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Abstract—Inversion of radiative transfer models (RTM) using
a lookup-table (LUT) approach against satellite reflectance data
can lead to concurrent retrievals of biophysical parameters such
as leaf chlorophyll content (Chl) and leaf area index (LAI),
but optimization strategies are not consolidated yet. ESA’s up-
coming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to en-
sure continuity of old generation satellite sensors by providing
superspectral images of high spatial and temporal resolution.
This unprecedented data availability leads to an urgent need for
developing robust, accurate, and operational retrieval methods.
For three simulated Sentinel settings (S2-10 m: 4 bands, S2-20 m:
8 bands and S3-OLCI: 19 bands) various optimization strategies in
LUT-based RTM inversion have been evaluated, being the role of
i) added noise, ii) multiple best solutions, iii) combined parameters
(Chl × LAI), and iv) applied cost functions. By inverting the
PROSAIL model and using data from the ESA-led field campaign
SPARC (Barrax, Spain), it was demonstrated that introducing
noise and opting for multiple best solutions in the inversion consid-
erably improved retrievals. However, the widely used RMSE was
not the best performing cost function. Three families of alternative
cost functions were applied here: information measures, minimum
contrast, and M-estimates. We found that so-called “Power di-
vergence measure”, “Trigonometric”, and spectral measure with
“Contrast function K(x) = − log(x) + x”, yielded more ac-
curate results, although this also depended on the biophysical
parameter. Particularly, when simultaneous retrieval of multiple
biophysical parameters is the objective then “Contrast function
K(x) = − log(x) + x” provided most consistent optimized es-
timates of leaf Chl, LAI and canopy Chl across the different
Sentinel configurations (relative RMSE: 24–29%).

Index Terms—Automated radiative transfer models operator
(ARTMO), chlorophyll content (Chl), leaf area index (LAI),
lookup-table (LUT)-based inversion, PROSAIL, radiative transfer
models (RTMs), Sentinel-2 (S2), Sentinel-3 (S3).
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I. INTRODUCTION

L EAF chlorophyll content (Chl) and green leaf area index
(LAI) are among the most important biophysical parame-

ters retrievable from optical Earth observation (EO) data [1],
[2]. These parameters give insight in the phenological stage
and health status (e.g., development, productivity, stress) of
crops and forests. Chl can be considered as a bio-indicator
of the plant’s actual health status [3], [4], and of vegetation
gross primary productivity [5]. Besides, LAI characterizes the
structure and functioning of vegetation cover [6]. Because of
its role as the interface between ecosystem and atmosphere
and involvement in many processes, Chl and LAI are cru-
cial in aboveground biomass estimation, vegetative evapo-
transpiration calculation, and the energy-exchange evaluation
of terrestrial vegetation [7]–[10].

Currently, a multitude of EO data is available already, and
this availability will increase enormously in the near future
which will boost applications. The European Space Agency
is now developing five new EO missions called Sentinels
specifically for the operational needs of the “Global Monitoring
for Environment and Security” (GMES) programme [11]. Five
different Sentinel concepts have been planned. In particular,
Sentinel-2 (S2) and Sentinel-3 (S3) are designed to provide
continuity to monitoring services over global terrestrial surfaces
by relying on superspectral (more than 10 and less than 50
bands, i.e., in-between multispectral and hyperspectral resolu-
tion) high spatial resolution (S2) and medium spatial resolution
(S3) observations. Both Sentinel-2 and Sentinel-3 missions
are based on a constellation of two satellites each to fulfil
revisit and coverage requirements, providing robust data sets
for GMES services. At the same time, further improvements
of existing monitoring services from space are needed to bet-
ter understand the environment dynamics at local and global
scales. Therefore, along with these new missions, there is a
demand of enhanced retrieval strategies of relevant biophysical
parameters [12].

When it comes to the development of retrieval methods from
EO data, it is mandatory to invest in methods that are both accu-
rate and robust and at the same time can be applied in an opera-
tional context. Simple, yet widely accepted, empirical methods
such as those based on vegetation indices, red-edge position,
or spectral integral approaches work well under particular
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sun-view geometry and for specific vegetation phenology, but
they tend to produce inaccurate results when applied over a
broad range of land cover types and optical and geometric
conditions encountered in satellite images [13], [14]. Canopy
reflectance, after all, is the result of several intricately coupled
physical processes (i.e., canopy characteristics, soil background
effects, sun-view geometry), which makes it difficult to es-
timate the influence of a single biophysical parameter from
experimental data [15].

Contrary to empirical approaches, canopy radiative transfer
models (RTMs) explicitly interpret driving processes between
solar radiation and the elements constituting the canopy using
physical laws. From a radiative transfer point of view, a vege-
tation canopy can be considered as an ensemble of scattering
elements, bounded by the background vegetation and soil [16].
In these RTMs, top-of-canopy (TOC) reflectance is a function
of canopy structural variables such as LAI, sun and viewing
geometry, optical leaf and soil properties. In the same way,
leaf optical properties can be described by a leaf RTM, i.e., as
a function of leaf structure and biochemical parameters such
as Chl. When a leaf RTM is coupled with a canopy RTM
then leaf biochemical and canopy biophysical parameters (e.g.
Chl and LAI) can be simultaneously retrieved through model
inversion [17].

Because of being physically based, inversion of canopy
RTMs against actual EO data is generally considered as one
of the most accurate approaches to map biophysical parame-
ters [18], [19]. However, this approach is not straightforward.
According to Hadamarad postulates, mathematical models of
physical phenomena are mathematically invertible if the solu-
tion of the inverse problem to be solved exists, is unique and
depends continuously on variables [20]. Unfortunately this as-
sumption is not met. In fact, the inversion of canopy RTMs is by
nature an ill-posed problem mainly for two reasons [21]: On the
one hand, several combinations of canopy biophysical and leaf
biochemical parameters have a mutually compensating effect
on canopy reflectance thus leading to very similar solutions. On
the other hand, model uncertainties and simplifications (e.g.,
1-D nature of some models) may induce large inaccuracies in
the modeled canopy reflectance [22].

Over the past two decades, different successful strategies
have been proposed to reduce the drawback of ill-posedness,
including Lookup-table (LUT)-based inversion strategies [19],
[20], [23]–[26], hybrid approaches in which LUTs are gen-
erated to feed machine learning approaches such as artificial
neural network methods [27]–[30], Bayesian systems [31] and
support vector regression [21], or LUT-based iterative numer-
ical optimization methods [32]. The main advantage of LUT-
based inversion approaches is that it can be fast because the
most computationally expensive part of the inversion procedure
is completed before the inversion itself.

