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ESA’s upcoming Sentinel-2 (S2) Multispectral Instrument (MSI) foresees to provide continuity to land
monitoring services by relying on optical payload with visible, near infrared and shortwave infrared sen-
sors with high spectral, spatial and temporal resolution. This unprecedented data availability leads to an
urgent need for developing robust and accurate retrieval methods, which ideally should provide uncer-
tainty intervals for the predictions. Statistical learning regression algorithms are powerful candidats for
the estimation of biophysical parameters from satellite reflectance measurements because of their ability
to perform adaptive, nonlinear data fitting. In this paper, we focus on a new emerging technique in the
field of Bayesian nonparametric modeling. We exploit Gaussian process regression (GPR) for retrieval,
which is an accurate method that also provides uncertainty intervals along with the mean estimates. This
distinct feature is not shared by other machine learning approaches. In view of implementing the regres-
sor into operational monitoring applications, here the portability of locally trained GPR models was eval-
uated. Experimental data came from the ESA-led field campaign SPARC (Barrax, Spain). For various
simulated S2 configurations (S2-10m, S2-20m and S2-60m) two important biophysical parameters were
estimated: leaf chlorophyll content (LCC) and leaf area index (LAI). Local evaluation of an extended train-
ing dataset with more variation over bare soil sites led to improved LCC and LAI mapping with reduced
uncertainties. GPR reached the 10% precision required by end users, with for LCC a NRMSE of 3.5–9.2% (r2:
0.95–0.99) and for LAI a NRMSE of 6.5–7.3% (r2: 0.95–0.96). The developed GPR models were subse-
quently applied to simulated Sentinel images over various sites. The associated uncertainty maps proved
to be a good indicator for evaluating the robustness of the retrieval performance. The generally low
uncertainty intervals over vegetated surfaces suggest that the locally trained GPR models are portable
to other sites and conditions.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Biophysical parameter products such as leaf chlorophyll content
(LCC) and leaf area index (LAI) have become standard products by
space agencies and research institutions. At the same time, proper
usage of such products requires that associated uncertainty infor-
mation needs to be provided (Buermann et al., 2001; Morisette
et al., 2006; Fang et al., 2012). Two categories of product uncer-
tainty information are generally available in the literature, either
physical or theoretical (Fang et al., 2012). Physical uncertainties
indicate the departure of product values from hypothetical true
values and are obtained through the collection of ground-based
validation data. Theoretical uncertainties are caused by uncertain-
ties in the input data and model imperfections and are usually esti-
mated during the retrieval process (Baret et al., 2007; Knyazikhin
et al., 1998; Pinty et al., 2011). Several operationally delivered
products are nowadays accompanied with theoretical uncertain-
ties in the form of a quantitative quality indicator (Knyazikhin
et al., 1998; Pinty et al., 2011). An alternative method was recently
proposed in (Fang et al., 2012) where authors apply an indepen-
dent uncertainty calculation through a triple collocation method.
As such, independently the uncertainties of MODIS, CYCLOPES,
and GLOBCARBON LAI products were evaluated. From these prod-
ucts, it was concluded that particularly CYCLOPES generally meet
the quality requirements (±0.5) proposed by the Global Climate
Observing System (GCOS) (GCOS, 2011). The CYCLOPES algorithm
is based on a neural network (NN) trained from the 1D SAIL radia-
tive transfer model (RTM) (Baret et al., 2007).

While NNs have proven robust in various operational process-
ing chains, the retrieval schemes are far from being perfect and
various limitations have been identified. For instance, LAI esti-
mates from CYCLOPES are less accurate at higher values due to
the saturation effect in the radiative transfer simulation and the
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NN inversion algorithm (Bacour et al., 2006; Weiss et al., 2007).
Furthermore, NNs not only behave as a black box model, but they
are also relatively unpredictable when used with input spectra that
deviate (even slightly) from what has been presented during the
training stage (Atzberger, 2004; Baret and Buis, 2008). It is there-
fore to be questioned whether NNs offer the most flexible tools
for parameter estimation, gaining insights in the retrievals and
evaluating retrieval performances. Besides, training NNs involve
tuning several parameters that may greatly impact the final
robustness of the model. For these reasons, alternatives that over-
come these limitations are needed. In part, this is why in the recent
years NNs are being replaced by other more advanced, simpler to
train, machine learning regression algorithms (MLRAs). Actually,
during the last two decades, the family of kernel methods
(Camps-Valls and Bruzzone, 2009) has emerged as an alternative
to NNs in many applications. Kernel methods typically involve
few and intuitive hyperparameters to be tuned, and can perform
flexible input–output nonlinear mappings. They are able to cope
with the strong nonlinearity of the functional dependence between
the biophysical parameter and the observed reflected radiance.
Intimately related to the field of kernel methods, here we find
the new emerging field of Bayesian nonparametric modeling. The
framework of Bayesian nonparametrics gives a Bayesian treatment
of statistical inference. This field has given rise to particularly pow-
erful methods, such as relevance vector machines and Gaussian
processes. These methods are able to provide high accuracies and
at the same time provide uncertainty intervals for the predictions
(e.g. Camps-Valls et al., 2006; Verrelst et al., 2012b). They may
therefore be more suitable candidates for operational applications,
especially now that Earth observation is reaching a mature state.

