

ARTMO's retrieval toolboxes for optimizing parametric, nonparametric and physically-based biophysical variable mapping

J. Verrelst*, J.P. Rivera, G Camps- Valls & J. Moreno Image Processing Laboratory (IPL), University of Valencia, Spain

1. Introduction

New retrieval algorithms for Sentinel-2

The Copernicus Sentinel-2 (S2) satellite missions are designed to provide globally-available information on an operational basis for services and applications related to land. S2 is configured with improved spectral capabilities. Also improved and robust algorithms for biophysical parameter retrieval are demanded. This work present an overview of state-of-the-art retrieval methods dedicated to the quantification of terrestrial biophysical parameters. The rationale of all these methods is that spectral observations are in a way related to the parameters of interest. In all generality, retrieval methods can be categorized into three families: (i) parametric regression, (ii) non-parametric regression, and (iii) Inversion methods.

We have recently developed 3 retrieval toolboxes within the **ARTMO** software package (http://ipl.uv.es/artmo/) that provide a suite of methods of these three families. As such, consolidated findings can be achieved about which type of retrieval method is most accurate, robust and fast.

Objective:

To evaluate systematically 3 families of biophysical parameter retrieval methods for improved LAI estimation by using a local dataset (SPARC) and simulated S2 observations.

2. Data & Experimental setup

Ground truth data:

SPARC dataset (Barrax, Spain): 103 LAI points over various crop types and phenological stages.

Simulated Sentinel-2 observations:

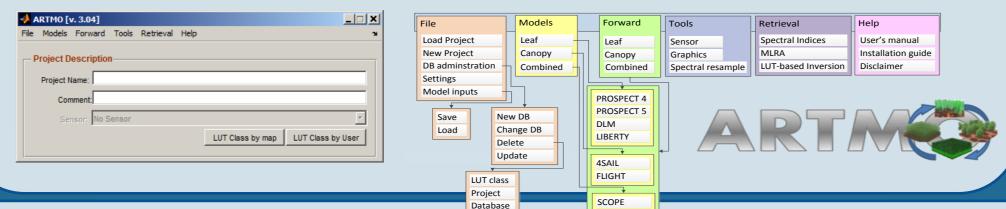
- **HyMap** flight line acquired during SPARC.
- Resampled to Sentinel-2 settings.

Band #	B1	B2	В3	B4	B5	В6	B7	B8	B8a	В9	B10	B11	B12
Band center (nm)	443	490	560	665	705	740	783	842	865	945	1375	1610	2190
Band width (nm)	20	65	35	30	15	15	20	115	20	20	30	90	180
Snatial resolution (m)	60	10	10	10	20	20	20	10	20	60	60	20	20

Experimental setup:

approaches).

- Only S2 bands of 10 m (coarse-grained to 20 m) and 20 m were used (10 bands).
- 50% of data (ground truth & associated S2 spectra) for training (Spectral Indices, MLRA) and 50% for validation (same for all retrieval
- Comparison through goodness-of-fit measures: R², RMSE, NRMSE



6. Conclusions

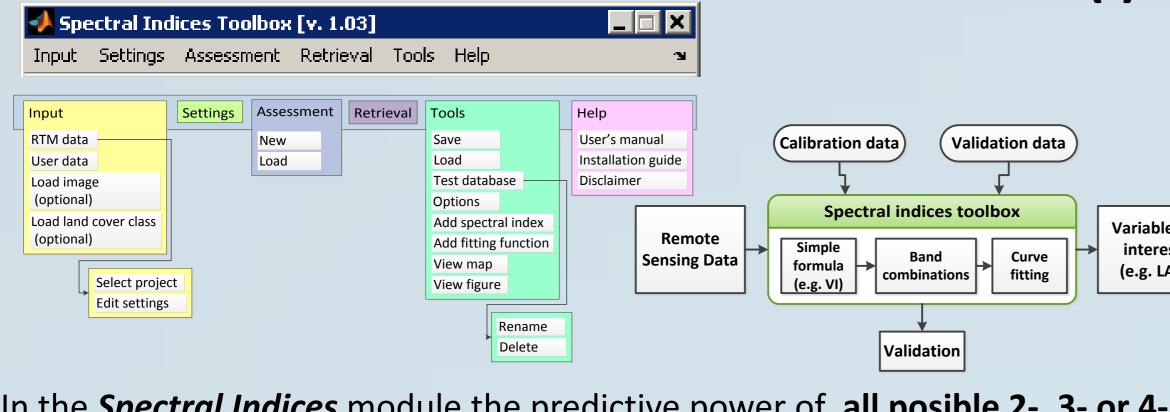
With the ambition of delivering improved biophysical parameters retrieval (e.g. LAI) from Sentinel-2 (20 m), three families of retrieval methods have been systematically analyzed against the same validation dataset (SPARC, Barrax, Spain). Users typically require an accuracy with relative errors below 10%. It led to the following conclusions:

Parametric - Spectral Indices: All 2-, 3- and 4-band combinations according to normalized difference (ND) have been analyzed. A 4-band index with bands in SWIR was best performing, but the 10% error was not reached (NRMSE: 16.0%; R2: 0.79). Most critically, the absence of uncertainty estimates makes this method cannot be considered as reliable. Fast mapping (1s.).

Nonparametric – MLRAs: These are powerful and also fast regressors. Several yielded high accuracies with errors below 10% (KRR, GPR, VHGPR, ELR)! Particularly GPR (NRMSE: 8.2; R²: 0.91) is of interest as it delivers insight in relevant bands and associated uncertainties. Hence, unreliable retrievals (e.g. <20%) can be masked out. Fast mapping (7s.).

LUT-based Inversion: A PROSAIL LUT of 100000 simulations has been prepared and various cost functions and regularization options were applied. Best cost functions performed on the same order as best 2-band SIs (16.6%; R2: 0.76). Because inverted against a LUT table pixel-by-pixel, biophysical parameter mapping went unacceptably slow (> 25h.).

ARTMO's *Spectral Indices* (SI) module:



In the Spectral Indices module the predictive power of all posible 2-, 3- or 4band combinations according to an Index formulation (e.g. simple ratio (SR), normalized difference (ND)) to a biophysical parameter can be evaluated.

Applied SI formulations:

- 2-band SIs:
 - SR (B2/B1) (10² combinations)
- **ND** (B2-B1)/(B2+B1) (10^2 combinations) ND 3-band **(B2-B1)/(B2+B3)** (10³ combinations)
- ND 4-band (**B2-B1**)/(**B3+B4**) (10⁴ combinations)

A Linear regression was applied.

3. (i) Parametric regression: Spectral Indices - LAI

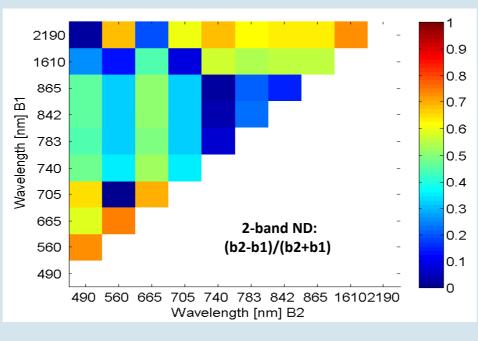
Very fast: 0.004 sec per SI model (11200 SI models in 42.8 s.)

Best validated SIs (50% validation data) ranked according to R²:

I formulation	(B1, B2, B3, B4)	RMSE	NRMSE	R ²
ID 4-bands: (b2-b1)/(b3+b4)	560, 2190, 1610, 1610	0.69	16.01	0.79
ID 3-bands: (b2-b1)/(b2+b3)	560, 2190, 740	0.70	16.74	0.79
ID 2-bands: (b2-b1)/(b2+b1)	665, 560	0.76	16.86	0.74
R 2-bands: (b2/b1)	665, 560	0.77	20.36	0.74

Best band combination

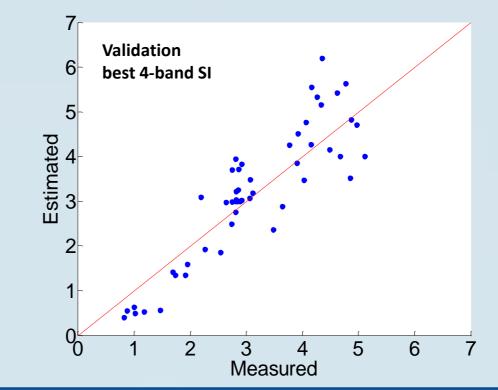
A 4-band SI with bands in green and SWIR best validated. Green and red led to best 2-band index.

