

Development of vegetation traits models using hybrid retrieval workflows in the context of the CHIME mission preparation

Jochem Verrelst & co-authors

LEO: Charlotte De Grave, Eatidal Amin, Pablo Reyes, Miguel Morata, Ernique Portales, Santiago Belda, Juan Pablo Rivera, Luca Pipia
 LMU: Katja Berger, Matthias Wocher, Tobias Hank
 GFZ: Karl Segl, Stephane Guilasso
 UNIMIB & CNR: Giulia Tagliabue, Cinzia Panigada, Mirco Boschetti, Gabriele Candiani
 ESA: Claudia Isola

GFZ

Helmholtz-Zentrum Potsdam

Why contiguous spectral measurements?

Some retrieval methods....

Retrieval methods for vegetation properties mapping

Methods of these different families can be combined: hybrid methods

Taxonomy retrieval methods

towards operational processing

Operational processing?

Characteristic	Parametric	Non- parametric	RTM-based	Hybrid
Generalization capacity		-	++	++
Mapping Speed	++	+		+
Uncertainties		++*	+	++*
Accuracy	+	++	+	++
Variables	++	++	+	+

* Some machine learning methods (e.g. probabilistic methods)

ESA-Developed Earth Observation Satellites

15 in operation40 under development13 under preparation

• e e sa

CHIME

The **Copernicus Hyperspectral Imaging Mission**, CHIME, will carry a visible to shortwave infrared spectrometer to provide routine hyperspectral observations to support new and enhanced services for sustainable agricultural and biodiversity management, as well as soil property characterisation.

9/28

Technical Concept of CHIME

Routine spectroscopic observations in contiguous spectral bands conducted at:

- Instrument: Pushbroom Imaging Spectrometer 400 2500 nm, $\Delta\lambda \leq 10$ nm,
- Revisit (temporal resolution) 10-15 days,
- GSD (spatial resolution): 20-30m,
- Sun synchronous orbit (LTDN 10:30 11:30),
- Nadir view covering land and coastal areas,
- High radiometric accuracy, low spectral/spatial misregistration.

CHIME Core Data Products

The mission shall provide access to Level-1B, Level-1C and Level-2A products accessable via DIAS and with API support:

- Bottom-of-Atmosphere (BOA) reflectance (atmospheric corrected)
- Ortho-rectified geometry
- Basic pixel classification (opaque clouds, thin clouds, cloud shadows, vegetation, water, snow etc.)

Additionally the mission can provide a set of downstream products related to the different mission applications. Vegetation products

(courtesy DLR)

Hyperspectral data cube

🕲 ESA

Gaussian process regression: a probabilistic ML algorithm

Gaussian process regression is nonparametric (*i.e.* not limited by a functional form), so rather than calculating the probability distribution of parameters of a specific function, **GPR calculates the probability distribution over all admissible functions that fit the data**. However, similar to the above, we specify a prior (on the function space), calculate the posterior using the training data, and compute the predictive posterior distribution on our points of interest.

https://towardsdatascience.com/quick-start-to-gaussian-process-regression-36d838810319

GPR models

RGB CASI

Map of FCover_SD

De Grave, C., Verrelst, J.. et al (2020). Quantifying vegetation biophysical variables from the Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data sources. Remote Sensing of Environment, 251, 112101.