In 2014, the European Space Agency’s (ESA) forthcoming Senti-
nel-2 (S2) mission will start delivering high-resolution optical
images on a global scale. This unprecedented data availability leads
to an urgent need for developing robust and accurate retrieval
methods. Recently, Verrelst et al. (2012a) have tested the capabil-
ities of four state-of-the-art MLRAs given different Sentinel-2 and
Sentinel-3 band settings. Selected MLRAs were NNs, support vector
regression, kernel ridge regression, and Gaussian processes regres-
sion (GPR). The methods were compared in terms of accuracy,
goodness of fit, robustness to low sample sized scenarios, and com-
putational cost. Training and validation data came from the ESA-
led field campaign SPARC, which took place on the agricultural test
site Barrax, Spain. The main conclusion was that, in general, GPR
outperformed the other regressors in terms of speed and computa-
tional costs. At the same time, GPR yielded superior accuracies for
the majority of tested cases. Moreover, in contrary to NNs, GPR
provide directly theoretical uncertainty estimates through Gauss-
ian probability (cf. Section 3). These uncertainty estimates opened
a new source of information. For instance, they make possible to
assess the robustness of the retrievals at various spatial scales. In
Verrelst et al. (2013), retrievals from hyperspectral airborne and
spaceborne data over the Barrax area were compared. In this
way, the uncertainty measure provided information about the
upscaling quality, i.e., if the uncertainties are kept constant then
the upscaling can be considered stable. Even though retrievals
proved to be robust over vegetated areas, high uncertainties ap-
peared over non-vegetated surfaces, which suggested that the
training dataset was not representative enough for those land cov-
er types. Furthermore, since statistical approaches are often criti-
cized because of limited generalization and transferability (e.g.
Colombo et al., 2003; Meroni et al., 2004), it remains to be ques-
tioned how robust the locally-trained GPR models function when
applied to other sites and conditions. In this respect, the delivery
of additional uncertainty estimates may enable to evaluate the
portability of the regression model. Specifically, when uncertainty
intervals as produced by a locally trained GPR model over an
arbitrary site are on the same order as those produced over the
successfully validated reference site, then it can be reasonably as-
sumed that the parameter retrievals are also of the same quality as
the retrievals of the reference site. Thus, when successfully vali-
dated over a reference imagery then the uncertainty estimates
can work as a quality indicator. This concept has been evaluated
here, and brings us to the following specific objectives of the pres-
ent paper: (1) to evaluate the impact of experimental training data
on the development of GPR models, particularly in view of im-
proved retrievals over non-vegetated surfaces, and (2) to evaluate
the portability of a locally trained GPR model to other sites and
conditions by making use of its associated uncertainty intervals.

The remainder of the paper is organized as follows. Section 2
briefly describes the Sentinel-2 concept, while Section 3 revises
the Bayesian nonparametric field in general and the Gaussian pro-
cess regression algorithm in particular. In the methodology (Sec-
tion 4) the used training dataset, experimental Sentinel-2 images,
and experimental setup are described. Results focus first on a local
evaluation of the GPR models (Section 5.2) and then moves to the
evaluation of algorithm’s performance on other sites (Section 5.3).
Section 6 discusses main findings and Section 7 concludes the
paper.
2. Sentinel-2

ESA’s S2 satellites capitalize on the technology and the vast
experience acquired with SPOT and Landsat over the past decades
(Drusch et al., 2012). S2 is a polar-orbiting, superspectral high-res-
olution imaging mission. The mission is envisaged to fly a pair of
satellites with the first planned to launch in 2014. Each S2 satellite
carries a Multi-Spectral Imager (MSI) with a swath of 290 km. It
provides a versatile set of 13 spectral bands spanning from the vis-
ible and near infrared (VNIR) to the shortwave infrared (SWIR), fea-
turing four bands at 10 m, six bands at 20 m and three bands at
60 m spatial resolution (Table 1). S2 incorporates three new bands
in the red-edge region, which are centered at 705, 740 and 783 nm.
The pair of S2 satellites aims to deliver data taken over all land sur-
faces and coastal zones every five days under cloud-free condi-
tions, and typically every 15–30 days considering the presence of
clouds. To serve the objectives of Copernicus (The European Earth
Observation Programme), S2 satellites will provide data for the
generation of high-level operational products (level 2b/3) such as
land-cover and land-change detection maps and geophysical vari-
ables such as LCC, LAI and leaf water content maps. To ensure that
the final products can meet user requirements, the Copernicus user
committee defined an accuracy goal of 10% (Drusch et al., 2012).
3. Bayesian nonparametrics and Gaussian processes

Finding a functional relation between input (e.g. reflectances)
and output (e.g. physical parameter) variables is the main goal of
statistical learning. The problem is complex and elusive because
possibly an infinite number of functions can be found to fit the
data. This problem is known as the excess of capacity of the class
of functions implementing the model, and has been referred to
the problem of overfitting. The key is to constrain model’s capacity,
in either one of the following two ways: imposing strong prior
knowledge or via regularization schemes that promote simpler
solutions. In the last decades, statistical learning (inference) has
witnessed an overwhelming interest in kernel methods because
they implement nonlinear models and still rely on linear algebra
operations (Camps-Valls and Bruzzone, 2009). Kernel methods
are very appealing for physical parameter retrieval, mainly because
they deal efficiently with low-sized datasets of potentially high
dimensionality, which are the situations we find in parameter



Table 1
Sentinel-2 MSI band settings.

Band # B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12
Band center (nm) 443 490 560 665 705 740 783 842 865 945 1375 1610 2190
Band width (nm) 20 65 35 30 15 15 20 115 20 20 30 90 180
Spatial resolution (m) 60 10 10 10 20 20 20 10 20 60 60 20 20
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retrieval from multispectral or hyperspectral imagery using mod-
els trained by field campaign data. Also, since kernel methods do
not assume an explicit prior data distribution but are inherently
nonparametric models, they cope well with remote sensing data
specificities and complexities (Camps-Valls and Bruzzone, 2009).

In the context of statistical inference and for remote sensing
products, one is not solely interested in high accuracies of the algo-
rithm but also in producing uncertainty intervals for the predic-
tions. This calls for a Bayesian treatment of the inference
problem. While recently kernel methods have advanced the field
of remote sensing data analysis (Camps-Valls and Bruzzone,
2009), the problem of uncertainty estimation with nonparametric
models has been elusive in most of the approaches. In this context,
the emerging field of nonparametric Bayesian modeling constitutes a
proper theoretical framework to tackle the problem of physical
parameter retrieval (O’Hagan, 1994; Rasmussen and Williams,
2006; Orbanz and Teh, 2010).1 Essentially, a nonparametric Bayes-
ian model is a Bayesian model on an infinite-dimensional parameter
space, which corresponds to the set of possible patterns, e.g. the class
of smooth functions for regression (retrieval). The field has been very
active in the last decade, and has delivered successful model instan-
tiations. Some of them has been actually introduced in the field of
remote sensing data analysis. For example, the relevance vector ma-
chine (RVM) introduced in Tipping (2001) is a nonparametric Bayes-
ian model that assumes a Gaussian prior over the weights in order to
enforce sparsity, and uses expectation-maximization to infer the
parameters. In Camps-Valls et al. (2006) the RVM model was used
for oceanic chlorophyll content estimation. The model, however,
may incur in too sparse solutions that do not fit well in parts of
the space not considered in the retained relevant vectors. Lately,
Bayesian nonparametric modeling with Gaussian Processes
(Rasmussen and Williams, 2006) have received much attention in
the field of machine learning, and has been also introduced in the
remote sensing application field (Verrelst et al., 2012a,b, 2013). This
paper will focus on GPR.

