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Current and upcoming airborne and spaceborne imaging spectrometers lead to vast hyperspectral data
streams. This scenario calls for automated and optimized spectral dimensionality reduction techniques
to enable fast and efficient hyperspectral data processing, such as inferring vegetation properties. In
preparation of next generation biophysical variable retrieval methods applicable to hyperspectral data,
we present the evaluation of 11 dimensionality reduction (DR) methods in combination with advanced
machine learning regression algorithms (MLRAs) for statistical variable retrieval. Two unique hyperspec-
tral datasets were analyzed on the predictive power of DR + MLRA methods to retrieve leaf area index
(LAI): (1) a simulated PROSAIL reflectance data (2101 bands), and (2) a field dataset from airborne
HyMap data (125 bands). For the majority of MLRAs, applying first a DR method leads to superior retrie-
val accuracies and substantial gains in processing speed as opposed to using all bands into the regression
algorithm. This was especially noticeable for the PROSAIL dataset: in the most extreme case, using the
classical linear regression (LR), validation results R2

CV (RMSECV) improved from 0.06 (12.23) without a
DR method to 0.93 (0.53) when combining it with a best performing DR method (i.e., CCA or OPLS).
However, these DR methods no longer excelled when applied to noisy or real sensor data such as
HyMap. Then the combination of kernel CCA (KCCA) with LR, or a classical PCA and PLS with a MLRA
showed more robust performances (R2

CV of 0.93). Gaussian processes regression (GPR) uncertainty esti-
mates revealed that LAI maps as trained in combination with a DR method can lead to lower uncertain-
ties, as opposed to using all HyMap bands. The obtained results demonstrated that, in general,
biophysical variable retrieval from hyperspectral data can largely benefit from dimensionality reduction
in both accuracy and computational efficiency.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Spatio-temporally explicit, quantitative retrieval methods for
Earth surface are a requirement in a variety of Earth system appli-
cations. Optical Earth observing satellites, endowed with a high
spectral resolution, enable the retrieval and hence monitoring of
continuous bio-geophysical variables (Schaepman et al., 2009).
With forthcoming operational imaging spectrometers, such as
EnMAP (Guanter et al., 2015), HyspIRI (Roberts et al., 2012),
PRISMA (Labate et al., 2009) and ESA’s 8th Earth Explorer FLEX
mission (Drusch et al., 2016), an unprecedented data stream for
land monitoring will soon become available to a diverse user com-
munity. These massive data streams will require enhanced pro-
cessing techniques that are accurate, robust and fast. One of the
major challenges with these data streams is the large amount of
spectral data that has to be processed.

Over the last few decades, a wide diversity of bio-geophysical
retrieval methods have been developed, but only a few of them
made it into operational processing chains and many of them are
still in its infancy and not fully adapted to hyperspectral data
(Verrelst et al., 2015a). Essentially, we may find four main
approaches for the inverse problem of estimating biophysical vari-
ables from spectra: statistical, i.e. (1) parametric and (2) nonpara-
metric regression; (3) physically-based; and (4) hybrid regression
methods. Hybrid methods combine elements of non-parametric
regression and physically-based methods. These methods exploit
the generic properties of physically-based models combined with
the flexibility and computational efficiency of non-parametric,
non-linear regression models (Verrelst et al., 2015a). They proved
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to be particularly successful in operational generation of land prod-
ucts such as leaf area index (LAI). However, current hybrid meth-
ods rely exclusively on neural networks (NN), typically trained
by a very large amount of simulated data as generated by radiative
transfer models (RTMs) (e.g., Baret et al., 2007, 2013; Verger et al.,
2008). For instance, when it comes to LAI retrieval then commonly
the PROSAIL model (PROSPECT + SAIL) is used to generate training
data (Jacquemoud et al., 2009). This approach works fine to multi-
spectral data but becomes challenging when applied to hyperspec-
tral data due to the computational cost in training a NN with many
bands.

Beyond NN, various alternative nonparametric methods in the
field of machine learning regression algorithms (MLRAs) have been
recently introduced, many of them with interesting properties.
Especially bagging/boosting of regression trees (RT), random for-
ests (RF) and kernel-based methods such as kernel ridge regression
(KRR) have proven to be simpler and faster to train, providing com-
petitive accuracies. Some of these kernel-based MLRAs such as
Gaussian processes regression (GPR) even provide associated
uncertainties in a Bayesian framework (Verrelst et al., 2012b,
2015b). A drawback of these advanced statistical regression algo-
rithms (including NN) for retrieving biophysical variables, how-
ever, is that they also come with a computational cost, especially
when large datasets are involved in the training phase, such as
when simulated data are used typically in hybrid schemes. Conse-
quently, reduction of the training data space while retaining as
much information as possible would enable to alleviate these com-
putational drawbacks.

Reduction of the training dataset can essentially take place in
two domains: (1) in the sampling domain, i.e. by selecting only
the most informative samples, e.g. through active learning tech-
niques (MacKay, 1992; Tuia et al., 2011; Crawford et al., 2013;
Verrelst et al., 2016a), and (2) in the spectral domain, i.e. by making
use of feature (band) selection and feature extraction or dimen-
sionality reduction (DR) techniques (Van Der Maaten et al.,
2009). While the first type of methods aim to minimize the amount
of samples while preserving high accuracies, the second type of
methods aim to bypass the so-called ‘‘curse of dimensionality”
(Hughes phenomenon) (Hughes, 1968) that is commonly observed
in hyperspectral data. Adjacent hyperspectral bands carry highly
correlated information which may result in redundant data and
possible noise and potentially suboptimal performances. In feature
(band) selection, the aim is to define a subset of the original bands
that maintains the useful information to apply regression with
highly correlated and redundant bands excluded from the regres-
sion analysis. In parametric regression, this is typically done by
systematically calculating all possible two-band combinations in
vegetation indices formulations, (e.g., le Maire et al., 2008; Rivera
et al., 2014b). More elegant methods exist by making use of band
ranking properties provided by regression methods, such as in
GPR or random forests, e.g. (Van Wittenberghe et al., 2014;
Feilhauer et al., 2015). For instance, (Verrelst et al., 2016b) recently
developed an automated sequential band removal procedure to
identify most sensitive bands based on GPR band ranking.

