with respect to five criteria of the three main retrieval approa

Method Parametric regression Physically-based methods Non

Surface variables Any Only RTM state variables Any
Multiple outputs No Yes Som
Model transparency Yes Partly In p
Mapping speed Instantly Slow Fas
Uncertainties No Yes (e.g. residuals) Som
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identification of relevant spectral bands. To illustrate this, some
GPR models developed (Van Wittenberghe et al., 2014) showed a
strong relationship between spectral data and chlorophyll content
at leaf level (R2 of 0.78–0.84) and at canopy level (R2 of 0.92–0.99)
(Verrelst et al., 2012a, 2012b). In either case, GPR identified impor-
tant spectral bands within the chlorophyll absorption region (e.g.,
620, 665, 710 nm). Interestingly, also bands in the NIR (e.g.,
950 nm) and SWIR (e.g., 1430, 1730 nm) � which are located out-
side the chlorophyll spectral absorption region �were identified to
play an important role. Typically, these spectral regions are related
to leaf water content, cellulose and lignin (Thenkabail et al., 2000,
2004; Van Wittenberghe et al., 2014). Consequently, the sensitivity
to chlorophyll in the NIR and SWIR may be driven by the covari-
ance of chlorophyll with leaf water content and cell biochemical
compounds. This has been observed by Filella and Penuelas
(1994) and Stagakis et al. (2010). At the same time, chlorophyll is
to some extent correlated with plant structural variables such as
LAI and fractional vegetation cover, imposing additional spectral
variations in the NIR and SWIR (Darvishzadeh et al., 2008b;
Verrelst et al., 2010; Ollinger, 2011). The co-variation between,
e.g., leaf biochemicals such as pigments, starch and lignin content
and plant structural traits and their respective spectral responses
can therefore be used to predict leaf biochemical constituents
along a spectral range even beyond their specific spectral absorp-
tion range. In turn, the estimation of canopy structural variables
can also be supported by co-varying leaf biochemical constituents
(Verrelst et al., 2012a, 2012b).

Summarizing, the inversion of RTMs can essentially lead to the
retrieval of state variables only. Although these variables are well
defined in radiative transfer theory, their successful retrieval is lar-
gely determined by the physical realism of the model used and the
inversion strategy applied. Alternatively, non-state variables can
be mapped by applying (non-linear) statistical methods, which
indirectly exploit co-variance relationships hidden in the reflec-
tance data.
6.2. Multiple outputs

The capability to produce multiple outputs is an interesting
possibility offered by both statistically and physically-based meth-
ods. In general, multiple outputs can be provided in two ways: (i)
by training independent models, which is convenient and easily
performed; and (ii) by training a single model which directly gen-
erates multiple outputs. The first way, however, does not take into
account relationships between dependent variables. On the other
hand, a single model approach leads to more complexity, but
co-varying relationships between multiple dependent variables
are taken into account. For non-linear (and non-parametric)
regression, examples of multiple output regression algorithms
include PLSR, ANN, SVR, KRR and GPR (Tuia et al., 2011;
Rasmussen and Williams, 2006; Rivera et al., 2014a; Camps-Valls
et al., 2012a). The use of multiple-output models has been reported
to lead to improved results. The main reason for this is that the
input is evidently the same for the dependent variables (Tuia
et al., 2011). Nevertheless, including variables with little or no
ches. Best features are boldfaced.

-parametric regression Hybrid methods

Only RTM state variables
e MLRAs (e.g. PLSR, NN, KRR, GPR) Some MLRAs (e.g. PLSR, NN, KRR, GPR)

art some MLRAs (e.g. RF, GPR) In part some MLRAs (e.g. RF, GPR)
t Fast

e MLRAs (e.g. GPR) Some MLRAs (e.g. GPR)
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relation amongst them may degrade the performance of the model.
The main reason being that its training is more complex and the
risk of ending in a local minimum becomes higher. For instance,
Baret et al. (2007) reported for a ANN single output model that
the output is more robust than for multiple output models.