LUT-based inversion in its essential form, i.e., direct com-
parison of LUT spectra against an observed spectra through a
cost function (also in some cases known as distance, merit func-
tion, metric or divergence measure), constitutes the majority of
applied inversion approaches. Various regularization strategies
have been proposed to increase the robustness of the estimates:
1) the use of prior knowledge about model parameters [19],

[23], [33]–[35], 2) the use of multiple best solutions (instead of
the single best solution) [24], [33], [36], [37], 3) adding noise to
account for uncertainties attached to measurements and models
[24], [36], [37], and, 4) the combination of single variables
into synthetic variables such as the canopy level content of
absorbing materials [18], [25], [29], [38], e.g., canopy Chl,
which is the product of leaf Chl and LAI.

Nevertheless, in view of applying these regularization strate-
gies into a more operational context, aforementioned studies
are constrained in various ways. First, while the majority of
reviewed studies focused on optimizing a single LUT-based
inversion problem, the mutual impact of proposed optimizing
strategies has not been systematically assessed. Second, in
most of these studies the well-known root mean square error
(RMSE) was used as cost function between simulated and
measured spectra. However, in case of outliers and nonlinear-
ity, the residuals are distorted and therefore the key assump-
tion for using RMSE (Gaussian or zero mean white noise
distribution of residuals) is violated [39]. The latter authors
suggested that alternative cost functions may provide a more
robust way to estimate biophysical parameters since they allow
retrievals for cases where errors are not normally distributed
and allow to deal with nonlinear high parametric problems.
The availability of a large number of cost functions gives a
high degree of flexibility, since it allows model optimization
for a wide range of error distributions. Hence, alternative
cost functions deserve to be evaluated in view of the above-
described optimizing strategies. Third, the majority of these
studies focus on a specific vegetation type such as crop types,
identified within the image [24], [37], [40]. This assumes
that up-to-date knowledge of land cover types is available,
which is usually not the case in an operational context. More-
over, eventually LUT-based inversion should be applicable not
only for agroecosystems but over all natural and semi-natural
vegetated surfaces. And fourth, from a practical perspective,
hardly any of aforementioned studies provide links to software
packages where proposed optimization strategies have been
implemented.

In this paper, we aim to systematically evaluate differ-
ent LUT-based inversion strategies in view of forthcoming
Sentinel-2 and Sentinel-3 data streams for the benefit of im-
proved pixel-wise estimation of biophysical parameters. The
mutual impact of the following strategies were investigated:
1) the role of number of bands (e.g., different Sentinel band
settings), 2) the role of added noise, 3) the role of multiple
best solutions, 4) the role of combined variables, and finally:
5) the role of applied cost functions in these strategies. Data
used came from the ESA-led field campaign SPARC, http://
www.uv.es/leo/sparc/, which took place on the agricultural test
site Barrax, Spain.

The remainder of the paper is organized as follows. Section II
revises state-of-the-art semiautomatic LUT-based inversion ap-
proaches and briefly describes the developed toolbox ARTMO.
Section III outlines different families of cost functions, briefly
describes the data set used, the Sentinel-2 and -3 imagery and
generated LUTs. Section IV shows the numerical results and
final maps. Section V discusses main findings and Section VI
concludes the paper.

http://www.uv.es/leo/sparc/
http://www.uv.es/leo/sparc/
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II. STATE-OF-THE-ART AUTOMATED

LUT-BASED INVERSION

Despite that numerous LUT-based inversion strategies have
been proposed, only a few of these approaches have been
implemented into a software package to enable semiautomatic
mapping of biophysical parameters. One example is CRASh
(Canopy variable Retrieval Approach based on PROSPECT
and SAILh), designed for the concurrent retrieval of biophys-
ical parameters from high-resolution EO data [35]. A similar
toolbox was developed by [41], called REGLEX (REGularized
canopy reFLECtance). This modeling tool couples leaf optics
(PROSPECT), canopy reflectance (ACRM), and atmospheric
radiative transfer (6SV1) model components, facilitating the
direct use of at-sensor radiances in green, red and near-infrared
wavelengths for the inverse retrieval of leaf Chl and LAI. An
attractive feature of these toolboxes is that the inversion can be
set class-based, thereby making use of LUT configurations per
land cover class (e.g., agricultural fields). A drawback is that
in each of these approaches only one leaf or canopy model can
be chosen. In reality, however, a variety of RT models exists,
each of them with specific characteristics, e.g., 1-D models for
interpretation of homogeneous vegetated land covers and 3-D
models for interpretation of heterogeneous vegetated land cov-
ers. In an attempt filling up this gap, we have recently developed
an alternative toolbox, ARTMO (Automated Radiative Transfer
Models Operator) [42], [43], in which the user can choose
from multiple leaf and canopy RT models to generate class-
based LUTs.

ARTMO is a GUI toolbox written in Matlab. This innovative
toolbox provides essential tools for running and inverting a suite
of plant reflectance models. In short, the toolbox enables the
user: i) to choose between various plant leaf (e.g., PROSPECT-
4, PROSPECT-5) and canopy reflectance models (e.g., 4SAIL,
SLC, FLIGHT), ii) to choose between spectral band settings
of various air- and space-borne sensors or defining new sensor
band settings, iii) to simulate a massive amount of spectra and
storing them in a relational database, iv) to evaluate LUT-based
model inversion strategies against validation data given selected
cost functions, optimization options and accuracy estimates
and apply then a selected strategy to an EO image. More-
over, ARTMO is able to run inversions per land cover class,
which permits realistic retrievals of biophysical parameters
over patchy landscapes. For instance, agricultural fields can be
interpreted by a 1-D model while forests can be interpreted
by a 3-D model. Here, ARTMO has been used for evaluation
LUT-based inversion over an agroecosystem that spans various
crop types.

III. METHODOLOGY

A. Cost Functions

Numerical solution of the inverse problem adjusts the model
parameters such that model predicted values closely match the
measured values. The match between model output and data
is usually based on minimizing the sum of least squares, as
in RMSE. Another way to obtain better estimates is using
alternative cost functions, e.g., as those introduced in [39]. The
latter authors investigated several families of cost functions

on simulated reflectance data for conifer and broadleaf cover.
In general, statistical distances can be categorized into three
families: information measures, minimum contrast, and M-
estimates. Although they all represent “distance” or “metric”
between two functions the main difference of these families
is the way how reflectance functions are interpreted and in
what space. These metric families came from different areas
of mathematics and statistics and play an important role in
image processing, engineering, medicine and code theory. They
allow to take into the account nonlinearity of the problem,
robustness and skewness of the noise to provide better retrievals
of biophysical parameters. Moreover, contrary to using one cost
function, the availability of a large number of statistical dis-
tances or divergence measures gives a high degree of flexibility,
since it allows model optimization for different assumptions on
the nature and properties of errors [39].