Alternatively, in DR methods the original spectral data is trans-
formed in some way that allows the definition of a small set of new
features (components) in a lower-dimensional space which con-
tain the vast majority of the original data set’s information (Liu
and Motoda, 1998; Lee and Verleysen, 2007). As such, there is no
need to search for most relevant spectral bands, and thus simplifies
the retrieval problem. Especially in data classification a plethora of
feature extraction and DR methods are available in the literature
(e.g., Arenas-Garcia et al., 2013; Damodaran and Nidamanuri,
2014). Surprisingly less progress in DR methods has been pre-
sented when it comes to biophysical variable retrieval (regression).
If a DR method at all is applied, then it is by the classical principal
component analysis (PCA) (Jolliffe, 1986; Liu et al., 2016). Although
PCA has proven its use in a broad diversity of applications, and con-
tinues to be the first choice in vegetation properties mapping based
on hyperspectral data, situations may occur where PCA is not the
best choice and alternatives have to be sought. As an extension
of PCA, partial least squares (PLS) introduces some refinements
by looking for projections that maximize the covariance and corre-
lations between spectral information and input variables (Wold,
1966). PLS regression (PLSR) became a popular regression method
in chemometrics and remote sensing applications (e.g. see Verrelst
et al. (2015a) for review), however, the regression part of PLSR and
principal component regression (PCR) has always been restricted
to multiple linear regression. It remains to be questioned how well
PLS combines with more advanced, nonlinear regression methods.
Beyond PCA and PLS, only a few DR-regression studies have been
presented, including a semi-supervised DR where the data distri-
bution resides on a low-dimensional manifold has been proposed
(Uto et al., 2014). But this method was only applied to linear
regression. Apart from Laparra et al. (2015) and Arenas-Garcia
et al. (2013) where a few alternative DR methods were proposed,
the combined use of DR with advanced regression methods for bio-
physical variable estimation has been largely left unexplored.
Nonetheless, there is no doubt DR methods may become prevalent
within the context of introducing advanced regression methods
into new generation hybrid retrieval processing chains. This espe-
cially holds for LAI retrieval; LAI is characterized by a broad sensi-
tive spectral range (e.g. see global sensitivity analysis Verrelst et al.
(2015c)) and thus perfectly suited for a DR conversion step.

In this respect, apart from PCA and PLS, in this work we evaluate
9 alternative DR methods into regression, including canonical cor-
relation analysis (CCA), orthonormalized PLS (OPLS) and minimum
noise fraction (MNF), as well as their nonlinear extensions derived
by means of the theory of reproducing kernel Hilbert spaces. All
these methods have been put together into an in-house developed
MATLAB library called SIMFEAT (Arenas-Garcia et al., 2013), which
has been now included in a free graphical user interface (GUI)
retrieval toolbox.

This brings us to the following objectives: (1) to implement
multiple DR methods into a software framework that enables
semi-automatic development and validation of (hybrid) statistical
retrieval strategies, and (2) to evaluate the efficacy of the SIMFEAT
DR methods in combination with advanced regression methods in
optimizing statistical LAI retrieval from hyperspectral data. Two
experiments are presented. First, a hybrid scheme where the
regression algorithms are trained by simulated data coming from
PROSAIL. Second, an experimental dataset where the regression
algorithms are trained by data coming from ESA’s SPARC campaign
(Barrax, Spain).

In the following, we will explain the implemented DR methods
and used regression techniques (Section 2). This is followed by a
description of the developed software and experimental setup
(Section 3) and a presentation of the results (Section 4). The work
closes with a discussion (Section 5) and a conclusion (Section 6).
2. Function approximation as a multivariate data analysis
problem

The problem of regression and variable retrieval aims to learn a
function f ð�Þ that, based on input hyperspectral data x 2 X can pre-
dict an output target variable or biophysical parameter y 2 Y. The
problem can be approached directly with nonlinear regression
methods implementing f ð�Þ, e.g. with neural networks, random for-
ests, or kernel machines. Despite its efficiency, this approach leads
to hidden representations that are hard to analyze, understand and
visualize. Alternatively, one can approach the problem by learning



Fig. 1. Nonlinear function approximation can be approached (top) directly by
developing a nonlinear approximation function f, or (bottom) indirectly by learning
a (non-) linear feature extraction transform g plus a (non-) linear transform h for
fitting, i.e. the nonlinear step can either be applied in the feature extraction or in the
regression, or in both.
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an intermediate transformation gð�Þ from the original, potentially
high-dimensional feature space X , to an accessible representation
space of fewer dimensions, R. From there, one only has to project
data into R to perform a simple linear transform, hð�Þ, to infer the
output variable (see Fig. 1). This second approach delivers two
important advantages: (1) the first nonlinear step leads to an
accessible feature space of lower dimensionality, and (2) the sec-
ond linear step typically involves solving simpler, faster convex
optimization problems. Accordingly, we focus on developing the
g feature extractors, and to evaluate different linear and nonlinear
regression methods for h.
1 http://isp.uv.es/soft_feature.html.
2.1. Dimensionality reduction