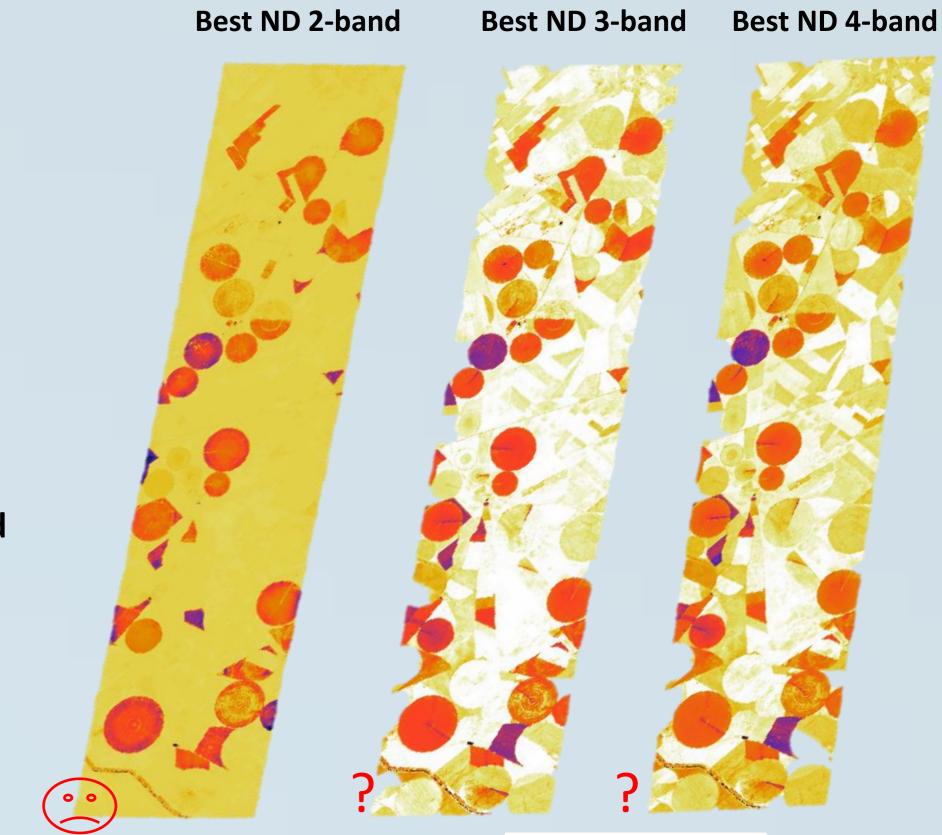


MLRA

Kernel ridge Regression

Gaussian Processes Regression





LAI $[m^2/m^2]$

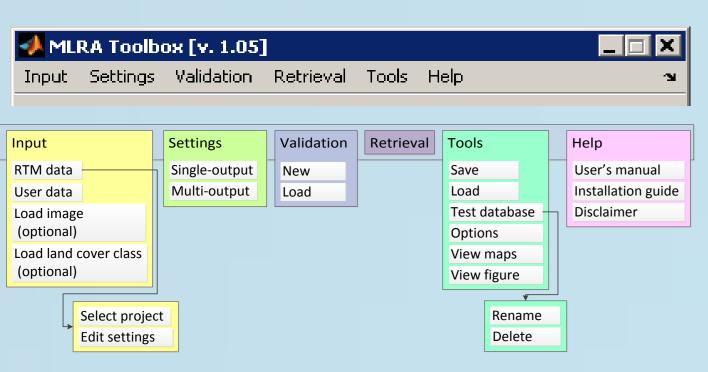
4. (ii) Nonparameteric regression: Machine learning regression algorithms (MLRAs) - LAI **50% validation results** ranked according to R²:

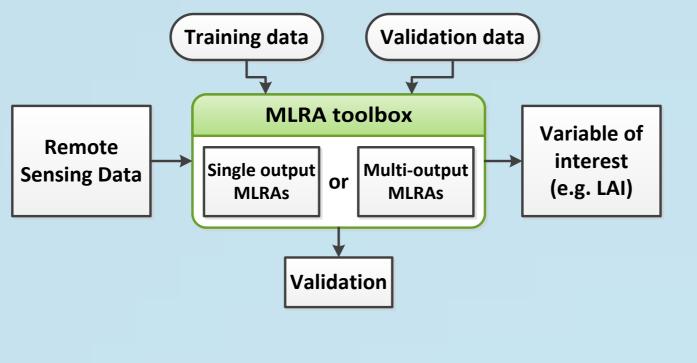
Variable of

(e.g. LAI)