Based on the research in [39] we initially compared all the
available cost functions (62) and selected three cost functions
from the different families which may provide promising results
as alternative to RSME. Let D[P,Q] represent a distance be-
tween two functions, where P = (p(λ1), . . . , p(λn)) is satellite
and Q = (q(λ1), . . . , q(λn)) is LUT correspondent reflectances
and λ1, . . . , λn represent n bands.

First cost function belongs to the family of information
measures. This class represents different distances between two
probability distributions and were widely explored throughout
mathematical applications, see [44]. In this case we consider re-
flectance as probability distribution function and normalization
is required (sum of probabilities is 1) prior to numerical appli-
cation. Within this family, the “Power divergence measure” was
introduced in [45] and it has the following form:

D[P,Q]=

λn∑
λi=1

p(λi)
{[p(λi)/q(λi)]

α − 1}
α(α+ 1)

, α ∈ (−∞,+∞).

(1)

Note that in some cases for parameter α = −2,−1,−1/2, 0, 1
we can get the following already known measures: the Ney-
man chi-squared measure divided by 2, the Kullback–Leibler
divergence, the twice-squared Hellinger distance, the likelihood
disparity, and the Pearson’s chi-squared divided by 2. More
information about all the above measures can be found in [44].

Second cost function belongs to the family of M-estimates
which are a broad class of estimators that are obtained as
the minima of sums of functions of the data. Least-squares
estimators and many maximum-likelihood estimators are M-
estimators. They are obtained by replacing square loss function
into another more general convex function, see [46]. In this case
we interpret reflectance as nonlinear regression function. One
of the well-known distances from this class is RMSE which,
for Gaussian error distributions, is consistent, asymptotically
normal and asymptotically efficient. However, when the error
distribution is non-Gaussian or nonsymmetric, the RMSE can
result in large losses of efficiency. Thus, for RMSE the function
can be represented in the following form:

D[P,Q] =

√∑λn

λi=1 (p(λi)− q(λi))
2

n
. (2)
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An alternative function with parameters α, β > 0, is the so-
called “trigonometric” distance, which is defined as

D[P,Q] =

λn∑
λi=1

αx(λi) arctan (β ∗ x(λi))

− α
log

(
β2 (x(λi))

2 + 1
)

2β
(3)

where x(λi) = p(λi)− q(λi). It is known that errors in this
case are distributed by a logistic distribution. The parameters
α, β provide better flexibility to match the cost function to the
error distribution. The user needs to identify them by statistical
learning. As it was mentioned above, M-estimates (those which
differ from RMSE) corresponds to the maximum likelihood
estimator of non-Gaussian errors (chi-square, gamma, etc). It
means, for example in (3), that if the cost function provides
better biophysical parameter estimation the errors have logistic
distribution. Other distances can be also reinterpreted in form of
the distributions of errors. Thus, identifying the best performing
cost function and identifying the parameters is nothing else then
estimation of observation errors.

The third cost function belongs to the family of minimum
contrast estimates, where we consider reflectance as a spectral
density function of some stochastic process. The basic idea
behind it is to minimize the distance (contrast) between a
parametric model and a nonparametric spectral density. Since
one can interpret satellite observations as measurements in the
spectral domain these distances seem to be a natural choice for
analyzing satellite data. We consider the following spectral dis-
tance with the so-called “Contrast function K(x) = −log(x) +
x”, which were introduced in [47], [48], then distance has
the form

D[P,Q] =

λn∑
λi

{
− log

(
q(λi)

p(λi)

)
+

q(λi)

p(λi)

}
. (4)

More information about these and other cost functions can
be found in [39].

B. SPARC Database

Ideally, LUT-based inversion strategies should be validated
by a data set that represents the same variety of actual crops
and conditions as remotely observed by the optical sensor. A
diverse field data set, covering various crop types, growing
phases, canopy geometries and soil conditions was collected
during SPARC (SPectra bARrax Campaign). The SPARC-2003
and SPARC-2004 campaigns took place in Barrax, La Mancha,
Spain (coordinates 30◦3′N, 28◦6′W, 700 m altitude). The test
area has an extent of 5 km × 10 km, and is characterized by a
flat morphology and large, uniform land-use units. The region
consists of approximately 65% dry land and 35% irrigated land.
The annual rainfall average is about 400 mm.

In the 2003 campaign (12–14 July) biophysical parameters
were measured within a total of 113 Elementary Sampling
Units (ESU) among different crops. ESU refers to a plot size

of about 202 m2. The same field data were collected in the
2004 campaign (15–16 July) within a total of 18 ESUs among
different crops. Leaf Chl was derived by measuring within each
ESU about 50 samples with a calibrated CCM-200 Chlorophyll
Content Meter [49]. Green LAI was derived from canopy
measurements made with a LiCor LAI-2000 digital analyzer.
Each ESU was assigned to a LAI value, which was obtained
as a statistical mean of 24 measures (8 data readings × 3
replications) with standard errors between 5 and 10% [50].
Contrary to earlier studies [51], [52], no bare soil samples were
added in the validation data set because inversion of canopy
RTMs is only relevant over vegetated land covers.

For both years, we have a total of 9 crops (garlic, alfalfa,
onion, sunflower, corn, potato, sugar beet, vineyard and wheat),
with field-measured values of LAI that vary between 0.4 and
5.9 (μ: 3.0, SD: 1.5) and Chl between 10 and 52 (μ: 38, SD:
14) μg/cm2. Further details on the measurements can be found
in [53], [54].

C. Sentinel-2 and -3 Configurations

1) Sentinel-2: The upcoming Sentinel-2 (S2) satellites capi-
talizes on the technology and the vast experience acquired with
SPOT and Landsat over the past decades. S2 will be a polar-
orbiting, superspectral high-resolution imaging mission [55].
The mission is envisaged to fly a pair of satellites with the first
planned to launch in 2013. Each S2 satellite carries a Multi-
Spectral Imager (MSI) with a swath of 290 km. It provides
a versatile set of 13 spectral bands spanning from the visible
and near infrared (VNIR) to the shortwave infrared (SWIR),
featuring four bands at 10 m, six bands at 20 m and three
bands at 60 m spatial resolution comparable to Landsat and
SPOT. S2 incorporates three new bands in the red-edge region,
which are centered at 705, 740 and 783 nm. The pair of S2
satellites aims to deliver data taken over all land surfaces and
coastal zones every five days under cloud-free conditions, and
typically every 15–30 days considering the presence of clouds
[56]. To serve the objectives of GMES, S2 satellites will provide
imagery for the generation of high-level operational products
(level 2b/3) such as land-cover and land-change detection maps
and geophysical variables such as Chl, LAI and leaf water
content maps. To ensure that the final product can meet the user
requirements, the GMES user committee defined an accuracy
goal of the biophyical products of 10% [56].