Extracting meaningful features (or components) from multidi-
mensional data is typically done using the canonical principal com-
ponent analysis (PCA), aka Empirical Orthogonal Functions (EOF)
(Pearson, 1901). Nevertheless, many other DR methods are avail-
able in the literature. See Van Der Maaten et al. (e.g., 2009);
Arenas-Garcia et al. (e.g., 2013) for a comparative review. Multi-
variate analysis (MVA) constitutes a family of methods for DR
(Arenas-Garcia et al., 2013). The goal of MVA algorithms is to
exploit correlations among the variables to find a reduced set of
features that are relevant for the learning task. Among the most
well-known MVA methods are PCA (Jolliffe, 1986), partial least
squares (PLS) (Wold, 1966), canonical correlation analysis (CCA)
(Hotelling, 1936), and minimum noise fraction (MNF) algorithm
(Green et al., 1988). PCA disregards the target data and exploits
correlations between the input variables to maximize the variance
of the projections, while PLS and CCA look for projections that
maximize, respectively, the covariance and the correlation
between the features and the target data. Therefore, they should,
in principle, be preferred to PCA for regression or classification
problems. A fifth MVA method known as orthonormalized PLS
(OPLS) optimizes the projection to achieve optimal results in least
squares terms (Borga et al., 1997). A common advantage of all
these DR methods is that they can be formulated using standard
linear algebra and can be implemented as standard (or general-
ized) eigenvalue problems.

No matter how refined the various MVA methods are, they are
still constrained to account for linear input-output relations.
Hence, they can be severely challenged when features exhibit non-
linear relations between them or with the observed target variable.
To address these problems, nonlinear versions of MVA methods
have been developed, and these can be classified into two funda-
mentally different approaches (Rosipal, 2010): (1) The modified
methods in which the linear relations among the latent variables
are substituted by nonlinear parametric relations (Wold et al.,
1989; Qin and McAvoy, 1992); and (2) variants in which the algo-
rithms are reformulated to fit a kernel-based approach (Scholkopf
et al., 1998; Shawe-Taylor and Cristianini, 2004; Nielsen, 2011).
We will focus here on the latter approach. A central property of
the kernel approach is the exploitation of the ‘‘kernel trick,” by
which the inner products between training samples in the trans-
formed space are replaced by a kernel function working solely with
input space data, so knowing the nonlinear mapping is not explic-
itly necessary. Table 1 provides a summary of the MVA methods.

While the above MVA methods are well-known (Arenas-Garcia
et al., 2013), one additional kernel method is briefly explained
below, being kernel entropy component analysis (KECA) (Jenssen,
2010). The goal of KECA is to extract features according to the
entropy components. As in KPCA, KECA is based on the kernel sim-
ilarity matrix. However, while KPCA tries to preserve the second-
order statistics of the data set, KECA is based on the information
theory and tries to preserve the maximum Rényi entropy of the
input data set. KECA has been successfully used in remote sensing
data processing (Gómez-Chova et al., 2012; Luo and Wu, 2012; Luo
et al., 2013). We implemented and evaluated the above-described
linear MVA methods (PCA, PLS, CCA, MNF, OPLS), as well as their
kernel versions (KPCA, KPLS, KCCA, KMNF, KOPLS, KECA) in a
MATLAB library called SIMFEAT.1

After learning the gð�Þ transformation, one can actually project
data onto a subspace R. If g is implemented with a nonlinear (ker-
nel) MVA method, one should have ideally captured all nonlinear
relations in the data and then hð�Þ could be optimally implemented
with linear fitting. Alternatively, one could exploit nonlinear
machine learning regression for hð�Þ as well, in order to further
account for remaining nonlinear feature dependencies. We will
assess both pathways and the motivating hypothesis
experimentally.
2.2. Regression and function approximation

Apart from the ordinary least squares (OLS) linear regression,
we tested 7 advanced nonlinear MLRAs, i.e. bagging and boosting
decision trees, random forests, neural networks, kernel ridge
regression and Gaussian processes regression. These MLRAs can
be categorized into three groups: (1) decision trees, (2) neural net-
works, and (3) kernel methods, and are briefly outlined below.

Decision tree learning is based on decision tree predictive mod-
eling. A decision tree is based on a set of hierarchical connected
nodes. Each node represents a linear decision based on a specific
input feature. A classical decision tree algorithm cannot cope with
strong non-linear input-output transfer functions. In that case, a
combination of decision trees can improve results, such as bagging
(Breiman, 1996), boosting (Friedman et al., 2000) and random for-
ests (Breiman, 2001).

Artificial neural networks (ANNs) are essentially fully con-
nected layered structures of artificial neurons (AN) (Haykin,
1999). A NN is a (potentially fully) connected structure of neurons
organized in layers. Neurons of different layers are interconnected
with the corresponding links (weights). Training a NN implies
selecting a structure (number of hidden layers and nodes per
layer), initialize the weights, shape of the nonlinearity, learning
rate, and regularization parameters to prevent overfitting. The
selection of a training algorithm and the loss function both have
an impact on the final model. In this work, we used the standard
multi-layer perceptron, which is a fully-connected network. We
selected just one hidden layer of neurons. By default, we optimized
the NN structure using the Levenberg-Marquardt learning algo-
rithmwith a squared loss function. However, in case this algorithm
takes too long computational time then the option is provided to
switch to a faster optimization based on a conjugate gradient back-
propagation algorithm.