RTM inversion routines are essentially iterative minimization cal-
culations applied per pixel to estimate RTM input variable values. In
principle, this allows all state variables to be mapped. Examples of
these multiple output inversion mapping routines have been
described by Lauvernet et al. (2008) and Laurent et al. (2013). Its suc-
cess depends on the number of variables and their cross-relationships
across the spectral domain. Some variables can be retrieved more suc-
cessfully than others (Lauvernet et al., 2008; Mousivand et al., 2014).
Inversion routines optimized for a single variable tend to perform
slightly better than generic multiple output inversion algorithms
(Rivera et al., 2013; Verrelst et al., 2014). Probably the prime advan-
tage of multiple output routines is the gain in processing speed.
This may be an important property in operational processing chains,
particularly for global applications.
6.3. Model transparency

Model transparency, i.e. insight in a model’s formulations, is
optimally provided by parametric regression models. Usually this
type of models is based on relatively simple calibrated regression
functions. Transparency in model functioning can also be elicited
by RTM inversion routines. These are typically forced by a cost
function. The inversion performance, however, is less transparent.
It depends on the realism of RTM simulations and the role of the
input variable space on output reflectances. Consequently, the
functional transparency of RTMs requires expert knowledge.

Non-parametric, non-linear regression algorithms (such as
ANN) are often criticized because they represent a black box
approach that represents a stochastic and not a physical approach
(Haykin, 1999). Hence, the outputs may be very useful, but do not
help the user to interpret the results in physical terms. The termi-
nology ‘black box’ refers to an important drawback of this type of
retrieval technique. It has therefore earlier been concluded that the
full potential of machine learning techniques is unlikely to lead to
new breakthroughs as long as these developments do not have a
physical meaning (Liang, 2007).

Other methodological models are referred to as ‘gray boxes’.
This is especially true for developments during the last few dec-
ades, wherein the machine learning community developed a com-
plete family of techniques to scrutinize this type of models. This
includes model pruning, advanced sensitivity analyses, weight
visualization techniques, etc. The problem of the lack of
physically-relevant explanatory capacity of non-parametric mod-
els also signifies that artifacts propagating in such a model may
remain unnoticed. This re-initiates the discussion whether the
incorporation of effective regularization and invariances in the
models is an opportune methodological development track.
Recent MLRAs in a Bayesian framework (e.g. GPR) have overcome
this limitation. These MLRAs offer the possibility to train flexible
self-explanatory kernel models, i.e. through the ranking of relevant
spectral bands during model development, and the possibility to
generate confidence intervals for the bio-geophysical variable esti-
mates (Verrelst et al., 2012a). Also other non-parametric regression
methods provide insight in band relevancy, such as SVR, PLSR and
random forests (Feilhauer et al., 2015).

Typically, one can generalize that the higher the complexity of a
model, the lower its transparency will be. In a probabilistic para-
digm, nevertheless, this has changed with the new generation of
Bayesian MLRAs. Importantly, the inclusion of physically-relevant
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constraints in model training partly overcomes the lack of
transparency.

6.4. Mapping speed

Regarding mapping speed, it can be suggested that the lower
the complexity of a model the faster it will be able to produce
maps. This highly favors the application of parametric regression
approaches since only few coefficients have to be estimated. Also
non-parametric regression algorithms, once trained, can be
applied to process an RS image virtually instantaneously.
Training of non-parametric models is frequently related to the
tuning of several free variables with costly cross-validation
approaches. These scale poorly with the number of samples (such
as in kernel machines) or with the data dimensions (such as in
ANNs). A trained ANN converts an image into a map
quasi-instantly. Kernel-based methods require more processing
time since the similarity between each test pixel in the image
and those used to train the model has to be estimated. This pro-
cess can be computationally costly when using a big dataset for
training purposes, e.g. in the case of RTM inversion
(Camps-Valls et al., 2011). One of the major advantages of hybrid
processing chains is that the training step takes place only once
and outside the processing chain. A considerably lower processing
speed is observed with the LUT-based inversion routines. Since
the evaluation takes place on a per-pixel basis with iterative calls
of LUT entries, inversion routines are computationally expensive
leading to relatively slow mapping speeds. Despite attempts to
optimize processing algorithms in terms of mapping speed
(Gastellu-Etchegorry et al., 2003; Liang et al., 2005) the RTM
inversion routines are not competitive when compared with sta-
tistical methods.