2) Sentinel-3: The pair of Sentinel-3 (S3) satellites will
provide global, frequent and near real-time ocean, ice and land
monitoring. It continues Envisat’s altimetry, the superspectral,
medium-resolution VNIR ocean and land-surface observations
of ERS, Envisat and SPOT-Vegetation, and includes enhance-
ments to meet the operational revisit requirements and to
facilitate new products and evolution of services. S3 will be
equipped with the Ocean and Land Colour Instrument (OLCI),
which will provide continuity of the existing MERIS mission.
Six new bands have been added upon recommendations to
improve the existing MERIS atmospheric and aerosol correc-
tion capabilities [57]. The OLCI ground resolution requirement
depends whether the data are acquired above open ocean,
or coastal zones and land. OLCI products provide a spatial
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TABLE I
TESTED SENTINEL CONFIGURATIONS

resolution at sub-satellite point of 1200 m over open ocean and
sea ice, and 300 m over coastal zones, while land products
provide a resolution of 300 m globally. OLCI aims to be
optimized to measure the ocean color over the open ocean and
coastal zones, however, in such a way that it will not saturate
over land targets. Its spectral bands are in the VNIR spectral
range (from 403 to 1040 nm) with bandwidths ranging from
3.75 to 40 nm.

3) Simulated Sentinel-2 and -3 Imagery: S2 MSI and S3
OLCI imagery were simulated on the basis of Compact High-
Resolution Imaging Spectrometry (CHRIS) data. CHRIS pro-
vides high spatial resolution hyperspectral data over the VNIR
spectra from 400 to 1050 nm. It can operate in different modes,
balancing the number of spectral bands, site of the covered area
and spatial resolution because of on-board memory storage rea-
sons [58]. We made use of nominal nadir CHRIS observations
in Mode 1 (62 bands, maximal spectral information), which
were acquired during the SPARC campaign. CHRIS Mode 1
has a spatial resolution of 34 m at nadir. The spectral resolution
provides a bandwidth from 5.6 to 33 nm depending on the
wavelength. The images were geometrically corrected [59],
followed by atmospheric correction according to the method
proposed in [60]. The nadir image from 12 July 2003 was used
for spectral and spatial resampling to the settings of S2 and S3.
Because featuring bands with different pixel sizes (10, 20 and
60 m), it is of special interest simulating S2 configurations both
as a function of band settings and pixel size. Nearest neighbor
was used for the spatial resampling and a Gaussian model with
FWHM spacings was used for spectral resampling. Constrained
by the spectral range of CHRIS, the following three Sentinel
settings were generated, “S2-10 m”: four bands at 10 m,
“S2-20 m”: eight bands at 20 m (4 bands at 20 m plus the
S2-10 m bands coarse-grained at 20 m), and “S3-300 m”: S3
OLCI configuration coarse-grained at 300 m. An overview of
these configurations is provided in Table I. Note that we did not
consider the S2 bands at 60 m because of being atmospheric
bands. These bands are intended for atmospheric applications,
such as aerosols correction, water vapor correction and cirrus
detection [56] and are unable to deliver TOC reflectances that
are interpretable by canopy RT models.

D. LUT Generation

From the available models in ARTMO we chose to cou-
ple PROSPECT-4 with 4SAIL because of being fast, invert-
ible and well-representing homogeneous plant covers on flat
surfaces areas such as those present at Barrax. Both mod-
els, hereafter referred as PROSAIL, have been used exten-
sively over the past few years for a variety of applications
(for a review see [17]). PROSPECT-4 calculates leaf re-

TABLE II
RANGE AND DISTRIBUTION OF INPUT PARAMETERS USED TO

ESTABLISH THE SYNTHETIC CANOPY REFLECTANCE

DATABASE FOR USE IN THE LUT

flectance and transmittance over the solar spectrum from 400 to
2500 nm at a 1 nm spectral sampling interval as a function
of its biochemistry and anatomical structure. It consists of
4 parameters, being leaf structure, chlorophyll content (Chl),
equivalent water thickness and dry matter content [61]. 4SAIL
calculates top-of-canopy reflectance. 4SAIL inputs consist of:
LAI, leaf angle distribution, ratio diffuse/direct irradiation, a
hot spot parameter and sun-target-sensor geometry. Spectral
input consists of leaf reflectance and transmittance spectra,
here coming from PROSPECT-4, and a a moist and dry soil
reflectance spectrum [62]. To obtain these soil spectra, the
average of bare soil signature was calculated from bare moist
and dry soil pixels identified in the imagery. In 4SAIL a
scaling factor, αsoil, has been introduced that takes variation
in soil brightness into account as a function of these two
soil types.

The bounds and distributions of the PROSAIL variables
are depicted in Table II. Variable bounds were taken from
measurement campaigns and/or other studies working with
the same crops [24], [37]. They were chosen to describe the
characteristics of all crop types used in the study. Gaussian
input distributions were generated for LAI and leaf Chl content
to put more emphasis on the variable values being present in the
actual growth stages of the crops. Sun and viewing conditions
correspond to the situation of the satellite overpass.

ARTMO produced simulations for all possible combina-
tions of the selected leaf and canopy input values, detailed in
Table II. A LUT size of 100 000 TOC reflectance realizations
was subsequently randomly chosen according to [25], [37].
This number was recently confirmed by [38], who concluded
that a larger LUT size may not influence the estimation accu-
racy of state parameters much. All input parameters, metadata
and associated output simulations were automatically stored
in a relational database running underneath ARTMO. In this
paper, no use was made of ARTMO’s class-based inversion
options because it was assumed that in an operational context
no prior land cover information is available.

Two regularization options are commonly applied in LUT-
based inversion strategies. First, often a Gaussian (white) noise
is added to the simulated canopy reflectance [29], [63]. Differ-
ent numbers are encountered in literature, typically spanning
from 2.5 to 20% [23], [36], [37], meaning that this strategy is
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not consolidated yet. To clarify its role in LUT-based inversion,
a systematic assessment is pursued here, ranging from 0 (no
noise) until 30% noise. Second, several studies demonstrated
that the single best parameter combination corresponding to the
smallest RMSE does not necessarily lead to best accuracies
[19], [33]. A widely applied strategy is therefore taking the
mean of multiple best solutions. Also, here different numbers
are encountered in literature, spanning from the single best
solution to the mean of the 20% best solutions [26], [36], [37].
Although recently [38] assessed the impact of this optimization
strategy over a range of multiple solutions, its role in view
of different noise levels and cost functions remains to be
evaluated. Therefore, a range from 0 (single best solution) to the
mean of 30% best solutions has been included in the analysis.

