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ABSTRACT 

 

Physically-based radiative transfer models (RTMs) help 

in understanding the processes occurring on the Earth's 

surface and their interactions with vegetation and 

atmosphere. However, advanced RTMs can take a long 

computational time, which makes them unfeasible in many 

real applications. To overcome this problem, it has been 

proposed to substitute RTMs through so-called emulators. 

Emulators are statistical models that approximate the 

functioning of RTMs. They are advantageous in real practice 

because of the computational efficiency and excellent 

accuracy and flexibility for extrapolation. We here present 

an ‘Emulator toolbox’ that enables analyzing three multi-

output machine learning regression algorithms (MO-

MLRAs) on their ability to approximate an RTM. As a proof 

of concept, a case study on emulating sun-induced 

fluorescence (SIF) is presented. The toolbox is foreseen to 

open new opportunities in the use of advanced RTMs, in 

which both consistent physical assumptions and data-driven 

machine learning algorithms live together. 

 

Index Terms— Emulator, ARTMO, Fluorescence, 

FLEX, multi-output regression algorithms 

 

1. INTRODUCTION 

 

With the forthcoming superspectral satellite missions 

dedicated to land monitoring, as well as the planned imaging 

spectrometers, an unprecedented data stream will soon 

become available. The requirements for such a large data 

stream involve processing techniques enabling the spatio-

temporally explicit quantification of vegetation properties. 

These must be retrieved with accurate, robust and fast 

methods. Physically-based model inversion methodologies 

are based on physical laws and established cause-effect 

relationships. Typically, radiative transfer models (RTMs) 

are inverted against remote sensing images to retrieve state 

variables. Nevertheless, these approaches, although 

considered as physically-sound are not straightforward. 

Various choices have to be made. Firstly, an RTM has to be 

selected whereby a trade-off between the realism and 

inversion possibility of the RTM has to be made. Secondly, 

the limited information content in the EO data and the strong 

non-linearities of the RTM results in non-unique solutions, 

that is usually dealt with a Bayesian treatment with the 

imposition of prior knowledge. These approaches are 

numerically costly, and a number of inversion strategies 

have been proposed. Most practical implementations are 

based on look-up tables (LUTs). 

In a LUT approach the RTM generates spectral outputs for a 

large range of combinations of variable values. As such, the 

inversion problem is reduced to the identification of the 

modeled reflectance set that resembles most closely the 

measured one. This process is based on querying the LUT 

and applying a cost function on a pixel-by-pixel basis. In 

order to produce accurate mappings, LUTs need to have fine 

sampling in parameter space, which results in a very large 

number of RTM runs, which is a computationally 

demanding task. One approach to mitigate this has been to 

use surrogate models of the RTM, often called emulators 

[1]. Emulators are statistical constructs that are able to 

approximate the RTM, although at a fraction of the 

computational cost, and in some cases, providing an 

estimation of uncertainty, [1].  

Over the last few years, various RTMs have been brought 

together and standardized within a toolbox called ARTMO 

(Automated Radiative Transfer Models Operator) [2]. These 

RTMs can be operated in a semi-automated fashion for any 

kind of optical sensor operating in the visible, near-infrared 

and shortwave infrared range (400-2500 nm). Having 

multiple RTMs available, this platform would serve 

perfectly to the development of an emulator toolbox. This 

brings us to the following main objective: to develop an 

emulator toolbox that is able to reproduce the outputs of any 

of the RTMs available within ARTMO. A second objective 

is to demonstrate the utility of the toolbox. 