Kernel methods in machine learning owe their name to the use
of kernel functions. Kernels quantify similarities between input
samples of a dataset (Shawe-Taylor and Cristianini, 2004). Similar-
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Table 1
Summary of linear and kernel MVA methods brought together in SIMFEAT library. Vectors u and a are column vectors in matrices U and A, respectively. rð�Þ denotes the rank of a
matrix. For each method it is stated the objective to maximize (1st row), constraints for the optimization (second row), and maximum number of features (last row). More
information can be found in Arenas-Garcia et al. (2013).

PCA PLS CCA OPLS MNF KPCA KPLS KCCA KOPLS KMNF

Pearson
(1901)

Wold
(1966)

Hotelling
(1936)

Borga et al.
(1997)

Green et al.
(1988)

Scholkopf et al.
(1998)

Shawe-Taylor and
Cristianini (2004)

Shawe-Taylor and
Cristianini (2004)

Arenas-Garcia
et al. (2013)

Nielsen (2011)

u>Cxu u>Cxyv u>Cxyv u>CxyC
>
xyu u>Cxxu=u>Cnnu a>K2

xa a>KxYv a>KxYv a>KxYY>Kxa a>K2
xa=a

>KxnKnxa

U>U ¼ I U>U ¼ I
V>V ¼ I

U>CxU ¼ I
V>CyV ¼ I

U>CxU ¼ I U>CnnU ¼ I A>KxA ¼ I A>KxA ¼ I
V>V ¼ I

A>K2
xA ¼ I

V>CyV ¼ I
A>K2

xA ¼ I A>KxnKnxA ¼ I

rðXÞ rðXÞ rðCxyÞ rðCxyÞ rðCxnÞ rðKxÞ rðKxÞ rðKxYÞ rðKxYÞ rðKxKxnÞ

Table 2
Evaluated non-parametric regression algorithms of the MLRA toolbox. More infor-
mation can be found in Verrelst et al. (2015a,b).

Name algorithm Principle

Linear regression (LR) (Hagan and
Menhaj, 1994)

Least squares fit with ‘2
regularization

Bagging trees (BaT) (Breiman, 1996) Bootstrap aggregation (bagging)
+ regression trees (RT)

Boosting trees (BoT) (Friedman et al.,
2000)

Boosting + RT

Random forests (RF) (Breiman, 2001) Bootstrap on samples and
features + RT

Neural Network (NN) (Haykin, 1999) Levenberg-Marquardt algorithm
Kernel ridge regression (KRR) (Suykens

and Vandewalle, 1999)
Matrix inversion

Gaussian processes regression (GPR)
(Rasmussen and Williams, 2006)

Bayesian statistical inference
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ity reproduces a linear dot product (scalar) computed in a possibly
higher dimensional feature space, yet without ever computing the
data location in the feature space. The following two methods are
gaining increasing attention: (1) Kernel ridge regression (KRR), also
known as least squares support vector machines (Suykens and
Vandewalle, 1999), and (2) Gaussian processes regression (GPR),
based on Gaussian processes, which generalize Gaussian probabil-
ity distributions in function spaces (Rasmussen and Williams,
2006). For both we used a standard radial basis function (RBF)
kernel.

The evaluated regression methods are provided in Table 2. A
more detailed comprehensive description of the methods is given
in Rivera et al. (2014a); Verrelst et al. (2015a) and a MATLAB
implementation in Camps-Valls et al. (2013).
2.3. Automating model analysis and vegetation mapping

The previous SIMFEAT dimensionality reduction (Arenas-Garcia
et al., 2013) and regression (Camps-Valls et al., 2013) toolboxes
were integrated in an in-house developed MATLAB package named
ARTMO (Automated Radiative Transfer Models Operator) (Verrelst
et al., 2012c).2 ARTMO embodies a suite of leaf and canopy radiative
transfer models (RTMs) including PROSAIL (i.e. the leaf model PRO-
SPECT coupled with the canopy model SAIL (Jacquemoud et al.,
2009)) and several retrieval toolboxes, i.e. a spectral indices toolbox,
(Rivera et al., 2014b), a LUT-based inversion toolbox (Rivera et al.,
2013), and a machine learning regression algorithms (MLRA) toolbox
(Rivera et al., 2014a; Camps-Valls et al., 2013). These retrieval tool-
boxes enable the user to optimize and validate retrieval algorithms
and subsequently process optical remote sensing data into maps
with little user interaction. We have updated the MLRA toolbox
(v1.19) with implementation of SIMFEAT in order to evaluate and
compare ensembles of DR methods with MLRAs in a semi-
automatic fashion.
2 http://ipl.uv.es/artmo/.
In practice, we follow a two-step approach: first a DR method is
applied, and then a regression algorithm. Regarding the implemen-
tation of the kernelized DR methods, an additional regularization
step was introduced in order to tune the kernel hyperparameters
as a function of the regression method employed. Another major
difficulty when tackling one variable prediction (e.g. LAI) is that
supervised DR methods can only extract a maximum of one feature
(the output space rank). This is the case of powerful methods such
as CCA and OPLS and their kernel variants. We solved this by dis-
cretizing the output space via clustering using k-means. A 1-of-k
encoding was used for the output space. This allows us to apply
CCA, OPLS, KCCA or KOPLS to obtain a maximum of k components
(the rank of the output space). By default the number of compo-
nents was set equal to the number of clusters, although the user
can opt to split the data into more clusters. This simple strategy
allows in turn to develop local feature extraction by learning
class-dependent subspace projections.