GPR provides a probabilistic (Bayesian) approach for learning
generic regression problems with kernels (Rasmussen and
Williams, 2006). The GPR model establishes a relation between
the input (B-bands spectra) x 2 RB and the output variable (canopy
parameter) y 2 R of the form:

ŷ ¼ f ðxÞ ¼
XN

i¼1

aiKðxi; xÞ; ð1Þ

where fxigN
i¼1 are the spectra used in the training phase, ai 2 R is the

weight assigned to each one of them, and we intentionally dropped
the bias term of the regression assuming centered observations, and
K is a function evaluating the similarity between the test spectrum
x and all N training spectra, xi, i = 1, . . . , N. We used a scaled Gauss-
ian kernel function,

Kðxi;xjÞ ¼ m exp �
XB

b¼1

ðxðbÞi � xðbÞj Þ
2

2r2
b

0
@

1
Aþ dij � r2

n; ð2Þ
1 Excellent online lectures on Bayesian nonparametrics are available at: http://
videolectures.net/mlss09uk_teh_nbm/ and http://videolectures.net/mlss09uk_or-
banz_fnbm/.
where m is a scaling factor, B is the number of bands, rb is a dedi-
cated parameter controlling the spread of the relations for each par-
ticular spectral band b, rn is the noise standard deviation and dij is
the Kronecker’s symbol. The kernel is thus parametrized by signal
(m,rb) and noise (rn) hyperparameters, collectively denoted as
h = {m,rb,rn}.

For training purposes, we assume that the observed variable is
formed by noisy observations of the true underlying function
y = f(x) + �. Moreover we assume the noise to be additive indepen-
dently identically Gaussian distributed with zero mean and vari-
ance rn. Let us define the stacked output values y = (y1, . . . , yn)>,
the covariance terms of the test point k⁄ = (k(x⁄,x1), . . . , k(x⁄,xn))>,
and k⁄⁄ = k(x⁄,x⁄). From the previous model assumption, the output
values are distributed according to:

y
f ðx�Þ

� �
� N 0;

Kþ r2
nI k�

k>� k��

 ! !
ð3Þ

For prediction purposes, the GPR is obtained by computing the pos-
terior distribution over the unknown output y�; pðy�jx�;DÞ, where
D � fxn; ynjn ¼ 1; . . . ;Ng is the training dataset. Interestingly, this
posterior can be shown to be a Gaussian distribution, pðy�jx�;DÞ =
Nðy�jlGP�;r2

GP�Þ, for which one can estimate the predictive mean
(point-wise predictions):

lGP� ¼ k>� ðKþ r2
nIÞ�1

y; ð4Þ

and the predictive variance (confidence intervals):

r2
GP� ¼ k�� � k>� ðKþ r2

nIÞ�1
k�: ð5Þ

The corresponding hyperparameters h are typically selected by
Type-II Maximum Likelihood, using the marginal likelihood (also
called evidence) of the observations, which is also analytical. When
the derivatives of the log-evidence are also analytical, which is often
the case, conjugated gradient ascent is typically used for optimiza-
tion (see (Rasmussen and Williams, 2006; Camps-Valls et al., 2009)
for further details).

Three important properties of the method are worth stressing
here. First, the obtained weights ai after optimization gives the rel-
evance of each spectrum xi. The predictive mean is essentially a
weighted average of the canopy parameter values associated to
the training samples closest to the test sample. Second, the inverse
of rb represents the relevance of band b. Intuitively, high values of
rb mean that relations largely extend along that band hence sug-
gesting a lower informative content. These features have been
extensively studied in (Verrelst et al., 2012a,b) and proved to be
valuable for gaining insight in relevant bands. Finally, a GPR model
provides not only a pixelwise prediction for each spectrum but also
an uncertainty (or confidence) level for the prediction. Hence in
contrary to other approaches (e.g. NN) uncertainty intervals are di-
rectly delivered along with mean estimates. The interested reader is
referred to the book by Rasmussen and Williams (2006) for more
details on the theoretical aspects of GPR. A Matlab implementation
of GPR is freely available at http://www.gaussianprocess.org/gpml/.

We illustrate the uncertainty intervals estimated by GPR and
through standard boostrapping (Wu, 1986) of the nonlinear regres-
sion solution in Fig. 1. Note that GPR basically accounts for a reduc-
tion of uncertainty based on the relative local density of the input
data points, not the outputs. This is obvious by looking at the
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Fig. 1. Toy regression example in 1-D: we predict the y-values from the x-values in a synthetic signal generated by a combination of Gaussian bumps. We show the predictive
variance or confidence interval estimates via bootstrap variance estimates (left), and Gaussian process regression (right).
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predictive variance equation above. On the other hand, the
variance of the bootstrap variance estimate quickly vanishes if
one moves away from data points in the set. This behavior
correctly reflects the fact that the predictions will be practically
zero far away from points in the training sets. Gaussian processes
indicate that the uncertainty is high because no data has been
observed in that area.
2 For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.
4. Methodology

4.1. SPARC database

GPR has been trained with a local ground dataset coming from
SPARC (SPectra bARrax Campaign). The SPARC-2003 and SPARC-
2004 campaigns took place in the Barrax agricultural site in Central
Spain (coordinates 39�N, �2�10E, 700 m altitude). The test area has
a rectangular form and an extent of 5 km � 10 km, and is charac-
terized by a flat morphology and large, uniform land-use units.
The region consists of approximately 65% dry land and 35% irri-
gated land, mainly by center pivot irrigation systems. It leads to
a patchy landscape with large circular fields. The annual rainfall
average is about 400 mm.