 

2. ARTMO 

The ARTMO Graphic User Interface (GUI) is a software 

package that provides essential tools for running and 

inverting a suite of optical RTMs, both at the leaf and at the 

canopy level. ARTMO facilitates consistent and intuitive 

user interaction, thereby streamlining model setup, running, 

storing and output plotting. Essentially, ARTMO allows: (1) 
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to configure and run leaf and canopy RTMs, independently 

or combined, in an intuitive way through various GUIs with 

input options to insert single values, value ranges, or 

imported external datasets; (2) to simulate and store a 

massive quantity of spectral output based on LUT approach 

in a relational database; (3) to plot groups of simulated 

spectra in the same plotting window with color gradients as 

a function of input parameters; (4) to export simulated 

spectra and associated meta-data to a text file for further 

processing; (5) to analyze and apply retrieval techniques in 

order generate maps of biophysical parameters from optical 

remote sensing imagery. Currently the following RTMs are 

implemented: (1) at the leaf scale: PROSPECT-4, 

PROSPECT-5, DLM, LIBERTY; (2) at the canopy scale: 

SAIL, FLIGHT, INFORM; and combined: SCOPE. The 

toolbox is freely downloadable at http://ipl.uv.es/artmo/. 

 

3. ARTMO’S EMULATOR TOOLBOX 

The emulator tool was developed based on ARTMO’s 

machine learning regression algorithm (MRLA) toolbox [3]. 

From this toolbox the following three MLRAs possess multi-

output (MO) predictive capabilities and are therefore used as 

basis for the emulator: (1) partial least squares regression 

(PLSR), (2) neural networks (NN) and (3) kernel ridge 

regression (KRR). Similarly as in the MLRA toolbox, the 

MO-MLRAs need to go through a training phase, which can 

be based on RTM or on field data. Whereas the MLRA 

toolbox trains nonparametric regression models to retrieve 

biophysical parameters, the emulator toolbox is built the 

other way around and instead generates output spectra. Of 

importance hereby is the more closely the emulated spectra 

resembles the RTM-generated spectra, the better the 

approximation can function as an emulator of the RTM. 

Therefore, an important step is to validate the MLRA model. 

In short, the emulator toolbox allows the user to control the 

following steps:  

1. Input: selection of ARTMO-generated LUT or external 

data. Input variables can be selected. 

2. Settings: selection of a MO-MLRA, splitting of the data 

into training and validation. Cross-validation sampling 

options are provided and multiple MO-MLRAs can be 

selected. 

3. Validation: This step validates the configured MO-

MLRAs though the root mean square error (RMSE) 

difference between validation spectra and emulated 

spectra. The GUI provides an overview table, which 

allows selecting the best-performing MO-MLRA model.  

4. Emulator test: The chosen surrogate model can be 

tested against the actual RTM for user-defined input. As 

such, both outputs are visualized and the accuracy and 

gain in processing speed are calculated.  

5. Output: Finally, the chosen model can be applied either 

to generate a LUT or even to be applied in ARTMO’s 

scene generator to generated simulated scenes.  

4. CASE STUDY: EMULATING SIF PROFILES 

 

As a proof of concept, we subsequently applied it for 

evaluating the performance of the three MO-MLRAs on 

their capability to emulate the SVAT model SCOPE. 

SCOPE is essentially an energy budget model that calculates 

the whole energy budget of a canopy, with sun-induced 

chlorophyll fluorescence (SIF) as one of their outputs. These 

simulations are used within applications of ESA’s candidate 

EE8 FLuorescence Explorer (FLEX) mission, e.g. for the 

development of artificial scenes as observed by FLEX and 

for sensitivity studies. Here we will evaluate whether the 

emulator reaches acceptable accuracies and how much 

processing speed is gained. SCOPE is first briefly outlined, 

followed by the experimental setup of the LUT generation. 

Emulating results are then presented and discussed. 

 

4.1. Simulated data: SCOPE v1.60 

 

SCOPE is a vertical (1-D) integrated radiative transfer and 

energy balance SVAT model [4]. It calculates radiation 

transfer in a multilayer canopy, in order to obtain reflectance 

and SIF in the observation direction as a function of the 

solar zenith angle and leaf inclination distribution. The 

distribution of absorbed radiation within the canopy is 

calculated with the SAIL model. The distribution of 

absorbed radiation is further used in a micro-meteorological 

representation of the canopy for the calculation of 

photosynthesis, fluorescence, latent and sensible heat. The 

fluorescence and thermal radiation emitted by individual 

leaves is finally propagated though the canopy.  