2.4. Evaluation of results

For the validation of the trained models we used different
goodness-of-fit statistical indicators: coefficient of determination,
R2; root mean square error: RMSE; and normalized RMSE: NRMSE.
Additionally, to ensure robust identification of validation results,
we combined the methods with a k-fold CV sub-sampling scheme.
This scheme first splits randomly the training data into k mutually
exclusive subsets (folds) of equal size and then by training k times
a regression model with variable-spectra pairs. Each time, we left
out one of the subsets from training and used it (the omitted sub-
set) only to obtain an estimate of the regression accuracy (R2,
RMSE, NRMSE). From k times of training and validation, the result-
ing validation accuracies were averaged and basic statistics calcu-
lated (standard deviation (SD), dynamic range) to yield a more
robust validation estimate of the considered regression model
(see also (Verrelst et al., 2015b)). Finally, for each retrieval strategy,
i.e. combination of DR and regression method, the training and val-
idation processing time is tracked.

3. Data and methodology

3.1. PROSAIL dataset

Two datasets are analyzed. The first dataset involves simulated
data as generated by the widely used PROSAIL RTM. PROSAIL is a
coupled leaf reflectance model PROSPECT with a canopy reflec-
tance model SAIL (Jacquemoud et al., 2009). At the leaf scale, the
PROSPECT-4 model (Feret et al., 2008) is currently one of the most
widely used leaf optical models and is based on earlier PROSPECT
versions. The model calculates leaf reflectance and transmittance
as a function of its biochemistry and anatomical structure. It con-
sists of four parameters, those being leaf structure (N), chlorophyll
content (Cab), equivalent water thickness (Cw) and dry matter con-
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tent (Cd). PROSPECT-4 simulates directional reflectance and trans-
mittance over the solar spectrum from 400 to 2500 nm at the fine
spectral resolution of 1 nm. This output serves as input into the
canopy model SAIL (Verhoef, 1984). SAIL is easy to use due to its
low number of input variables. The model is based on a four-
stream approximation of the RT equation, in which case one distin-
guishes two direct fluxes (incident solar flux and radiance in the
viewing direction) and two diffuse fluxes (upward and downward
hemispherical flux) (Verhoef et al., 2007). SAIL inputs consist of
leaf area index (LAI), leaf angle distribution (LAD), ratio of diffuse
and direct radiation, soil coefficient, hot spot and sun-target-
sensor geometry, i.e. solar/view zenith angle and relative azimuth
angle (SZA, VZA and RAA, respectively). PROSAIL generates hemi-
spherical and bidirectional top-of-canopy (TOC) reflectance in the
400–2500 spectral range at 1 nm as output, i.e. 2101 spectral
bands.

A look-up table (LUT) of 500 samples was generated by means
of Latin hypercupe sampling (McKay et al., 1979) within the PRO-
SAIL variable space with minimum and maximum boundaries of
vegetation properties as given in Table 3. The LUT size is consid-
ered as an acceptable trade-off between sufficiently sampling the
parameter space while keeping the sampling size low enough to
enable fast processing. All the PROSPECT-4 leaf variables have been
ranging, whereas regarding SAIL only the vegetation properties, i.e.
LAD and LAI have been ranging. Finally, only LAI was retrieved
from bi-directional TOC reflectance data based on the synergistic
use of DR and MLRA methods.

3.2. Field and HyMap data

The second dataset involves an experimental dataset with real
spectral data. The widely used SPARC dataset (Delegido et al.,
2013) was chosen to evaluate the performances of the SIMFEAT-
MLRA retrieval strategies. The SPectra bARrax Campaign (SPARC)
field dataset encompasses different crop types, growing phases,
canopy geometries and soil conditions. The SPARC-2003 campaign
took place from 12 to 14 July in Barrax, La Mancha, Spain (coordi-
nates 30�30N, 28�60W, 700 m altitude). Bio-geophysical parameters
have been measured within a total of 108 Elementary Sampling
Units (ESUs) for different crop types (garlic, alfalfa, onion, sun-
flower, corn, potato, sugar beet, vineyard and wheat). An ESU refers
to a plot, which is sized compatible with pixel dimensions of about
20 m � 20 m. In the analysis no differentiation between crops was
made. Green LAI has been derived from canopy measurements
made with a LiCor LAI-2000 digital analyzer. Each ESU was
assigned one LAI value, obtained as a statistical mean of 24 mea-
surements (8 data readings � 3 replica) with standard errors rang-
ing from 5% to 10% (Fernández et al., 2005). LAI values ranged
Table 3
Range and distribution of input variables used to establish the PROSAIL (PROSPECT4 + SAI

Model variales

Leaf variables: PROSPECT-4
N Leaf structure index
LCC Leaf chlorophyll content
Cm Leaf dry matter content
Cw Leaf water content

Canopy variables: SAIL
LAI Leaf area index
asoil Soil scaling factor
ALA Average leaf angle
HotS Hot spot parameter
skyl Diffuse incoming solar radiation
SZA Sun zenith angle
VZA View zenith angle
RAA (Sun-sensor) relative azimuth angle
between 0.4 and 6.2 m2/m2. During the campaign, airborne hyper-
spectral HyMap flight-lines were acquired for the study site, during
the month of July 2003. HyMap flew with a configuration of 125
contiguous spectral bands, spectrally positioned between 430
and 2490 nm. Spectral bandwidth varied between 11 and 21 nm.
The pixel size at overpass was 5 m. The flight-lines were corrected
for radiometric and atmospheric effects according to the proce-
dures of Alonso and Moreno (2005) and Guanter et al. (2005).
Finally, a calibration dataset was prepared, referring to the pixel
that covers the centre point of each ESU and its corresponding
LAI values. Additionally 20 bare soil spectra were added.
3.3. Experimental setup