In the 2003 campaign (12–14 July) biophysical parameters were
measured within a total of 113 Elementary Sampling Units (ESU)
among different crops. ESU refers to a plot size of about 202 m.
The same field data were collected in the 2004 campaign (15–16
July) within a total of 18 ESUs among different crops. For both
years, within each ESU the averaged leaf LCC was derived by mea-
suring about 50 samples with a calibrated CCM-200 Chlorophyll
Content Meter. Green LAI was derived from canopy measurements
made with a LiCor LAI-2000 digital analyzer. Each ESU was as-
signed to a LAI value, which was obtained by the average of 24
measures (8 data readings � 3 replications). In total 9 crop types
(garlic, alfalfa, onion, sunflower, corn, potato, sugar beet, vineyard
and wheat) were sampled, with field-measured values of LAI that
vary between 0.4 and 6.3 and LCC between 2 and 55 lg/cm2. Fur-
ther details on the measurements can be found in the data acqui-
sition report (Moreno and Participants of the SPARC campaigns,
2004). Additionally, 30 random bare soil spectra with a biophysical
(LCC, LAI) value of zero were added to broaden the dataset to non-
vegetated samples. This ‘original’ dataset used in Verrelst et al.
(2012a,b, 2013) in training GPR models and hereafter refers to
‘training original’ or ‘TrOr’.

In the latter studies, the GPR uncertainty maps showed that
mean estimates over vegetated areas were associated to low
uncertainties. At the same time, considerably higher uncertainties
were encountered over areas of fallow land and bare soils. These
higher uncertainties can be attributed to the relatively poor contri-
bution of non-vegetated land cover types in the training dataset.
For this reason, we have extended the SPARC training dataset with
60 new spectra that cover all kinds of non-vegetated surfaces, i.e.
spectra with an LCC and LAI of zero. Most of the spectra were taken
over bare soil surfaces, but also man-made surfaces (e.g., build-up
areas, roads) and water bodies have been included. This ‘extended’
training dataset hereafter refers to ‘training extended’ or ‘TrEx’.
4.2. Reference and other simulated Sentinel-2 images

Because actual S2 data is not available yet, we opted for simulat-
ing it on the basis of Compact High Resolution Imaging Spectrome-
try (CHRIS) data. CHRIS provides high spatial resolution
hyperspectral data over the VNIR spectra from 400 to 1050 nm. It
can operate in different modes, balancing the number of spectral
bands, site of the covered area and spatial resolution because of
on-board memory storage reasons. The radiometric resolution
of CHRIS is 12 bits, which is the same as S2’s MSI. We made use
of nominal nadir CHRIS observations in Mode 1 (62 bands, maximal
spectral information) for the four SPARC campaign days, where field
measurements of surface properties were measured in conjunction
with satellite overpasses. CHRIS Mode 1 has a spatial resolution of
34 m at nadir. The spectral resolution provides a bandwidth from
5.6 to 33 nm depending on the wavelength. The images were cor-
rected for atmospheric effects according to the method proposed
in Guanter et al. (2005). Since most of ground truth data were col-
lected during the 2003 campaign, the nadir image from 14 July
2003 was used as reference image for spectral and spatial resam-
pling to the settings of S2. The image is shown in Fig. 2. The majority
of ESUs are located on the circular green fields, while non-vegetated
samples came from the yellowish-white2 surfaces. Because config-
ured with different pixel sizes (10, 20 and 60 m), it is of special inter-
est to simulate S2 bands as a function of pixel’s size. A nearest
neighbor strategy was used for the spatial resampling and a Gaussian
model with full-width-half-maximum spacings was used for spectral
resampling. Constrained by the spectral range of CHRIS, experimental
data according to the following three Sentinel settings were gener-
ated, ‘S2-10m’: four bands at 10 m, ‘S2-20m’: eight bands at 20 m
(4 bands at 20 m plus the S2-10m bands coarse-grained at 20 m),
and ‘S2-60m’: ten bands at 60 m (2 bands at 60 m plus the earlier
bands coarse-grained at 60 m).

Since the objective of this work was to evaluate the ability of
transferring Barrax-trained GPR models for the various Sentinel
settings to other images, multiple Mode 1 CHRIS images over ter-
restrial surfaces were arbitrarily collected. The only requirement
was that they are predominantly cloud-free and acquired during
spring or summertime. The CHRIS images include: multi-temporal
images over Barrax (Spain); July 2004, and June 2009. Multitempo-
ral images over Demmin (Germany), May and July 2006, and an
image over Los Monegros (Spain), August 2006, Las Tablas (Spain),
July 2006 and Sudbury (Canada), August 2007. The sites are



Barrax July 03 Barrax July 04 Barrax June 09 Demmin May 06

Demmin July 06 Monegros Aug 04 Las Tablas July 06 Sudbury August 07

Fig. 2. RGB compositions of CHRIS images used for evaluating the performance of the locally-trained GPR models. Barrax July 03 is the reference image.

Table 2
Description of test sites.

Site Acquisition
time

Description

Barrax, Spain (39�N, �2�E) 14 July 03 The Barrax agricultural area has a rectangular form and an extent of 5 km � 10 km, and is characterized by a flat
morphology and large, uniform land-use units. The region consists of approximately 65% dry land and 35% irrigated land,
mainly by center pivot irrigation systems. It leads to a patchy landscape with large circular fields. The annual rainfall
average is about 400 mm

Barrax, Spain (39�N, �2�E) 16 July 04
Barrax, Spain (39�N, �2�E) 19 June 09

Demmin, Germany
(53.5�N, �13.1�E)

08 May 06 The Demmin agricultural area is located in Northeast Germany and is based on a group of farms covering app. 25,000 ha.
The surface is flat at 50 m a.s.l. with some slopes along the Tollense River. The field sizes are large in this area for German
standards, about 80–250 ha. The main crops grown are wheat, barley, rape, maize and sugar. The annual rainfall ranges
from 500 to 650 nm

Demmin, Germany
(53.5�N, �13.1�E)

07 July 06

Monegros, Spain (41.2�N,
�0.1�10E)