Thus, to summarize, we have:

• Relevant biophysical parameters: Chl, LAI and canopy
Chl(Chl × LAI).

• Three different Sentinel configurations with different band
settings: S2-10 m (4 bands), S2-20 m (8 bands) and
S3-300 m (19 bands).

• Addition of Gaussian noise on simulated spectra: 0–30%.
• Use of multiple sorted best solutions in the inversion:

0–30%.
• Four different cost functions: RMSE, “Power diver-

gence measure”, “Logistic distribution Trigonometric”
and “Contrast function K(x) = − log(x) + x”. Data nor-
malization was applied to the first two functions.

Given all these factors, their effects on the robustness of
LUT-based inversion has been assessed. The retrieved predic-
tions were compared against the measured validation data set
using the normalized or relative RMSE (RRMSE), which is
calculated by dividing the RMSE with the mean of the sample
set. Additional statistics are also provided (RMSE, coefficient
of determination (r2)).

IV. NUMERICAL RESULTS

A. RMSE Cost Functions

The commonly used cost function RMSE (2) was first evalu-
ated. The retrieved biophysical parameters were subsequently
validated against the validation data set using the relative
RMSE (RRMSE); further referred as relative error to avoid
confusion with RMSE as cost function. Fig. 1 shows relative
error matrices displaying the impact of noise levels against
multiple best solutions in the inversion process for simulated
S2-10 m, S2-20 m and S3-300 m data for leaf Chl, LAI and
canopy Chl(Chl × LAI). Best realized result per matrix are
shown in Table III. Several observations can be made from these
matrices.

First, opting for the very single best solution (see left-bottom
corner in relative error matrices) appeared to be a poor inversion
strategy in all scenarios (parameter and Sentinel band setting),
especially when noise is introduced (see the bottom line in
the matrices). Inversion clearly benefited from regularization
strategies as compared to without them. Specifically LAI and
canopy Chl retrievals gained from regularization options. For
instance, relative errors improved from 190% (no regulariza-

Fig. 1. Relative RMSE (RRMSE) matrices (×100%) using RMSE as cost
function displaying the impact of % noise (X-axis) against multiple solutions
(Y-axis) in LUT-based RTM inversion for S2-10 m (top), S2-20 m (middle) and
S3-30 0 m (bottom) data for leaf Chl (left), LAI (middle) and canopy Chl
(right). The more bluish, the better the estimate.

TABLE III
STATISTICS (r2, RMSE, RRMSE) BASED ON BEST EVALUATED RRMSE

AND CORRESPONDING MEAN MULTIPLE SOLUTIONS (%) AND NOISE

LEVEL (%) USING RMSE AS COST FUNCTION

tions) to 41% (for 1% multiple solutions, 22% noise) for LAI
S2-20. Although for leaf Chl the added value of these regular-
ization options was less extreme, they still fully proved its use.
For S2-20 m, relative errors improved from 42% (no regular-
izations) to 20% (for 20% multiple solutions, 10% noise), and
the same order of magnitude was encountered along the other
Sentinel configurations.

Second, the obtained relative error matrices revealed that the
tested biophysical parameters respond very differently to the
regularization options. On the one hand, leaf Chl appeared
to be a robust retrievable parameter for all band settings once
having some best solutions and noise introduced. Variations in
regularizations hardly impacted retrievals, only at high noise
levels (e.g., > 20%) accuracies started to degrade. On the
other hand, LAI responded far more unstable than Chl and
regularization options played an important role in improving its
retrievals. In fact, the introduction of even low levels of noise
and multiple solutions still led to failure of LAI retrievals. Only
when injecting high noise levels more or less acceptable relative
error results of about 40% were obtained. Note hereby that leaf
Chl was less optimally retrieved in this region. Hence, given
observed differences in leaf Chl and LAI behavior, it is not
recommended to opt for implementing the same regularization
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strategy to all retrievable parameters when using cost function
RMSE.

Third, the relative error matrices also reveal that the number
of bands play a role in the inversion. Especially LAI and canopy
Chl retrievals benefited from having more bands included.
For LAI, best matrix results improved from 44.3% (S2-10 m;
4 bands) to 30.4% (S3-300 m; 19 bands) (Table III). In this
respect, the 4 bands of S2-10 m seems to be suboptimally
configured to deliver robust LAI estimation.

A final observation is that the product of Chl and LAI
(canopy Chl), as sometimes suggested to bypass the ill-posed
problem (e.g., [33]), did not lead to superior results when using
RMSE as cost function. Rather the contrary occurred; retrieval
performances degraded significantly compared to their individ-
ual parameters. Adding noise somewhat improved accuracies,
but they never went below a relative error of 40% (see also
Table III).

B. Alternative Cost Functions

Apart from the typically applied regularization options, an
attractive strategy to further improve retrieval performances
would be to implement alternative cost functions. In continua-
tion of the work of [39], the following alternative cost functions
were evaluated, being “Power divergence measure”, “Trigono-
metric” and spectral cost function with “Contrast function
K(x) = − log(x) + x”. The same kind of relative error matri-
ces as before were computed and are shown in Fig. 2. Asso-
ciated best obtained results per relative error matrix are shown
in Table IV.

First, the “Power divergence measure” (1) was found to be
promising because it was the only cost function that outper-
formed RMSE in Chl estimation in all Sentinel scenarios, with
relative error improvements of about 1–2%. It also led to more
robust performances across the matrices than RMSE and also
LAI and canopy Chl were considerably better retrieved. Best
LAI performances improved up to 15% compared to RMSE.
For canopy Chl relative errors lowered even about 14–27%
(see Table IV). However, failures still occurred in case of S2-
10 m at low multiple solutions and noise levels. It is also
important to note that in this function a value to parameter α
needs to be given, which provides more flexibility for better
parameter estimation. To find the best parameter for the cost
function we use simple statistical learning of testing them all
on the grid from 0 to 200 with step of 20. The best cost
function parameter is defined as minimum from all the retrieved
biophysical parameter on the grid. The α parameter was for
most of the scenarios optimized at 20.