The pursued analysis for the PROSAIL and the HyMap dataset
was alike. First, all MLRA methods are run with a 4-fold (k = 4)
CV sampling scheme without a DR method (i.e. full spectral data),
then with the classical PCA, and then with the alternative DRmeth-
ods. To start with 5 components are used in the regression analysis.
The performances are compared both in terms of accuracy (R2

CV ,
RMSECV, NRMSECV) and processing speed. Following, taking the
LR as reference and best performing MLRA, the performances of
all DR methods along an increasing number of components are
compared, from 1 to 10 components. Additionally, to link between
the noise-free simulated spectral data and HyMap spectral data
that is inherently noisy, an exercise of adding Gaussian noise to
the simulated data has been applied. This is not trivial since simu-
lated data is free from any noise, thus highly collinear and perfectly
suited for applying DR methods. Conversely, in case of real sensor
data all kinds of noises (e.g. instrumental, environmental) may
occur, which may impact the performances of the DR methods.
Multiple noise levels, i.e. 0.1, 0.5, 1 and 5 % Gaussian noise have
been injected to the PROSAIL simulated spectra, and the DR
+ MLRA analyses have been repeated for 5 components. The perfor-
mances of the DR methods are then compared against the previous
noise-free 5 components results. Finally, any of the developed DR-
MLRA models can be applied to an remote sensing imagery to pro-
cess it into a LAI map given the same band settings as those pre-
sented during the training phase. LAI maps have been created to
an arbitrary subset of HyMap flight line using GPR with all bands
and GPR with best performing DR method. The advantage of using
GPR is that this method provides additional uncertainty estimates.
The lower the r the more confident the retrieval relative to what
has been presented during the training phase. Hence, a direct
quantitative measure of the mapping performances is provided.
All processing was done within ARTMO on a contemporary com-
puter (Windows-64 OS, i7-4790 CPU 3.60 GHz, 16 GB RAM).
L) look-up table.

Units Minimum Maximum

unitless 1.3 2.5
[lg/cm2] 1 80
[g/cm2] 0.002 0.05
[cm] 0.002 0.05

[m2/m2] 0.1 7
unitless 0.01 0.01

[�] 0 90
[m/m] 0.01 0.1

[fraction] 10 10
[�] 35 35
[�] 0 0
[�] 0 0
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4. Results

4.1. PROSAIL results

The PROSAIL simulation dataset that is built of 8 input variables
and 2101 output bands is first analyzed. To put the impact of DR
methods into the LAI retrieval scheme into perspective, R2

CV valida-
tion results (1) without DR, i.e. using all 2101 bands, (2) using the
classical PCA and (3) using the best performing DR methods - both
for 5 components - are shown in Fig. 2. Overall, training the regres-
sion algorithms with a spectral dataset of 2101 bands led to sub-
optimal results. While KRR and NN performed reasonable with a
R2
CV of 0.76 and 0.75, respectively, the other advanced MLRAs led

to poorer R2
CV accuracies, between 0.5 and 0.7, and the ordinary

least squares LR method completely failed. Alternatively, convert-
ing the 2101 bands into 5 PCA components only improved accura-
cies for LR (R2

CV from 0.05 to 0.5) and GPR (R2
CV from 0.51 to 0.70).

For all the other regression models PCA conversion did instead
degrade their predictive power, which suggests that a PCA does
not always match well with advanced regression algorithms. More
remarkable improvements were achieved when converting the
spectral dataset into components by the alternative DR methods,
particularly by CCA and OPLS. These two top-performing DR meth-
ods perform alike and rely on an intermediate clustering step; the
R2
CV reached beyond 0.90 for each of the tested regression algo-

rithm. They also perform more robust, as indicated by a generally
narrower SD than PCA or when no DR method applied. Thereby,
given that LR reached the same accuracies as the advanced MLRAs,
suggests that the excellent results are primarily driven by CCA and
OPLS.

Performances are inspected in more detail by plotting the scat-
ter plots for three regression algorithms with best results, i.e. (1)
LR, because applying DR methods to LR led to most significant
improvements; (2) KRR, because this regression algorithm was
best performing without DR methods; and (3) GPR, because the
combination of DR + GPR led to highest accuracies (Fig. 3). Scatter
plots are first shown for the regression algorithms trained with all
2101 bands, second with first applying a PCA, and third with apply-
ing the best performing DR method. The 9 scatter plots reveal the
role DR methods are playing on the retrieval of LAI. Table 4 pro-
vides associated goodness-of-fit statistics and processing time.
Since boundary situations are plotted, from worst (LR alone) to
best (CCA-GPR) performances, the performances of the other DR
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Fig. 2. PROSAIL LAI R2
CV (mean and SD) validation results for directly MLRA, MLRA
and regression combinations fall within these extremes. The fol-
lowing trends can be observed.

First, the LR model trained with 2101 bands caused some
extreme outliers, which makes discarding this model for mapping
applications. Second, although KRR deals best with processing the
full spectra, the model faces difficulties in coping with the well-
known saturation effect, i.e. higher LAI cause little spectral varia-
tion and therefore tend to be underestimated (Gao et al., 2000).
Third, GPR performs poorer than KRR, leading to saturation effect
and a broader point cloud around the 1:1-line.