20 August
05

Los Monegros area is a semi-arid region, sparse vegetation and shallow as well as poorly developed soils. Agricultural
activities are poor and may trigger land degradation processes. The area is characterized by various small playa lakes. These
lakes form in small karstic depression by the dissolution of evaporitic subsurface layers, mainly gypsum and limestone. The
playa lakes are usually dry in summer. The annual rainfall average is low, about 350 mm

Las Tablas, Spain (39.1�N,
�3.4�E)

03 July 06 Las Tablas de Daimiel is a Complex of shallow pools and associated marshland, which lies in the great plain of La Mancha.
The surface is flat at 600–620 m a.s.l. The site receives floodwater from the permanent freshwater Río Guadiana and the
seasonal brackish Río Gigüela, and groundwater from an underground water basin. The surrounding area is used for rain-
fed agriculture, mainly olives and wine yards. The annual average rainfall is about 450 mm

Sudbury, Canada (47.1�N,
�81.4�E)

10 August
07

Sudbury is a boreal forested region located in the northern part of Ontario. It is a flat area 350 m a.s.l. The area is
predominantly covered by black spruce and aspen stands with an understory of shrubs and herbs. The annual rainfall
average is about 820 mm
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described in Table 2. All these CHRIS images were corrected for
atmospheric effects according to Guanter et al. (2005). A cloud
masking over the Sudbury image was applied to remove the pixels
with cloud contamination. Although not really necessary for this
exercise, the Barrax images were also geometrically corrected
according to Alonso and Moreno (2005). The images were subse-
quently resampled according to above-described Sentinel settings
(S2-10m, S2-20m and S2-60m). The images are displayed in Fig. 2.
4.3. Experimental setup

The local TrOr and TrEx experimental datasets were divided into
two subsets: 80% for training and the remaining 20% for validation.
The subsequent undertaken approach was straightforward; for
each biophysical parameter (LCC, LAI) and each S2 configuration
(S2-10m, S2-20m, S2-60m) a TrOr and TrEx model were trained.
The predictive power of the developed models was subsequently
validated against the 20% validation data by using the absolute
root-mean-squared error (RMSE) and the normalized RMSE
(NRMSE [%] = RMSE/range of the parameters as measured in the
field ⁄100) to assess accuracy, and the coefficient of determination
(r2) to account for the goodness-of-fit. The NRMSE was used to
compare the performances across the different methods and
parameters. Once successfully validated, the TrOr- and TrEx-devel-
oped models were applied to the other experimental S2 images
and the mean estimates and associated uncertainties were com-
pared. To preserve a physical meaning, negative LCC or LAI esti-
mates were automatically converted to near-zero values (0.0001)
during the retrieval process.
5. Results

5.1. GPR performance with original and extended training dataset

The evaluation of the TrOr- and TrEx-developed GPR models
starts with inspection of the validation results (Table 3). Excellent
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prediction accuracies were obtained for all scenarios with a r2 be-
tween 0.92 and 0.99 and NRMSE between 3.5% and 10.5%. Note-
worthy hereby is that excellent LAI accuracies were already
achieved with only 4 bands (S2-10m). This is encouraging for LAI
mapping at high spatial resolution. The inclusion of more bands
only improved accuracies marginally. Conversely, LCC clearly
gained from the inclusion of extra bands, with a S2-20m configura-
tion (8 bands: B2-B8a) that managed to reach NRMSE down to 3.5%
(r2: 0.99). It is well known that the inclusion of red-edge bands (B5
and B6) can considerably improve biophysical parameter estima-
tion (e.g. Verrelst et al., 2012a; Delegido et al., 2011, 2013). How-
ever, the addition of 2 more bands in the blue (B1) and NIR (B9)
at a coarser resolution of 60 m (S2-60m) slightly degraded
accuracies.

Of more relevance here is the comparison of validation results
as achieved by using models developed using TrOr and TrEx. It
can be noticed that TrEx yielded slightly improved results. This is
especially the case for LAI, where for all S2 scenarios NRMSE
dropped with about 2%. Hence, the GPR model is able to incorpo-
rate more samples without losing accuracy. In fact the contrary oc-
curred; for all S2 configurations, the NRMSE kept below the
threshold of 10%.

Even though successfully validated, it is well understood that a
validation dataset is rather limited as compared to the total vari-
ability observed in satellite images. Therefore, it is expected that
inspection of the mean estimate and associated uncertainty maps
on complete scenes will allow us to better understand the perfor-
mances of both GPR models.

5.2. Local mapping over Barrax, Spain

Although LCC and LAI maps were generated for all S2 settings
from the 2003 Barrax reference site, for the sake of brevity we only
display generated maps at a high spatial resolution of 10 m. In turn
the maps will allows us to appreciate the strength of GPR. Biophys-
ical parameter retrieval was thus achieved with 4 bands only: 490,
560, 665 and 842 nm. The retrieval process was completely auto-
mated and image-based; the generation of a map was completed
almost instantaneously.

Fig. 3[top] provides mean estimate (l) maps and associated
uncertainties (±r) over the Barrax test site as generated by the ori-
ginal training dataset (TrOr). The mean estimate maps are first
briefly interpreted. Within-field variations are clearly detected in
both maps. Particularly, the pronounced spatial variation of LCC
marks prominently the irrigated circular fields with green biomass.
These irrigated fields are characterized by an LCC above 40, and an
LAI above 3. Areas with low LCC and LAI (the whitish parts) are
mainly bare soils, fallow lands or rain-fed senescent or harvested
cereal fields (wheat, barley). The same maps are provided below,
but then generated by the extended training dataset (TrEx). When
Table 3
Validation statistics (r2, absolute RMSE and NRMSE (%)) for the Sentinel configura-
tions and LCC and LAI as generated by the TrOr- and TrEx-developed GPR models.