6.5. Model portability by deriving retrieval uncertainties

Statistical methods have often been criticized for their low
portability leading to poor estimations when applied under other
conditions (e.g., Baret and Guyot, 1991). However, only a meaning-
ful interpretation of the portability of a method can be given when
the per-pixel estimation performance can be quantified. In this
respect, theoretical uncertainties are of interest, as they can be
quantified on a per-pixel basis during the retrieval process (Fang
et al., 2012a). Uncertainty intervals provide the reliability of a
given estimation with regard to what has been presented during
the training phase.

An operational definition of transportability can be formalized
as follows. If retrieval uncertainties are low in space and time
(e.g. below a threshold), then a method can be considered as a
transportable one. The quantification of variable-associated uncer-
tainties is a strong requirement when vegetation products are
ingested in higher level processing, e.g. to estimate ecosystem res-
piration, photosynthetic activity, or carbon sequestration
(Jägermeyr et al., 2014). Hence, to evaluate the portability of a
method, first its ability to deliver low uncertainties should be
addressed. Several excellent reviews of probabilistic uncertainty
quantification and specification for environmental, geo-scientific
and RS applications have been published (Peter et al., 2009;
O’Hagan, 2012; Richardson et al., 2012). GCOS proposed an uncer-
tainty threshold below 20% for many bio-geophysical variable
value estimation problems (GCOS, 2011). One can estimate uncer-
tainties for parametric functions by adopting perturbation or boot-
strapping approaches (Efron, 1979), though these techniques are
not yet common in the broader RS community. With regard to
LUT-based inversion routines, uncertainties are provided as spec-
tral residuals (Rivera et al., 2013) or standard deviations, when
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mapping multiple solution means (Yang et al., 2006). In case of
non-parametric regression models, uncertainty estimation is a
complex exercise but nonetheless one can rely on bootstrap or
ensembles of predictors for uncertainty estimation. ANN can gen-
erally provide uncertainty intervals for the estimations, but their
value is compromised by the risk of overfitting. Recently,
Bayesian non-parametric models such as GPR provided uncertain-
ties by applying a solid and elegant mathematical framework
(Verrelst et al., 2012a, 2012b). The Bayesian interpretation pro-
vides the probability interval of an estimation relative to the sam-
ples used during the training phase. By analyzing the uncertainties
as delivered by GPR, Verrelst et al. (2013b) demonstrated that for
the large majority of pixels within an image a locally developed
regression model could be successfully transported in space and
time. Despite the importance of Bayesian non-parametric models
for higher level products and the advances in quantifying and con-
straining uncertainty estimations in regression models during the
last decade, this field is still in its infancy.

6.6. Recommendations for next-generation operational bio-
geophysical variable retrieval methods

So far only a few vegetation variables are routinely mapped on a
global scale and for long time periods. MODIS and CYCLOPES prod-
ucts provide LAI datasets and maps for over a decade now. Both
products have been refined over time, gradually leading to more
accurate estimates. For instance, the CYCLOPES’ successor GEOV1
no longer directly makes use of PROSAIL-simulated training data
but capitalizes on existing products such as the less recent
CYCLOPES and MODIS LAI products. Nevertheless, GEOV1 relies
on the same conventional ANN, while the MODIS LAI product
(based on a LUT-based inversion) still uses an empirical
NDVI-based backup algorithm in case the inversion algorithm fails.