Machine Learning Algorithm Gaussian Process Regression (GPR) + DR method (PCA, 20 components)

Towards operational processing with GPR

- ✓ Sentinel-3 data in GEE
- ✓ Models need to be light for smooth processing
- ✓ Uncertainties can be calculated

0

Islandia

Google Earth Engine

https://artmotoolbox.com/

CHIME priority vegetation variables

- 1. LCC: Leaf Chlorophyll Content
- 2. LWC: Leaf Water Content
- 3. LDMC: Leaf Dry Matter Content
- 4. LNC: Leaf Nitrogen Content
- 5. LCLC: Leaf cellulose and lignin content
- 6. LAI: Leaf Area Index
- 7. CCC: Canopy Chlorophyll Content
- 8. CWC: Canopy Water Content
- 9. CDMC: Canopy Dry Matter Content
- 10. Canopy Nitrogen Content
- **11. CCLC: Canopy cellulose and lignin content**
- 12. FAPAR: Fraction of Absorbed Photosynthetically Active Radiation
- 13. FVC: Fractional vegetation cover

Training data: Input SCOPE

Variable type	Variable	Distribution	Min	Max	Mean	SD
Weather	Rin (W.m⁻²)	Gaussian*	20	1100	400	300
weather	Rli (W.m⁻²)	Gaussian*	100	400	250	125
Leaf biochemical	Vcmax (µmol.m ⁻² .s ⁻ ¹)	Gaussian*	10	180	80	40
	N	Gaussian*	1	2.7	1.5	0.5
	Cab (µg.cm ⁻²)	Uniform	1	100		
Leaf structure	Cca (µg.cm⁻²)	Gaussian*	0	30	10	5
	Cdm (g.cm ⁻²)*	Gaussian*	0.002	0.02	0.005	0.003
	Cw**	Gaussian*	0.005	0.035	0.012	0.006
	LAI	Uniform	0.1	10		
	LIDFa (rad)***	Uniform	-1	1		
Canopy structure	LIDFb (rad)***	Uniform	-1	1		
	VH (m)	Gaussian*	0.3	20	3	8
Geometry	SZA (°)	Uniform	0	80		
	OZA (°)	Uniform	-25	25		
	RAA (°)	Uniform	0	180		

Rin: Incoming shortwave radiation; Rli: Incoming longwave radiation; Vcmax: maximum carboxylation capicity; N: Leaf mesophyll structure; Cab: Leaf chlorophyll content; Cdm: Leaf dry matter content; Cw: Leaf water thickness; Cant: Leaf anthocyanin content; Cs: Leaf senescent material content; Cca: Leaf carotenoid content; LAI: Leaf Area Index; LIDFa: Average leaf angle; LIDFb: Variation in leaf angle; VH: Vegetation Height; **SZA**: Solar Zenith Angle; **OZA**: Observer Zenith Angle; **RAA**: Relative Azimuth Angle; * truncated Gaussian; ** Constraint: Cw/(Cw+Cdm) between 0.45 and 0.93; *** constraint: |LIDFa|+ |LIDFb| < 1

- SCOPE does not provide nitrogen content (N) and cellulose & lignin
- For these variables PROSPECT-PRO+ SAIL was used
- Spectral bands: L1C: 239 bands Dimensionality reduction: 20 PCA
- Models version: 1.7

 Based on global sensitivity analysis

Based on leaf optical properties databases (OPTICLEAF) < S.

Jacquemoud, L. Bidel, C. Francois, G. Pavan (2003); B. Hosgood, G. Andreoli, S. Jacquemoud, A. Pedrini, G. Schmuck, J. Verdebout (1993)

- Based on literature (e.g. García-Haro et al., 2018; Weiss and Baret, 2016; Croft et al., 2015; Houborg et al., 2015; Verrelst et al., 2015; Houborg and Boegh, 2008; Lauvernet et al., 2008)
- To cover all geometrical configurations and canopy realizations
- Fixed variables: default SCOPE values

One .mat file per variable

Validation into E2E against a reference scene

Variable type	Variable	Distribution	Min Max		Mean	SD
	Ν	Gaussian*	1	2.7	1.5	0.5
	Cca (µg.cm⁻²)	Gaussian*	Gaussian* 0		10	5
Lear structure	Cdm (g.cm ⁻²)*	Gaussian*	Gaussian* 0.002		0.005	0.003
	Cw**	Gaussian*	0.005	0.035	0.012	0.006
	LIDFa (rad)***	Uniform	-1	1		
Canopy structure	LIDFb (rad)***	Uniform	-1	1		
	SMC (%)	Gaussian	5	55	25	12.5
Sail	BSM Brightness	Gaussian	0.5	1.5	1	0.5
5011	BSM lat (°)	Gaussian	20	40	25	12.5
	BSM long (°)	Gaussian	45	65	50	10
	0(7					