Parameter r2 abs. RMSE NRMSE (%)

TrOr TrEx TrOr TrEx TrOr TrEx

S2-10m:
LCC 0.931 0.949 5.36 4.70 10.50 9.21
LAI 0.910 0.948 0.51 0.39 9.37 7.28

S2-20m:
LCC 0.991 0.993 1.92 1.77 3.76 3.48
LAI 0.916 0.958 0.49 0.35 9.09 6.51

S2-60m:
LCC 0.977 0.993 2.37 1.81 6.49 3.55
LAI 0.934 0.959 0.29 0.36 8.42 6.63
comparing TrOr- and TrEx-generated LCC maps it can be observed
that they are very similar. That similarity is also reflected when
correlating both maps in a scatter plot, as displayed below. The
large majority of the pixels fall right on the 1:1 line. In turn, more
differences between TrOr- and TrEx-generated LAI maps occurred
over non-green vegetated areas (e.g. fallow land and bare soils).
The addition of bare soil spectra in the training dataset led thus
to more meaningful LAI retrievals for a considerably amount of
pixels, as was also observed by the validation dataset in Table 3.
The scatter plot shows that the TrEx-developed LAI model causes
that a substantial part of pixels are interpreted towards lower
LAI estimates. While this may imply an improved accuracy, the
associated uncertainty intervals will manifest the quality of the
estimates.

Within these uncertainty maps, areas with reliable retrievals
can be clearly distinguished from areas with unreliable retrievals.
These differences are more obviously observed in the TrOr-
generated maps. Reliable retrievals (low ±r) were found on irri-
gated areas and harvested fields. This is not surprising since the
majority of training and validation samples came from these fields.
Unreliable retrievals (high ±r) were found on areas with remark-
ably different spectra, such as bright, whitish calcareous soils
(center, right), or harvested rain-fed barley fields with remaining
bright straws covering the surface (center). Hence, as earlier
noticed in Verrelst et al. (2012a,b), a practical implication of the
uncertainty maps is the detection of areas that may benefit from
a denser ground truth sampling regime. That was also the rationale
for the collection of an extended training dataset over non-
vegetated targets (i.e. TrEx). For both biophysical parameters, TrEx
resulted in reduced uncertainties across the whole map (see also
statistics in Table 4), and regions with large uncertainties have
been considerably reduced. That trend is again visualized by the
scatter plots displayed down Fig. 3; the majority of pixels fall
below the 1:1 line. Consequently, the extended training dataset
demonstrated its superiority; it was validated with high accuracy,
yielded realistic LCC and LAI maps, and these maps were delivered
with lower uncertainties.

5.3. Evaluating portability GPR models to other experimental S2
images by inspecting scatterplots

Even though promising results have been obtained over the ref-
erence Barrax site, a key requirement for operational applications
is to ensure that GPR models are portable to other regions with
similar accuracy. Henceforth, the TrOr- and TrEx-developed GPR
models were applied to simulated S2 images over various sites in
Spain, Germany and Canada. Mean estimate and uncertainty TrOr
and TrEx maps were generated and again correlated. Scatter plots
are displayed in Fig. 4. Some interesting observations can be made
from these scatter plots. For all tested images, LCC mean estimates
fell right on the 1:1 line. It confirms the earlier observed trend that
the extended training dataset did not lead to erratic LCC predic-
tions. But also the scatter plots of the uncertainty estimates con-
firms the earlier observed systematic trend; for all images the
TrEx-developed models yielded a systematic decrease in uncer-
tainty, e.g. LCC ±r hardly reached above 10 lg/cm2.

Also with respect to LAI estimates, we observed the same
pattern encountered in the reference image, i.e. the majority of
TrEx-processed pixels largely follows the 1:1 line. However, a con-
siderable amount of pixels tended to deviate towards lower esti-
mates. While this trend appeared only slightly over Barrax and
Demmin, the down-estimating occurred strongly over the scarcely
vegetated areas of Los Monegros and Las Tablas. Also over Sudbury
(Canada), LAI values were underestimated despite being domi-
nated by vegetated surfaces. But most important is that, for all
images, a significant and systematic decrease in uncertainties took



Fig. 3. Mean estimate (l) and associated uncertainty (±r) maps for LCC and LAI as generated by the S2-10m original training dataset (TrOr) [top], and extended training
dataset (TrEx) [middle]. Scatterplots of TrOr vs. TrEx are shown below.

Table 4
Overview statistics (mean ðxÞ and standard deviation (SD)) for LCC and LAI l (mean prediction) and ±r (associated uncertainty) S2-10m maps as retrieved by TrOr- and TrEx-
developed GPR models. ‘Barrax July 03’ is the reference image.

Image l LCC ±r LCC l LAI ±r LAI

TrOr TrEx TrOr TrEx TrOr TrEx TrOr TrEx
x (SD) x (SD) x (SD) x (SD) x (SD) x (SD) x (SD) x (SD)

Barrax July 03 7.71 (14.89) 7.54 (14.76) 5.53 (1.04) 4.75 (0.41) 1.21 (1.00) 0.82 (0.89) 0.58 (0.26) 0.51 (0.13)
Barrax July 04 9.48 (14.75) 9.22 (14.54) 5.50 (1.03) 4.75 (0.39) 1.37 (1.02) 1.13 (0.91) 0.60 (0.32) 0.51 (0.14)
Barrax June 09 12.44 (11.34) 10.66 (11.49) 6.10 (1.39) 4.98 (0.51) 0.91 (0.99) 0.73 (1.07) 0.73 (0.32) 0.73 (0.32)
Demmin May 06 25.38 (18.35) 24.31 (18.61) 5.75 (0.50) 5.00 (0.25) 2.37 (0.96) 1.70 (1.02) 0.66 (0.19) 0.59 (0.09)
Demmin July 06 26.60 (11.08) 25.69 (11.78) 5.53 (0.23) 4.93 (0.14) 1.85 (0.65) 1.37 (0.58) 0.55 (0.08) 0.55 (0.06)
Monegros Aug 05 2.16 (7.24) 2.42 (6.95) 7.22 (2.05) 4.96 (0.27) 1.81 (1.24) 0.24 (0.46) 1.44 (0.88) 0.67 (0.21)
Las Tablas July 06 7.99 (7.61) 7.42 (7.12) 5.67 (0.88) 4.78 (0.19 0.66 (0.83) 0.24 (0.38) 0.65 (0.35) 0.55 (0.11))
Sudbury Aug 07 6.92 (4.67) 3.65 (4.71) 8.30 (1.40) 5.97 (0.47) 2.32 (0.27) 0.63 (0.44) 1.80 (0.52) 0.96 (0.23)
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place. Particularly those areas that earlier suffered from large
uncertainties were now predicted with more certainty.