 $K(x) = -\log(x) + x$

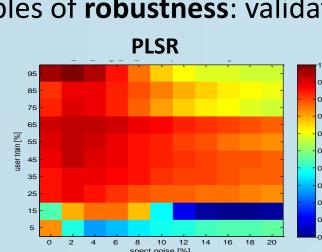
ARTMO's Machine Learning Regression Algorithms (MLRA) module:

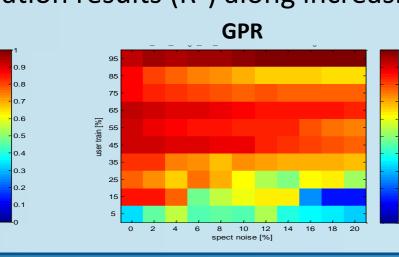


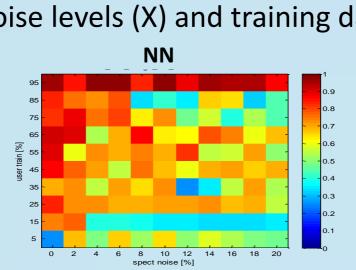


- More than 10 MLRAs have been implemented: e.g., neural nets (NN), kernel ridge regression (KRR), Gaussian Processes regression (GPR), principal component regression (PCR), partial least squares regression (PLSR), regression trees (RT) (See also http://www.uv.es/gcamps/code/simpleR.html).
- Options to add noise and split training-validation are provided.

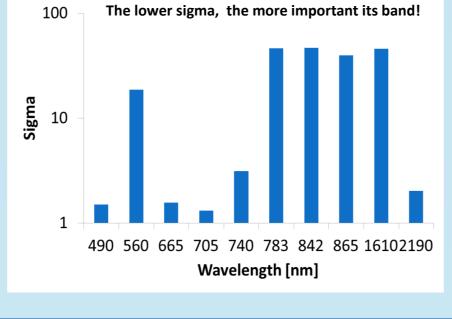
Examples of **robustness**: validation results (R²) along increasing noise levels (X) and training data (Y):

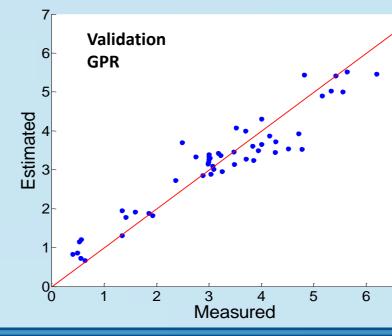






The lower sigma, the more important its band!	/ [v	alidation
	7-	
Principal components regression	0.79	13.70
Regression tree	0.78	13.46
Partial least squares regression	0.71	12.16
Boosting trees	0.70	12.10
Least squares linear regression	0.56	9.62
Relevance vector Machine	0.59	10.20
Bagging trees	0.58	10.03
Extreme Learning Machine	0.48	8.26
VH. Gaussians Processes Regression	0.48	8.30
Neural Network	0.46	7.99





30.52

1.77

0.012

Time (s.)