Some examples of input layers

Map of LAI Leaf area index [m2 m-2]

RGB of reference image (generated by SCOPE)

Some examples of spectra

19/28

Towards processing of real data

PRISMA

RGB Map (Red wl: 666.000000, Green wl: 540.000000, Blue wl: 470.000000)

11° 33'28'

The challenge of using simulated data: How to create a LUT that:

- 1. Sufficiently generic for global mapping
- 2. Sufficiently small for fast processing
- 3. Sufficiently realistic for interpreting hyperspectral data
- 4. Optimized for non-vegetated surfaces and noises

- With AL we can optimize the LUT for a specific task, e.g. optimize the hybrid model against field data
- A workflow was developed on implementing AL strategy combined with validation against field data

Workflow AL strategy:

CHIME Airborne Campaign (2018)

- ✓ 2018 ESA-FLEX/CHIME campaign near Grosseto
- ✓ 3 hyperspectral airborne sensors: APEX, AVIRIS-NG, HyPlant
- ✓ 2 field campaigns: vegetation sampling on corn crop
- ✓ multiple biophsical variables collected

GPR v.1.7 models Validation of CHIME vegetation models

LUT simulated by SCOPE - 1000 samples resampled to CHIME with some bands left out. Optimized with AL against **Grosseto** field dataset.

	Variable	AL method	#samples	ML method	Spectral noise	R2	RMSE	RRMSE (%)	NMRSE (%)	Bands number
leaf	LCC	EBD	219	GPRm	5	0	18.11	41.82	62.01	247
	LWC	EBD	167	GPRm	0	0.88	0.0022	19.78	9.22	210
	LDMC	EBD	187	GPRm	0	0.05	0.0013	28.50	91.53	210
canopy	LAI	EBD	302	GPRm	0	0.86	0.6588	37.17	11.78	247
	CCC	EBD	283	GPRm	0	0.83	95.21	126.46	33.60	247
	CWC	EBD	264	VHGPR	0	0.89	0.041	135.06	67.00	210
	CDMC	EBD	999	GPRm	2.5	0.86	0.035	291.28	132.04	210
	CNC*	EBD	148	GPRm	0	0.65	3.6315	30.69	17.68	210

* LUT and validation data kindly shared by Katja Berger, LMU

6° 25'13"

26/06/2018

- Subset HyPlant airborne flightline, Julich \checkmark
- 3m spatial resolution \checkmark
- Resampled to CHIME bands \checkmark

CWC

CNC

6

4

- ✓ Subset PRISMA image, N. Italy
- ✓ 30m spatial resolution
- ✓ Atm correction & spectral polishing
- ✓ Resampled to CHIME bands

23/05/2020

CDMC

FAPAR

CNC

Relative uncertainty (%)

Some PRISMA vegetation traits maps

27/28

Conclusions & perspectives

- ✓ Imaging spectrometry missions are reaching maturity with a.o. PRISMA, EnMap, CHIME, SBG
- ✓ GPR appealing algorithm for new-generation vegetation models: robust, fast, uncertainties
- ✓ Hybrid models developed with LUTs coming from SCOPE and PROSPECT-PRO-SAIL models
- CHIME GPR models prepared and tested to simulated, aiborne and PRISMA images
- ✓ Some GPR models (v.1.7) showed robustness:
 CNC, FAPAR, FVC. Others need some more work.
- ✓ Further efforts required to develop robust models for all variables: key lies in quality training data. Trade-off between generic/customized/size