Of the four presented model categories, during the last decade
most progress has been made in the field of non-parametric regres-
sion, and more specifically in machine learning. This has led to
advanced MLRAs, such as kernel-based regression algorithms.
Though these methods have not yet made it to operational process-
ing schemes, they possess attractive new properties. For instance,
several studies indicated that kernel-based MLRAs perform more
robustly than feed-forward ANNs (Camps-Valls et al., 2006;
Verrelst et al., 2012b). Moreover, kernel-based MLRAs developed
in a Bayesian framework enable the delivery of probabilistic out-
puts (i.e., with associated uncertainties). These novel methods can
be applied as a stepping stone toward a next generation of opera-
tional satellite image processing strategies. When comparing the
qualitative features of the main retrieval approaches of Table 4,
some MLRAs such as GPR seem flexible in coping with the ability
to retrieve multiple vegetation variables simultaneously. They pro-
vide model transparency and uncertainty estimates as well.
Moreover, mapping occurs computationally faster than for
pixel-by-pixel inversion approaches. The same conclusion was
reached in a related paper (Verrelst et al., 2015) where a multitude
of parametric, non-parametric and physical methods were system-
atically and quantitatively evaluated on LAI retrieval accuracy and
processing speed based on experimental data. GPR was performing
best and processed a simulated Sentinel-2 image within about a
minute (compared to an hour when using an inversion scheme).
However, further R&D and prototype algorithm testing is required
in view of full operational implementation. Especially, the issue of
how advanced MLRAs cope with large datasets during the training
phase in a hybrid setting has to be tackled. For the sake of perfor-
mance optimization, the training dataset itself has to be validated
as well, whether or not it is globally applicable and of high enough
quality. Simulated data generated with relatively simple RTMs may
not provide the best match with reality, especially in case of CAVS
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RTMs (Coupled Atmosphere – Vegetation – Soil RTMs). The devel-
opment of more realistic and easily invertible RTMs with fast and
powerful inversion procedures is required for operational process-
ing in order to provide high level products. Currently, the approach
pursued by GEOV1, i.e. selecting the best retrievals from existing
products as a new training set, is a promising approach since it
bypasses known RTM-related shortcomings (e.g., the PROSAIL satu-
ration at an LAI > 4).
7. Conclusions

With the forthcoming superspectral and imaging spectrometer
satellite missions, an unprecedented stream of datasets on the ter-
restrial biosphere will become available. On the short term this
will require powerful processing techniques enabling a
spatio-temporally explicit quantification of vegetation attributes
in an operational and global setting. Four categories of retrieval
methods have been discussed in this review paper: (1) parametric
regression, (2) non-parametric regression; (3) physically-based and
(4) hybrid methods. For each of these categories strengths and
weaknesses have been qualitatively assessed to judge their imple-
mentation in operational processing schemes.

It is our opinion that the weaknesses of parametric regressions
outweigh their strengths. Their empirical backbone, suboptimal
use of available spectral bands, sensitivity to disturbing factors
and lack of uncertainty estimates, makes us decide that parametric
regression methods cannot be considered as state-of-the-art for
operational mapping applications. Non-parametric methods, on
the other hand, are powerful regression algorithms due to their
non-linear and adaptive fitting capacities. They cope well with
full-spectrum inputs, which is a considerable advantage compared
with parametric methods. Especially powerful are the non-linear
MLRAs, and particularly those that generate probabilistic outputs
in a Bayesian framework.

Though the inversion of physically-based RTMs is generally
possible, the approach is more challenging compared to parametric
and non-parametric methods. Inversion is computationally
demanding and ancillary information is required as an input or
to regulate the inversion algorithm. This information may not
always be accurate, available or up-to-date.

Hybrid methods are based on the coupling of an RTM with a
non-parametric method. This approach has long been restricted
to the training of an ANN with simulated data from an RTM (e.g.,
PROSAIL). While ANNs have proven to be successful on an opera-
tional basis, the question whether an ANN is the best choice as core
algorithm for new operational retrieval schemes of vegetation
properties remains open. Alternatively, (Bayesian) kernel-based
MLRAs possess promising features to replace ANNs, because they
combine speed, flexibility and the provision of uncertainty esti-
mates. Though these methods are still in their infancy, this paper
recommends to further explore the feasibility and implementation
of this category in next-generation hybrid processing chains for the
retrieval of vegetation properties in view of future RS missions.
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