Second, “Trigonometric” cost function (3) yielded robust leaf
Chl retrievals across the relative error matrices. Best results
were overall slightly poorer than RMSE (on the order of 1–3%
RRMSE), notwithstanding this algorithm yielded on the whole
better LAI and canopy Chl retrievals accros the matrices than
aforementioned functions. Even better LAI accuracies than leaf
Chl were achieved for S2-20 m and S3-300 m (see Table IV),
though the matrices also show that accuracies degraded with
high noise levels (e.g., > 20%). For “Trigonometric” two pa-
rameters (α, β) need to be fine-tuned. For both of these param-

Fig. 2. RRMSE matrices (×100%) using “Power divergence measure” (top),
“Trigonometric” (middle) and “Contrast function K(x) = − log(x) + x”
(bottom) as cost functions displaying the impact of % noise (X-axis) against
multiple solutions (Y-axis) in LUT-based RTM inversion for S2-10 m, S2-20 m
and S3-300 m data for leaf Chl, LAI and canopy Chl. The more bluish, the
better the estimate.

eters the same numeric array as “Power divergence measure”
was applied. It was found that this function performed more or
less similar over all scenarios, with α typically optimized at 20
and β at 180.

Finally, the last tested cost function was “Contrast func-
tion K(x) = − log(x) + x” [(4)]. Despite that this cost func-
tion performed about 5–7% poorer in retrieving leaf Chl
than RMSE, it performed overall more stable than the other
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TABLE IV
STATISTICS (r2, RMSE, RRMSE) BASED ON BEST EVALUATED RRMSE

AND CORRESPONDING MEAN MULTIPLE SOLUTIONS (%) AND NOISE

LEVEL (%) USING “POWER DIVERGENCE MEASURE”
(TOP), “TRIGONOMETRIC” (MIDDLE) AND “CONTRAST

FUNCTION K(x) = − log(x) + x”
(BOTTOM) AS COST FUNCTIONS

functions, with relative error results between 24–29% for all
scenarios. As such, this function retrieved canopy Chl on the
order of 15–25% better than RMSE. This function is formulated
without additional parameters.

As we can see from the relative error matrices that differ-
ent biophysical parameters provide different optimal distance
which in mathematical terms proves the nonlinearity of the
problem. The fact that each retrieved biophysical parameter
identified a different optimal cost function shows that there is no
linear correlation between these parameters and that the nature
of error distribution is different and complicated. The fact
that the accuracy of parameter estimation for tested functions
changed with additional noise can also be explained. We added
different levels of Gaussian noise to the already existing distri-
bution of errors and therefore change the nature of distribution.
Note that in general the sum of Gaussian with non-Gaussian
errors gives non-Gaussian noise. Consequently, the change of
error distribution leads us to different optimal cost functions.
Overall, evaluated alternative cost functions can outperform the
widely used RMSE, however, performances largely depend on
the nature of the data, e.g., retrievable parameter, number of
bands and regularization options.

TABLE V
STATISTICS (r2, RMSE, RRMSE) BASED ON “CONTRAST

FUNCTIONK(x) = − log(x) + x” AS COST FUNCTION

WITH OPTIMIZED MULTIPLE SOLUTIONS (%) AND

NOISE (%) PER SENTINEL CONFIGURATION

C. Final Maps

In preparation to forthcoming S2 and S3 data streams, even-
tually the purpose of this work was to develop a LUT-based
inversion strategy that enables concurrent mapping of multi-
ple biophysical parameters. Hence, instead of repeating the
computationally intensive inversion process with an optimized
inversion strategy for each parameter, leaf Chl, LAI and canopy
Chl were simultaneously retrieved using the cost function that
performed most consistently over all three parameters. Spectral
distance with “Contrast function K(x) = − log(x) + x” would
be most suitable for this task, not only because of being able
retrieving parameters at the same degree of accuracy, but also
because it is applicable without tuning additional parameters.
Inspections of the relative error matrices show that a 1% mul-
tiple best solutions would be a good compromise to yield con-
sistent results for all Sentinel configurations. Optimized noise
levels slightly increased when having more bands included,
with 17% noise for S2-10 m, 18% for S2-20 m and 20% for
S3-300 m. As such, for each sentinel configuration leaf Chl,
LAI and canopy Chl were simultaneously retrieved on a pixel-
by-pixel basis. Validation statistics are provided in Table V. De-
spite that accuracies were slightly poorer than aforementioned
individually optimized scenarios, they were consistent across
all scenarios, with relative error accuracies between 25% and
31%. Final maps with mean estimations are shown in Fig. 3,
and are briefly interpreted below.

To start with the most detailed S2-10 m map, pronounced
within-field variations are notable by all three parameters.
Particularly the spatial variation of canopy Chl clearly marks
the irrigated circular fields with green biomass. These irrigated
fields are characterized by a leaf Chl above 40 μg/cm2 and
LAI above 3. Areas with low Chl(≤ 30 μg/cm2) and LAI
(≤ 1.5) are mainly bare soils, fallow lands or senescent or
harvested cereal fields (wheat, barley). It should herewith be
noted that lower leaf Chl and to a lesser extent LAI estimates
were expected over these dried-out lands (see also [51]), though
no ground data were available to confirm these assumptions.
The differences between green vegetation and dried-out veg-
etation are clearest observable in the canopy Chl maps. The
somewhat coarser S2-20 m maps show essentially the same
magnitudes of estimates and the same spatial patterns; within-
field variability in the circular field are still clearly observable.
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Fig. 3. Mean predictions of the 1% best solutions using “Contrast function
K(x) = − log(x) + x” as cost function in LUT-based RTM inversion ffor S2-
10 m, S2-20 m and S3-300 m data for leaf Chl, LAI and canopy Chl.

Fig. 4. Coefficient of variation (CV) of the 1% best solutions using “Con-
trast function K(x) = − log(x) + x” as cost function in LUT-based RTM
inversion for S2-10 m, S2-20 m and S3-300 m data for leaf Chl, LAI and
canopy Chl.

Considerably coarser maps were obtained by the S3-300 m
configuration. Although within-field spatial information has
been mostly lost, spatial patterns of the irrigated fields are still
notable.