0.063

0.788

2.473

0.061

1.296

16.501

0.002

1.100

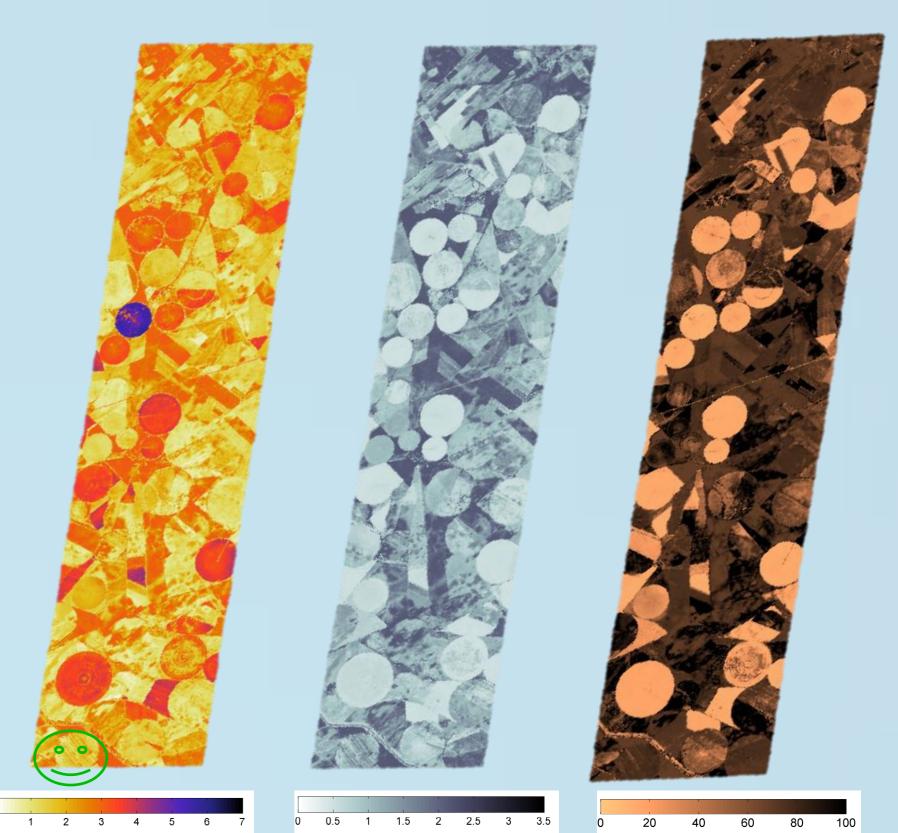
0.008

0.002

0.93

Uncertainty (σ) Relative uncertainty [%] LAI Mean prediction (μ)

Map (1 layer) generated in 1.1 s.



GPR

Map (3 layers) generated in 7.5 s.

ARTMO's Inversion module:

LUT-based Inversion Toolbox [v. 1.00] Input Settings Validation Retrieval Tools Help Validation data RTM data Test database User's manual Load image Options **LUT-based Inversion toolbox** (optional) Disclaimer View maps Remote Load land cover class View figure (optional) Regularization Sensing Data Cost function Rename Delete Validation

Retrieval of biophysical parameters through LUT-based inversion.

- LUTs prepared in ARTMO and loaded in *Inversion* module
- More than 60 cost functions have been implemented. Various regularization options: adding noise, mean of multiple solutions, data
- normalization.

PROSAIL LUT (sub-selection 100000):

	Model Parameters	Units	Range	Distribution			
Leaf variables: PROSPECT-4							
N	Leaf structure index	unitless	1.1	-			
LCC	Leaf chlorophyll content	(µg/cm ²)	5-75	Gaussian (x 35, SD:			
				30)			
C_m	Leaf dry matter content	(g/cm ²)	0.001-0.03	Uniform			
C_w	Leaf water content	(cm)	0.002-0.05	Uniform			
Canop	by variables: 4SAIL						
LAI	Leaf area index	(m^2/m^2)	0.1-7	Gaussian (x: 3, SD:			
				2)			
α_{soil}	Soil scaling factor	unitless	0	-			
ALA	Average leaf angle	(°)	40-70	Uniform			
HotS	Hot spot parameter	(m/m)	0.05 - 0.5	Uniform			
skyl	Diffuse incoming solar radiation	(fraction)	0.05	-			
θ_s	Sun zenith angle	(°)	22.3	-			
θ_v	View zenith angle	(°)	0	-			
φ	Sun-sensor azimuth angle	(°)	0	-			