Overview statistics (mean and standard deviation) for predic-
tion and uncertainty maps are provided in Table 4. With regard
to portability evaluation, special attention goes to the mean uncer-
tainty statistics along the different images. For both GPR models
and LCC and LAI maps uncertainty statistics turned to be almost
as good as the reference image. It can thus be concluded that the
locally trained GPR model is generally applicable to other sites,
thereby reaching uncertainties on the same order of the Barrax
2003 reference site. Only the Sudbury data was processed with
considerably less certainty. Moreover, for all images, mean uncer-
tainties have been considerably reduced when comparing TrEx
with TrOr. Summarizing, the portability of the extended training
dataset (TrEx) model has been successfully evaluated as mean
uncertainties stabilized to about the same level as the reference
Barrax image.
5.4. S2-10m biophysical parameter mapping

In this section we pay attention to the TrEx-generated maps, see
Fig. 5. A first observation across the different sites is that LCC and
LAI estimations fall within expected ranges. Variations in land cov-
er are clearly observable and non-vegetated surfaces can be easily
distinguished from vegetated surfaces. A second observation is that
for most of the sites uncertainty maps show rather low values in
general. Nevertheless, noticeable within-image variations are still
occurring, particularly for LAI over the Barrax 2009 image. Only
for Sudbury (Canada) systematically greater uncertainties ap-
peared. Here a suboptimal atmospheric correction may explain
the poorer performance.

While the uncertainty maps provide some information about
the robustness of the retrievals, one has nevertheless to be careful
with its interpretation. Note that ±r represents the uncertainty
interval around the mean predictions, meaning that they need to



Fig. 4. Scatterplots of maps generated by the S2-10m original training datasets (TrOr) vs. extended training dataset (TrEx) for l LCC [top], ±r LCC [below], l LCC [below] and
±r LAI [bottom].

Fig. 5. Mean estimation (l) and uncertainty (±r) S2-10m maps for LCC and LAI as generated by the TrEx-developed GPR model.
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be interpreted in relation to the estimates. For instance, an LCC
uncertainty interval of about 5 would be more problematic for a
mean estimate of 5 lg/cm2 than of 50 lg/cm2. Therefore, to evalu-
ate the robustness of the GPR models it requires calculating the
coefficient of variation:

CV ¼ r
l
� 100: ð6Þ

CV maps provide relative uncertainties and are displayed in Fig. 6.
These maps can then be evaluated against an uncertainty threshold,
e.g. as proposed by GCOS, i.e. 20% (GCOS, 2011). Considering the ref-
erence Barrax image, dark areas represent retrievals with high
uncertainties. These are typically bare soil areas which are charac-
terized by low estimates (close to zero) and a relative high ±r. Con-
versely, it can be observed that most reliable retrievals occurred on
the irrigated agricultural sites. However, only 9.0% of the pixels fell
below the GCOS’s 20% threshold. This low number seems surprising
because the map was earlier excellently validated. It underlines the
limited meaning of a (sparse) validation dataset when inspecting a
heterogeneous map as a whole.



Fig. 6. Coefficient of variation (CV) S2-10m maps for LCC [top] and LAI [bottom] as generated by the TrEx-developed GPR model.
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When comparing the CV maps across the different sites it can be
observed that particularly over the agricultural areas meaningful
estimates were obtained. For instance, the July 2006 Demmin
LCC map is processed with low uncertainty over the whole image;
53.5% of pixels fell below the 20% threshold, and 75.6% below the
30% threshold. Also here agricultural parcels were processed with
low uncertainty. Only non-vegetated surfaces such as water bodies
are flagged with a high relative uncertainty. Spurious relative
uncertainties are also observed across the Los Monegros and Las
Tablas sites where bare soil dominate. With TrEx it was attempted
to account for these bare soils, but due to near-zero mean esti-
mates (0.0001) and, although ±r is reduced, they still fall above
near-zero threshold. CV turned therefore above 100%. Note that
these relative uncertainty maps suggest that, at 10 m resolution,
there is a greater problem of portability within an image than to
other images. Solely the Sudbury maps show systematically higher
relative uncertainties. This is probably due to the more difficult
atmospheric correction as a consequence of cloud cover and lower
sunlight intensity. The Sudbury case underlines the importance of
an accurate and consistent atmospheric correction processing
chain, which is expected to be provided by ESA (Level 2A Product).
From a practical perspective, the CV map serves as a useful quality
layer that allows masking out biophysical parameters estimates
within an acceptable uncertainty (e.g. CV < 20%), and at the same
time can mask out non-vegetated surfaces (e.g. CV > 100%).

6. Discussion

The forthcoming S2 mission opens opportunities to implement
novel retrieval algorithms in operational processing chains. The
interest is put on retrieval algorithms that are accurate, fast, ro-
bust, and sufficiently flexible to make fully use of the new S2
MSI bands. Machine learning regression algorithms (MLRAs) are
able to cope with most of these objectives. In an earlier work,
GPR was evaluated as a very promising regressor in terms of pro-
cessing speed and accuracy when using a local training dataset
(Verrelst et al., 2012a). At the same time, GPR is transparent in
terms of model development (Rasmussen and Williams, 2006); it
may provide a ranking of features (bands) and samples (spectra),
thus alleviating the black-box problem. A discussion on its perfor-
mance in comparison to alternative state-of-the-art retrieval ap-
proaches presented literature was provided in Verrelst et al.
(2012a,b). In short, in a local setting GPR reached accuracies with
S2 MSI band settings comparable (LAI) or superior (LCC) to com-
petitive approaches. Nevertheless, the portability of this statistical
approach to other sites remained questionable.