Because the mean (μ) of the 1% best solutions was calcu-
lated, also the standard deviation [σ and coefficient of variation
(CV; σ/μ) can be mapped. The latter is of interest as it
allows comparison of the inversion performance across all maps
(Fig. 4)]. Also, it is hard to interpret σ without μ, as higher mean
estimates typically go along with higher σ. A relative indicator
may therefore provide more information about the success of
the retrieval, i.e., a lower CV means a greater uniformity across
the 1% best solutions. The following observations can be made
from these maps. First, consistent spatial patterns are obtained
along the different Sentinel settings, which suggests that the

number of bands did not play a major role in the inversion.
Second, in each map lower CVs are realized over the vegetated
parcels than over the dried-out lands. These areas are character-
ized by a low μ but a relatively high σ for the three biophysical
parameters. This suggests that the generated LUT is better able
to resolve the vegetated areas, which was to be expected since
essentially variations in green canopy cover were simulated
by PROSAIL. Third, LAI faced most difficulty in interpreting
these dried-out lands. The encountered higher CV means that
a larger variety of spectra and corresponding LAIs ended up in
the top 1% best matching spectra. Conversely, the differences
between the green and nongreen areas are smallest in the
canopy Chl maps. This suggests that this combined parameter
is having least difficulty in coping with surface heterogeneity
encountered in the images. The underlying mechanism is that
in the concurrent retrieval of multiple parameters the ill-posed
problem appeared to be best resolved for canopy chl, probably
at the expense of LAI. Overall, when inspecting both Figs. 3
and 4, it can be concluded that canopy Chl appeared to
be a robust retrievable parameter over the whole imagery; it
yielded realistic mean estimates while at the same time the
CV maps suggested that the inversion problem was consistently
resolved.

V. DISCUSSION

A. Results in Comparison to Literature and
Lessons Learned

Different optimization strategies have been evaluated in this
work. Best obtained inversion results were on the order of
18% for leaf Chl, 21% for LAI and 23% for canopy Chl.
It should however be noted that neither the 10% threshold
required by GMES nor the order of accuracies as encountered
in likewise studies using the SPARC data set were reached. For
instance, [37] reached LAI accuracies around 10% for specific
crops such as sugar beet and wheat, while maize accuracies
were around 19%. Also, [40] achieved better accuracies with
the same data set for specific crop types through spatially
constrained inversion but failed for row-planted crops as maize,
potatoes and sunflowers. Nevertheless, all these approaches
assumed that spatial information of the vegetation types is
available, so that inversion can take place at the scale of a
single agricultural field. In part, this suggests that the reported
successful results were rather due to the intrinsic characteristics
of the land cover type (e.g., more homogeneous) than to the
proposed retrieval approach. This is an important point to
address, since agroecosystems are generally patchy, meaning
that acquired imageries span a multitude of land cover types,
both structurally homogeneous and heterogeneous. In view of
forthcoming Sentinel data streams it cannot be expected that
up-to-date land cover information at the high spatial resolution
of S2, i.e., at 10 m, is instantaneously available. Further, beyond
agroecosystems, the spatially constrained inversion approaches
proposed in [37], [40], and [41] would not be possible to apply
over more natural vegetated areas, which are structurally more
heterogeneous and lack clearly defined boundaries. Retrieval
performances should therefore merely be evaluated over a vari-
ety of crop types without constraining the inversion to specific
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parcels. Another point is that all aforementioned LUT-based
inversion studies used RMSE as cost function. We found that
the commonly used RMSE distance is not the optimal cost
function for the cases studied and that better results can be
obtained using alternative statistical distances. This could be
explained by nonlinearities and robustness of the problem and
also by non-Gaussian and skewed noise.

Regardless of having spatial information available, a success-
ful strategy for concurrent mapping of multiple biophysical pa-
rameters over large areas may be through the use regularization
strategies and alternative cost functions. We used a generic LUT
without assuming any on-site spatial knowledge for pixel-based
inversion over complete simulated Sentinel-2 and -3 imageries.
From a list of more than 60 cost functions we have evaluated
three promising functions with respect to multiple bands, noise
and multiple best solutions in LUT-based inversion. Several
conclusions can be drawn from this study, which can function
as guidelines for future retrieval strategies.

Role of Alternative Cost Functions: Three different classes
of cost functions were used, where one representative from
each class was selected to provide the alternative to the RMSE.
It was found that for all scenarios (parameters and Sentinel
settings) one or more of the tested cost functions outperformed
RMSE in LUT-based inversion. It was however not the case
that substantial improvements were achieved by one single cost
function over all scenarios. This proves the nonlinearity of
the problem and can be explained by the different parameters
dealing with different types of error distributions. That RMSE
did not perform very well over LAI and canopy Chl means that
the correspondent distribution for these estimated parameters is
non-Gaussian. Application of alternative cost functions can in-
terpret the error distribution more accurately and provide better
results. The “Power divergence measure” outperformed RMSE
in every single scenario but this function yielded only a small
improvement for leaf Chl and was not best evaluated function
for LAI and canopy Chl retrieval. It should also be noted
that this measure was performing similarly as other divergence
measures described in [39] such as “Rènyi”, “Sharma-Mittal”
and “Cressie and Read (1984)” (results not shown). The draw-
back of these functions is that they require some fine-tuning of
their parameter which demand for further testing of the optimal
problem. A follow-up study will be devoted to systematically
assessing its role in the inversion process. The cost function
“Trigonometric” performed more stable over LAI and canopy
Chl but it requires two parameters to be tuned. It led to robust
LAI retrievals with in case of S3-300 m a best relative error
of 21.2%. Such a good accuracy was not achieved when using
“Contrast function K(x) = − log(x) + x” distance, but this
function obtained robust estimates for canopy Chl and yielded
most consistent retrievals over all parameters, with best accu-
racies between 24.6% and 28.7%. Overall, it was found that
leaf Chl was best retrieved by “Power divergence measure” (up
to 2% better than RMSE), LAI by “Trigonometric” (up to 9%
better than RMSE) and canopy Chl by spectral distance with
“Contrast function K(x) = − log(x) + x” (up to 15% better
than RMSE). This leads us concluding that the RMSE does
not always behave as an optimal cost function in LUT-based
inversion.

Role of Regularization Options: The introduction of added
noise and multiple solutions in the inversion process led to
considerable improvements as compared to the cases without
using them. Its impact, however, strongly depended on the
considered parameter and cost function. For instance, when
using RMSE or “Power divergence measure”, variations in
regularization options hardly impacted leaf Chl retrieval until
high noise levels were reached (e.g., > 20%). In turn, these
regularizations substantially impacted the performance of LAI
and canopy Chl. Although its absence or even low levels led
to poor retrievals, injecting quite some noise (e.g., 15–25%) in
combination to multiple best solutions (≥ 1%) greatly im-
proved retrievals, with best relative error results between 28.8%
and 40.4%. Because results were on the whole better for
“Trigonometric” and “Contrast function K(x)=− log(x)+x”
the impact of regularization options was less pronounced. Yet,
clear patterns within each relative error matrix demonstrate that
also these functions gained from regularizations options.