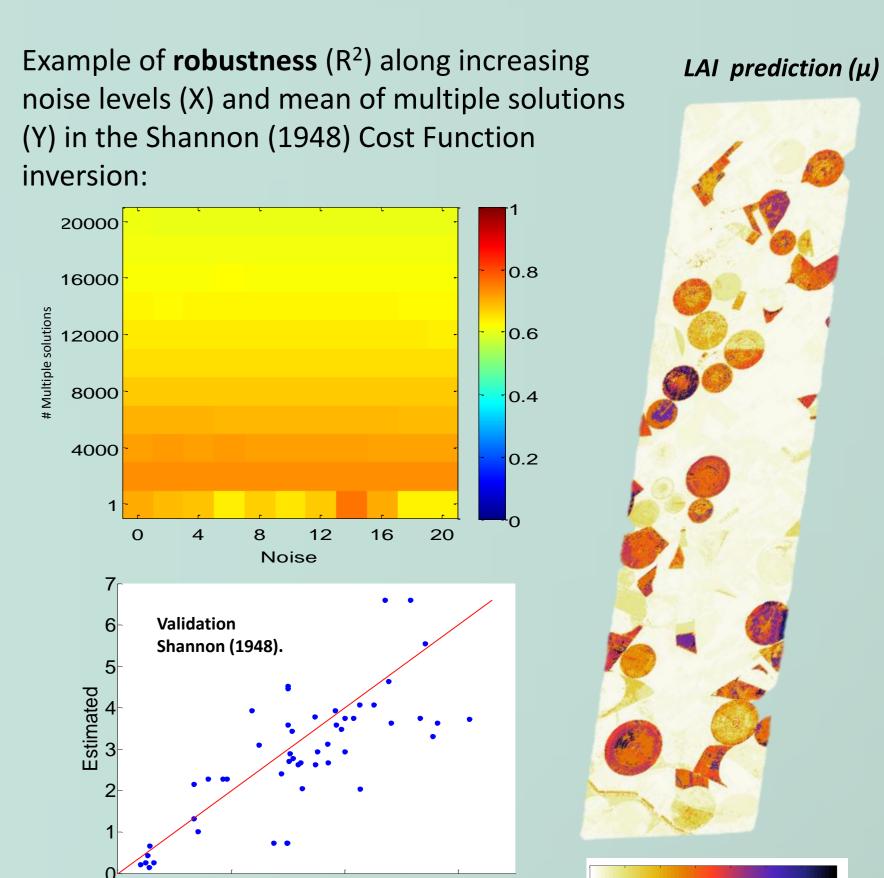
Examples of cost functions: Shannon (1948):

 $D(P,Q) = -\sum_{l=1}^{\lambda_n} \left(\frac{p(\lambda_l) + q(\lambda_l)}{2} \right) log \left(\frac{p(\lambda_l) + q(\lambda_l)}{2} \right) +$

$\frac{1}{2} \left(\sum_{\lambda_1=1}^{\lambda_n} p(\lambda_l) log(p(\lambda_l)) + \sum_{\lambda_1=1}^{\lambda_n} q(\lambda_l) log(q(\lambda_l)) \right)$
Laplace distribution:
$D(P,Q) = \sum_{\lambda_1=1}^{\lambda_n} p(\lambda_l) - q(\lambda_l) $
Pearson chi-square:
$D[P,Q] = \sum_{\lambda_1=1}^{\lambda_n} \frac{(q(\lambda_l) - p(\lambda_l))^2}{p(\lambda_l)}$

5. (iii) Inversion of canopy RTM through cost functions - LAI In total 5508 inversion strategies analyzed. 50% validation results for best noise & multiple samples ranked according to R2.

& multiple samples ranked according to R ² :								
Cost function	% Noise	% multiple samples	RMSE	NRMSE	R ²	time (s.)		
Shannon (1948)	14	single best	0.96	16.56	0.76	0.027		
Laplace distribution	6	single best	0.86	14.74	0.74	0.021		
Neyman chi-square	0	single best	0.89	15.31	0.74	0.005		
Pearson chi-square	16	single best	1.03	17.74	0.73	0.005		
Least absolute error	6	single best	0.89	15.28	0.72	0.005		
Geman and McClure	16	2	0.83	14.36	0.71	0.007		
RMSE	16	2	0.83	14.37	0.71	0.006		
Exponential	16	2	0.85	14.66	0.71	0.008		
$K(x)=x(\log(x))-x$	20	single best	1.06	18.25	0.70	0.009		
$K(x)=(\log(x))^2$	0	2	1.01	17.40	0.69	0.012		
K-divergence Lin	4	single best	2.60	44.84	0.64	0.009		
Shannon entropy	6	2	1.15	19.82	0.60	0.013		
Gen. Kullback-Leibler	10	2	1.20	20.63	0.58	0.013		
Neg. Exp. disparity	0	4	1.04	17.96	0.58	0.007		
Kullback-leibler	4	18	1.66	28.62	0.57	0.009		
K(x)=log(x)+1/x	2	single best	2.07	35.65	0.55	0.012		
Harmonique Toussaint	2	20	1.57	27.04	0.54	0.005		



Map (4 layers) generated in 90925.9 s. (> 25 hours)