The here presented extended experimental training dataset
(TrEx) not only further improved performances but also allowed
a decrease in theoretical uncertainties. This proof of concept
underlines the importance of a broad and diverse training dataset.
More importantly, the GPR models were successfully applied to
simulated S2 images covering various sites; associated uncertain-
ties were on the same order as those generated by the reference
image. The S2-10m examples demonstrated that excellent retri-
evals can be achieved already with 4 bands at a high spatial reso-
lution of 10 m. Specifically, over fully vegetated surfaces relative
uncertainties fell below the 20% requirements proposed by GCOS.
This is encouraging for processing data from broadband sensors
with a limited number of bands such as SPOT and Landsat or high
resolution image such as Ikonos and Quickbird. On the other hand,
S2 MSI encompasses additional bands at a coarser spatial resolu-
tion of 20 and 60 m. Note hereby that MSI’s SWIR bands B11 and
B12 have not been considered in this study because of falling out-
side the CHRIS’ spectral range. These SWIR bands are known to be
sensitive to vegetation structure (Brown et al., 2000) and can better
distinguish between dried-out fallow and non-vegetated lands. It is
expected that inclusion of the SWIR bands will further improve the
retrieval quality and reduce uncertainties. Moreover, further
improvements can be achieved, which may lead to further reduc-
tion of uncertainties over non-vegetated surfaces. For instance,
one could develop a set of GPRs each working with different por-
tions of the data or features. The uncertainty intervals could be
optimally combined to improve the accuracy and reduce predic-
tion bias. Alternatively, more sophisticated kernel functions that
exploit signal-to-noise relations could be eventually considered
(Gómez-Chova and Camps-Valls, 2012; Lazaro-Gredilla et al.,
2013).

At the same time, it should be noted that in operational bio-
physical parameter retrievals, pixels over non-vegetated targets
are flagged as non-valid and are not considered in uncertainty cal-
culation (see Fang et al., 2012). Thereby, at coarser pixel’s size of
MODIS and SPOT/VEGETATION, non-vegetated areas are well-de-
fined by land cover maps, such as desert, inland water body, urban
surfaces. In contrast, at 10 m resolution non-vegetated pixels can
virtually appear anywhere. Since those kinds of pixels can be easily
identified (e.g., mean estimates of � 0, or CV > 100%), they could
actually just be discarded when interpreting uncertainty estimates.
Another remark to bear in mind is that the derived theoretical
uncertainties are directly related to what has been presented
during the training phase. Theoretical uncertainties are thus not in-
tended to replace the true physical uncertainties of the biophysical
parameter products but instead to provide additional complemen-
tary information. Physical uncertainties are mandatory to be
provided and should be obtained through comprehensive valida-
tion datasets collected on various sites, such as that coordinated
by the Committee on Earth Observation Satellites (CEOS) Land
Product Validation (LPV) community (Morisette et al., 2006).

Finally, it does not escape our attention that only a limited set of
images acquired during May-August have been evaluated. In an at-
tempt to make the training data more representative at temporal
and global scales, it should be able to cope with the majority of
global land cover types along latitudinal gradients and over time.
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Ideally, ground truth data (biophysical parameters plus associated
radiometric data) should be collected over a broad variety of ter-
restrial surfaces and vegetation types at multiple phenological
stages. This, however, is a tedious and expensive job. Alternatively,
an urging open question in this respect is to evaluate how robust
GPR performs when trained by artificial spectra, e.g. as generated
by a radiative transfer model (RTM). The advantage of RTMs is that
a broad range of land cover situations can be simulated (e.g. up to
hundred thousands), leading to a dataset several times bigger than
what can be collected during a field campaign. Operational pro-
cessing chains typically rely on such a hybrid approach (e.g. Baret
et al., 2007; Bacour et al., 2006). Initial efforts in this direction have
been undertaken by implementing a MRLA module into the ART-
MO (Automated Radiative Transfer Models Operator) toolbox,
which is a suite of RTMs into one GUI toolbox (Verrelst et al.,
2012c). As such, GPR and other MLRA models can be automatically
developed through lookup tables of simulated spectra and corre-
sponding input parameters (e.g. LCC, LAI). Nevertheless, it should
hereby be noted that, while GPR works successful for small train-
ing datasets (e.g. <2000 samples), its heavy computational load im-
pedes the use of very large datasets. This limitation has to be
resolved when aiming to develop generic models for global appli-
cations. For instance, alternative (sparse) versions of GPR have
been proposed that can handle large scale datasets, see e.g.
http://www.gaussianprocess.org/. Greedy algorithms in active
learning settings can be also an alternative: GPRs trained on differ-
ent data portions can provide a ranked list of the most informative
spectra which could be used then to generate a final model. Forth-
coming research will move in these directions, ultimately to reach
a robust and generic retrieval processing scheme.

7. Conclusions

The delivery of uncertainty information is a prerequisite for the
operational use of remote sensing products. Currently only few re-
trieval approaches provide such estimates. Gaussian Processes
Regression (GPR), a machine learning regression algorithm (MLRA)
based on Bayesian nonparametric modeling, is one of them. Such
retrieval algorithm may be of interest in view of ESA’s forthcoming
Sentinel-2 (S2) mission. In this work these uncertainty estimates
were used to evaluate the robustness and portability of locally-
trained GPR models. Hyperspectral CHRIS data was used for the
simulation of experimental S2 images, being: S2-10m (4 bands),
S2-20m (8 bands) and S2-60m (10 bands). While providing accu-
rate estimates when trained with a local dataset called SPARC
(TrOr; Barrax, Spain), it was also observed that non-vegetated pix-
els were processed with great uncertainty. In an attempt to make
the LCC and LAI GPR models more robust, an extended training
dataset was introduced (TrEx), i.e. the original SPARC dataset plus
60 spectra over all kinds of non-vegetated surfaces (e.g., soils,
man-made surfaces, water bodies). For the Barrax 2003 reference
image, TrEx-developed GPR model delivered validation errors be-
low 10% (NRMSE: 3.5–9.2%; r2: 0.95–0.99), robust LCC and im-
proved LAI estimates, and above all reduced associated
uncertainty estimates. These locally-trained GPR models were sub-
sequently applied to other experimental S2 images over various
sites across Spain, Germany, Canada. The uncertainty estimates
provided insight in the success of the models’ performance. Over-
all, GPR models are portable to other images and uncertainty esti-
mates can thereby function as quality layer to filter out unreliable
retrievals. Uncertainty intervals were on the same order as the Bar-
rax 2003 reference image and relative uncertainties over vegetated
surfaces were below the 20% requirements proposed by GCOS.
However, typically large uncertainty variation within an image
was observed due to surface heterogeneity. GPR is concluded as a
powerful regressor for remote sensing applications; not only it
delivers accurate predictions, it is currently the only MLRA that
provides associated uncertainty intervals.
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