Role of Number of Bands: The number of bands had some
effect on retrieval performances but not for all parameters and
cost functions. For instance, for each of the cost functions
similar leaf Chl results were obtained in the relative error
matrices across the different Sentinel band settings. This sug-
gests that already good leaf Chl retrievals were achieved at
the configuration of S2-10 m (four bands), while adding bands
did not much enhance the inversion. Its underlying mechanism
can be explained by the fact that in PROSAIL variation in
leaf Chl only impacts the visible range, e.g., at 665 nm where
maximal absorption takes place, right where the S2-10 m bands
B2, B3 and B4 are located. LAI and canopy Chl gained more
from added bands, as can be clearly observed across RMSE
and “Power divergence measure” matrices where regions with
failure diminished when moving to S2-20 m and S3-300 m.
The reason for some improvements is that LAI is impacted
by the whole visible and NIR range, including red-edge thus
added bands can help improving the inversion [64]. For the
two other cost functions this trend was less pronounced; good
results were already obtained at S2-10 m when using regular-
ization options. The good performance of the cost function with
“Contrast function K(x) = − log(x) + x” across the different
Sentinel configurations became also clear when inspecting the
final maps; differences in the spatial patterns appeared to be
minimal.

Role of Combined Variables: Despite encouraging sugges-
tions in similar studies [25], [29], [33], [38], for the majority
of tested cost functions did the combined Chl x LAI (canopy
Chl) not lead to significant improvements. Only in case of
S2-10 m when “Contrast function K(x) = − log(x) + x” was
used then canopy Chl slightly outperformed leaf Chl and
LAI. When inspecting the final CV maps, however, it can
be observed that canopy Chl obtained generally lower values
than the other parameters, meaning that the 1% best spectra
wherefrom the mean estimate is calculated, were more uniform
and thus narrowing the ill-posed problem. This difference was
particularly notable over the non-irrigated dry lands. Given this
all, canopy Chl proved its use as a robust retrievable parameter
and deserves to be included in the package of deliverable
products.
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B. Towards Robust Operational LUT-BASED Retrievals From
S2 and S3 Imagery

Despite claims from case studies [24], [37], [40] that LUT-
based RTM inversion can be a successful approach for oper-
ational delivering of biophysical products from Sentinel data
streams, based on here presented results we can only partly
agree. Although being physically based and therefore more
universally applicable, LUT-based RTM inversion in its essen-
tial form, i.e., through the use of cost functions, can only be
successful in an operational context when performances are
robust over the complete image, i.e., spanning multiple land
cover types. We have exploited this concept to the fullest by
simulating S2 and S3 images, but accuracies did not reach the
desired threshold of 10%.

In comparison, in a parallel study the same experimental
data set (field measurements and corresponding spectra for the
various Sentinel settings) was fed into advanced machine learn-
ing regression algorithms (MLRAs) [51]. In these approaches
regression models are trained from the experimental data itself.
An advantage of MLRAs is that interpretation of an image
occurs almost instantaneously once having a model trained.
This in contrast to the LUT-based inversion approach, which re-
quires pixel-by-pixel processing against the complete LUT, and
is therefore more computationally demanding. MLRAs yielded
excellent results over the whole image, e.g., the best evaluated
method, Gaussian processes regression, yielded relative error
results for S2-20 m and S3-300 m on the order of 23% for
LAI and 7% for leaf Chl. While here similar LAI accuracies
were obtained when using “Trigonometric” as cost function, a
considerable gap remains to be bridged with respect to leaf Chl.
One explanation may be that the generated LUT was insuffi-
ciently large, although according to [38] this impact should be
small. A more relevant explanation may be that RTMs are often
unable to mimic properly actual TOC spectral observations.
Consequently, due to model uncertainties and simplifications
large variations may be induced in the solution of the inverse
problem [33]. It remains however to be investigated how robust
these MLRAs would perform when applied to imagery that
deviates from the local training data set, as is typically the
case in an operational context. The lack of universality is a
well-known limitation of statistically based methods compared
to physically based methods. To make these MLRAs more
generic, they should be learned by a broad range of spectra that
is sufficiently able to mimic spectral observations as acquired
by any imagery. A promising avenue for further investigation is
to implement these MLRAs into ARTMO so that they can be
trained by a massive amount of simulated spectra, e.g., such as
the here generated LUT.

Finally, another promising avenue to be investigated, assum-
ing that no up-to-date land cover map at the scale of 10 m
is available, is relying on vegetation indices to spatially con-
strain the LUTs. For instance, vegetation indices are able to
detect bare soil, water bodies, sparsely vegetated areas and
densely vegetated areas (e.g., see also [35]). This information
could then function to constrain LUTs on a per-pixel basis.
Also, this approach is currently explored to be implemented in
ARTMO.

VI. CONCLUSION

ESA’s forthcoming Sentinel-2 (S2) and Sentinel-3 (S3) satel-
lites aim to improve the old generation of satellite sensors
through enhanced sensor configurations. At the same time,
there is also a need for improved retrieval methods of biophys-
ical parameters such as leaf Chl, LAI and canopy Chl. While
various LUT-based inversion methods have been proposed in
literature they all rely on RMSE as cost function. However,
RMSE can result in large losses of efficiency when the error
distribution is non-Gaussian or nonsymmetric. For the benefit
of realizing improved retrievals, we have compared three alter-
native cost functions (“Power divergence measure”, Trigono-
metric’ and “Contrast function K(x) = − log(x) + x”) using
S2 and S3 data sets, i.e., S2 at 10 m (4 bands), 20 m (8 bands)
and S3-OLCI at 300 m (19 bands). These cost functions out-
performed the widely used RMSE, although this also depended
on the retrievable parameter, since they all have different nature
of error distribution. Introducing noise and applying multiple
best solutions in the inversion further improved the inversion
performance. Overall, leaf Chl was best retrieved by “Power
divergence measure”, LAI by “Trigonometric” distance and
canopy Chl by spectral distance with the “Contrast function
K(x) = − log(x) + x”. The latter was also evaluated as best
suited for simultaneous retrieval of these biophysical parame-
ters. Maps were obtained and showed consistent performances
across the Sentinel configurations, which suggests that the here
tested parameters can be routinely mapped by S2 already at a
high spatial resolution of 10 m. Summarizing, for 3 different
Sentinel settings (S2-10 m, S2-20 m, S3-300 m) it has been
demonstrated that the success of LUT-based inversion strongly
depends on the retrievable parameter and applied regularization
options. Their performance is directly related to the used cost
function due to different assumptions on the nature and proper-
ties of errors. It is therefore recommended to evaluate different
inversion strategies prior to applying an inversion strategy to
the whole image.
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