A PCA spectral transformation improved LR and GPR predic-
tions, but saturation effect remains; especially LR failed to deliver
LAI predictions above 5; while GPR and KRR delivered only accu-
rate predictions for a low LAI, i.e. until 2, at higher LAI a saturation
effect starts to emerge. Conversely, when the spectral data is first
reduced through the best performing DR method (i.e., CCA or OPLS)
then the regression algorithms deliver substantially more accurate
predictions, even for high LAIs, leading to narrowly distributed
point clouds along the 1:1-line. This suggests that these two DR
methods are able to overcome LAI saturation irrespective of the
used regression method. Relative errors fell well below 10%, which
is commonly required by the user community.

Another advantage of using these DRmethods is the gain in pro-
cessing time. Although CCA and OPLS run slower than the classical
PCA, for GPR the gain in accuracy and processing speed is remark-
able compared to no DR method applied, i.e. 41 times faster and a
drop in relative errors from 20.3 to 6.8% (see Table 4).

The performances of the DR methods along an increasing num-
ber of components from 1 to 10 are subsequently inspected. R2

CV

validation results for all DR methods in combination with LR and
the advanced GPR are shown in Fig. 4. The trends for LR and GPR
are consistent and can be summarized as follows. CCA and OPLS
deliver substantially higher accuracies than any of the other DR
methods, especially for LR. Remarkably, the use of one component
already yields high accuracies, and flattening starts from three
components with a R2

CV above 0.9. LR trained with only two OPLS
or CCA components even leads to superior performances as
opposed to trained with up to 10 components by any other DR
method. Their kernel variants, KOPLS and KCCA, are positioned
somewhat lower. In case of LR all the other DR methods perform
substantially poorer, i.e., on the R2

CV order of 0.5–0.7. For instance,
the conventional PCA underperforms until 7 components and only
reaches about the same accuracies as PLS, KPLS and KPCA when
RF NN KRR GPR

 5C SIMFEAT 5C (best method)

PLS/CCA OPLS/CCA OPLS/CCAOPLS/CCA

-PCA 5C (components) and with best performing DR method, given on top.
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Fig. 3. PROSAIL LAI measured vs estimated scatterplots for LR, KRR and GPR, without DR [top], with 5 PCA [middle] and with best performing 5C DR method [bottom]. The
colors represent the 4-k subsets. For LR the Y-axis has not been synchronized to enable viewing the full extent of its estimates.

Table 4
Cross-validation statistics and processing time for the results presented in Fig. 3.

MLRA R2
CV (SD) RMSECV (SD) NRMSECV (SD) (%) CPU (SD) (s)

All PROSAIL bands (2010)
LR 0.06 (0.07) 12.23 (11.7) 179.7 (171.6) 0.4 (0.1)
KRR 0.76 (0.03) 1.00 (0.07) 14.7 (1.0) 7.2 (1.2)
GPR 0.51 (0.18) 1.38 (0.29) 20.3 (4.3) 1077.8 (46.0)

5 PCA
PCA-LR 0.53 (0.06) 1.37 (0.07) 20.2 (1.1) 0.2 (0.2)
PCA-KRR 0.64 (0.04) 1.21 (0.03) 17.9 (0.5) 1.0 (0.2)
PCA-GPR 0.72 (0.04) 0.81 (0.04) 15.5 (0.7) 3.2 (0.2)

Best performing 5C DR method
CCA-LR 0.93 (0.02) 0.53 (0.06) 7.8 (2.6) 20.3 (0.9)
OPLS-KRR 0.93 (0.04) 0.52 (0.14) 7.6 (1.9) 22.6 (2.1)
CCA-GPR 0.95 (0.01) 0.43 (0.02) 6.3 (0.2) 25.7 (1.9)
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trained by 10 components. In turn, when an advanced, nonlinear
regression algorithm such as GPR is used, then PCA or PLS and their
kernelized versions KPCA and KPLS behave more alike, meaning
that the nonlinear aspect of the kernel DR methods play a less
important role. Also, these methods reach the same order of accu-
racies as KCCA and KOPLS when trained with 10 components.

Overall, both LR and GPR results suggest that most gain in accu-
racy is achieved due to CCA or OPLS. Thereby, although not shown
for the sake of brevity, the same trends were observed for the other
MLRAs.
4.2. Assessing the robustness of DR methods to noise

The DR methods are next evaluated on their ability to deal with
noisy data. Performances are compared against the earlier noise-
free results. R2

CV validation results for LR and GR are shown in
Fig. 5; the other regression methods were behaving alike (not
shown). The earlier promising CCA and OPLS methods tend to
respond most sensitive to the introduction of Gaussian noise. A
small injection of 0.1% noise to the spectra already breaks down
their superior performances. This especially holds for GPR where
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Fig. 4. PROSAIL LAI R2
CV (mean) validation results for each of the DR methods for LR

[top] and GPR [bottom] along increasing number of components, from 1 to 10.
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relationships rapidly degrade when adding more noise. In turn, the
kernel versions of CCA and OPLS (i.e., KCCA and KOPLS) appear to
be considerably much more robust to noise and particularly LR
maintains excellent results until 5% noise with an R2

CV almost
reaching 0.8. GPR, however, does not manage to keep the high
accuracies with KCCA and KOPLS and degradation takes place at
5% noise, which suggests tendency of overfitting. Also the mid-
range performing DR methods PCA and PLS and the kernel variants
KPCA and KPLS tend to cope well with noisy spectral data; the
injection of noise had negligible impact. These methods perform
quite robust in combination with GPR; R2