Compared to an earlier release, various improvements have 

been included in the new SCOPE v1.60, such as processing 

speed-up through parallel computing routines. Nevertheless, 

SCOPE v1.60 still takes about one second to finalize a 

single simulation. Because SCOPE v1.60 is equipped with 

over 30 input variables and offers a wide range of output 

products, all types of input-output sensitivity studies can be 

conducted. However, this comes at a computational cost. In 

view of FLEX, we are mostly interested in SIF outputs. We 

will therefore examine the capability of the MO-MLRAs to 

emulate SCOPE SIF profiles. 

 

4.2. Experimental setup 

 

Although SCOPE is equipped with over 30 input variables, 

not all of them play a role in the generation of SIF outputs. 

To find out their relative importance, in an earlier work a 

global sensitivity analysis (GSA) was employed [5]. It was 

found that 11 key variables explained 95.5% of the variance 

of total SIF (integral of the fluorescence broadband signal). 

These variables, listed in Table 1, were therefore used to 

generate SCOPE LUTs. 

A fully random LUT within the variable space with min-max 

boundaries as given in Table 1 and a uniform distribution 
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was generated using SCOPE v1.60 for 100, 500 and 1000 

samples. Their processing time is given in Table 2. These 

LUTs were then entered into the Emulator toolbox, with the 

SIF variable as selected output. Within the ‘Settings’ 

window, for each LUT all three MO-MLRAs were selected. 

In order to speed up the model development, prior to train 

the MO-MLRAs a PCA was applied and the first 5 

components were retained and used for data projection. 

Further, in order to generate more robust validation results, a 

10-fold cross-validation sub-sampling procedure was 

applied. The generated RMSE statistics are then averaged 

over the multiple training and test subsets. 

 

Table 1. SCOPE input variables that drive canopy-leaving 

fluorescence and their ranges. 

 
 

5. RESULTS SIF EMULATION 

 

Table 2 displays the RMSECV goodness-of-fit statistics of 

the validation dataset and the training and validation 

processing computational cost of the three MO-MLRAs for 

the 100, 500 and 1000 random samples datasets. The 

normalized RMSE (NRMSECV) indicates that relative errors 

fall below 3%, but significant differences across the three 

MO-MLRAs can be observed. For the three exercises PLSR 

performed poorest in accuracy. NN was validated as best 

performing for the datasets of 500 and 1000 samples, closely 

followed by KRR. Relative errors fell below 0.5%. 

Therefore, NN and KRR’s predictive accuracy improved 

when more samples are given to the model. However, NN 

needed significantly more time to train the model. Note that 

the PCA transformation considerably improved 

computational efficiency the training phase; without PCA it 

took up to a few hours to develop the NN model. In turn, 

KRR, although being slightly less accurate than NN, needed 

only a few seconds to train a model. While these goodness-

of-fit statistics provided a general indication of the model 

performance. To visualize the ability of these models to 

emulate SCOPE SIF outputs, the best and worst matching 

emulation are plotted for the three MO-MLRAs for the case 

of the 1000 samples (see Fig. 1). It can be observed that for 

each MO-MRLA the best validated SIF profile perfectly 

matched the original SCOPE profile. More interesting is to 

inspect the worst emulated SIF profile. Large differences 

can be observed in case of PLSR; it completely missed the 

close-to-zero SIF profile. Also KRR overestimated a weak 

SIF profile, but considerably less pronounced. Interestingly, 

for NN a similar weak SIF profile was encountered as best 

matching. Here, as worst match, a slight overestimation 

occurred for a pronounced SIF profile. Considering the close 

approximation of the SCOPE SIF profile, it shows the 

powerful potential of NN to approximate the physical RT 

model SCOPE. 

 

Table 1. MO-MLRAs goodness-of-fit results and processing 

speed for 100, 500 and 1000 SCOPE samples. 

 
 

 
Fig. 1. Best (B) [blue] and worst (W) [red] emulated [solid 

line] vs. reference RTM SCOPE [dashed line] fluorescence 

spectra in case of 1000 samples (10-k CV). 

 

The MO-MLRA models were used to generate emulated SIF 

profiles for the input data of the 100, 500 and 1000 random 

samples within the Table 1-defined input boundaries. As 

such the gain in processing speed can be compared to the 

original simulations be derived. The processing time of 

SCOPE and the emulator were recorded and the gain in 

processing times was calculated. It can be viewed (see Table 

3) that the emulator reconstructs the SIF profiles much faster 

than the original SCOPE RTM. Approximately, NN delivers 

SIF about 50 times faster, PLSR about 400 times faster and 

KRR even about 800 times faster than the SCOPE model. 

Hence, given that KRR is also fast in training, it is a 

promising MO-MLRA to function as emulator; it is about 16 

times faster than NN and almost as accurate. 

 



Table 3. SCOPE and MO-MLRA processing speed and gain 

in speed for 100, 500 and 1000 samples. 

 
 

Finally, to illustrate the performance of the MO-MLRA on 

their ability to reconstruct SIF profiles, they are visualized 

for the 1000 samples in Fig. 2. The top-left panel displays 

the original SCOPE SIF profiles, the other panels display the 

1000 emulated profiles for the three MO-MLRA models. 

Although these profiles were generated by 11 randomly 

varying variables, the profiles were color-plotted as a 

function of Cab and LAI. With these graphs it can be 

observed that PLSR cannot be considered as an accurate 

emulator; PLSR does not reach the same magnitude as the 

original SCOPE profiles and, more problematic, leads to 

negative SIF profiles. This effects were actually expected 

because PLS, even being a supervised regression algorithm, 

can only find orthogonal transforms (rotations) and apply a 

linear regression model. In turn, KRR and NN delivered 

much more realistic profiles and can cope with the 

nonlinearities of the problem; they are within the same 

magnitudes as the original SCOPE profiles; and only a few 

profiles turn out to fall slightly below zero. For the large 

majority of samples, KRR and NN reconstructed the 1000 

SIF spectra with precision. 

 
Fig. 2. Original 1000 SCOPE-generated SIF spectra (top-

left) and emulated 1000 spectra with three MO-MLRA 

models. The SIF spectra are color-scaled against LAI and 

CHL. 

6. CONCLUSIONS 

 

Emulators are statistical constructs that approximate the 

functioning of a physically-based RTM. They provide great 

savings in memory and tremendous gains in processing 

speed while yielding similar accuracies. This emulating 

approach opens many new research and operational remote 

sensing opportunities. To facilitate the use of emulators, 

ARTMO’s new ‘Emulator toolbox’ enables analyzing three 

multi-output machine learning regression algorithms (MO-

MLRAs), both linear (PLSR and nonlinear (KRR, NN). The 

toolbox enables the user to train the MO-MLRA models 

with data coming from RTMs that are available within 

ARTMO. Various options are provided that can optimize the 

training phase, such a PCA pre-processing step, ranging 

training/validation distributions or through cross-validation 

sub-sampling procedures. Performance and processing speed 

of the MO-MLRAs are then calculated. A successfully 

validated MO-MLRA can then function as emulator. 

We analyzed the ability of the implemented MO-MLRAs to 

substitute the SVAT model SCOPE in the generation of sun-

induced fluorescence (SIF) outputs. NN and KRR emulated 

SIF profiles with great precision (relative errors below 0.5% 

when trained with 500 or more samples), and this with a gain 

in processing speed of about 50 (NN) up to about 800 

(KRR) times faster than SCOPE v1.60. It is foreseen that the 

emulator toolbox will open up a diverse range of new 

applications using advanced RTMs, such as improved 

inversion strategies, and rendering of simulated scenes in 

preparation for new satellite missions. 
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