CV results maintain above
0.7 and also the SD is kept small. The remaining DR methods per-
form somewhat poorer (KMNF, KECA) or even failed when data
becomes more noisy (MNF + GPR), which makes these methods
less attractive for mapping applications. To ascertain whether the
number of components play any role in dealing with noisy data,
the noise exercise was repeated with 5% noise and 10 components
(results not shown). About the same trends were observed as with
5 components, i.e. the R2

CV increased only marginally, in agreement
with Fig. 4. This suggests that the conducted noise experiment is
valid to derive some general trends from it. The bottom line here
is that OPLS and CCA are only excelling in case of noise-free con-
tiguous spectral data such as simulated TOC reflectance data. But
when spectral data start to becomes noisy then these relationships
degrade rapidly, especially when trained by GPR. This suggests that
the degree of noisiness determines the performances of these DR
methods, which bears consequences when applying DR methods
to real sensor data, as addressed in the next section.
4.3. HyMap results

The analysis has been repeated to an experimental dataset con-
sisting of field LAI measurements and associated airborne hyper-
spectral measurements as obtained by the HyMap sensor. Similar
as before, (1) the MLRA validation R2

CV results without using DR
methods, (2) using the classical PCA and (3) with best-
performing DR method - the latter two with 5 components - are
first shown (Fig. 6). The best performing DR method is displayed
on top of the bars, although, as shown in next section, several DR
methods perform alike. For LR, KRR and GPR goodness-of-fit statis-
tics and processing speed are provided in Table 5. It leads to the
following findings. LR gained mostly from applying a DR step prior
to the regression as compared to using all bands. While the PCA
improved results from 0.47 (no DR) to 0.92, by using KCCA as DR
method R2

CV improved to 0.88. The gain in accuracy by the alterna-

tive DR methods is less obvious for the more advanced MLRAs; R2
CV

differ only slightly across the three strategies. While bagging trees
and random forests benefitted somewhat from a kernel DR
method, and PLS is the preferred method for NN, KRR and GPR,
overall the gain as compared to PCA is minimal. KRR and GPR
yielded even best results when using all bands, although the differ-
ences in accuracy as compared to combining with PLS is small: R2

CV

0.94 vs. 0.93, respectively (see also Table 5). When also considering
processing speed, then DR methods make the difference. Although
the regression algorithms ran fast because of trained by relatively
few samples and bands, applying DR methods still caused a sub-
stantial acceleration. For instance, PLS-GPR processed model devel-
opment and validation about 8 times faster than GPR alone.

The performances of the applied DR methods along an increas-
ing number of components are subsequently inspected. R2

CV vali-
dation results for all DR methods in combination with LR and
GPR are shown in Fig. 7. The main trends can be summarized
as follows. None of the tested DR methods act distinctly outstand-
ing but when using LR then KCCA is top performing from 2 com-
ponents onwards. PCA, PLS and their kernel variants behave alike,
just below KCCA, and reach almost the same accuracies when
trained with 10 components. When instead using GPR then PLS,
PCA and KPCA are top performing and behave alike from 4 com-
ponents onwards; at 10 components then also KPLS, KCCA, KOPLS
reach about the same accuracies. Conversely, CCA and OPLS are
only mid-ranging to poorly performing. Hence, these results
underline again that, while their kernel variants proved to
respond considerably more adaptive, CCA and OPLS face difficul-
ties in coping with more noisy data.

To exemplify the mapping of LAI, an arbitrary subset of HyMap
flight line was twice processed using a GPR model: (1) without a
DR method, and (2) in combination with 5 components of the best
performing DR method, i.e. PLS. The conversion of the HyMap sub-
set to an LAI map using GPR alone took 73 s. When instead using
the PLS-GPR model then processing time reduced to only 5 s.
Inspection of the LAI maps (Fig. 8, top) reveals the contrast
between the irrigated circular parcels with high LAI and the sur-
rounding fallow land. These maps are in agreement with earlier
mapping approaches (Verrelst et al., 2012a; Rivera et al., 2014a).
Note that LAI mean (l) estimates vary along the two maps, espe-
cially for low LAI on senescent, non-irrigated parcels. For instance,
the PLS-GPR model is considerably better adapted to assign close-
to-zero values to the fallow lands. In contrast, the LAI map as
obtained by GPR alone looks more heterogeneous, which suggests
that the model had more difficulty dealing with the spatial vari-
ability of the image.

Uncertainty maps are provided in Fig. 8 (bottom). When GPR
uses all bands, the uncertainties tend to vary more, with especially
high, patchy uncertainties over the harvested or non-irrigated
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Table 5
Cross-validation statistics and processing time for the results presented in Fig. 6.

MLRA R2
CV (SD) RMSECV (SD) NRMSECV (SD) (%) CPU (SD) (s)

All HyMap bands (125)
LR 0.47 (0.07) 1.41 (0.47) 24.9 (7.3) 0.2 (0.4)
KRR 0.94 (0.02) 0.44 (0.02) 7.8 (0.8) 0.0 (0.0)
GPR 0.94 (0.02) 0.39 (0.06) 7.0 (1.4) 3.9 (0.0)

5 PCA
PCA-LR 0.84 (0.04) 0.70 (0.04) 12.6 (1.7) 0.0 (0.0)
PCA-KRR 0.91 (0.03) 0.51 (0.04) 9.1 (1.0) 0.1 (0.0)
PCA-GPR 0.92 (0.05) 0.48 (0.07) 8.6 (1.7) 0.5 (0.0)

Best performing 5C DR method
KCCA-LR 0.92 (0.02) 0.52 (0.06) 9.3 (2.1) 0.7 (0.0)
PLS-KRR 0.93 (0.03) 0.47 (0.08) 8.4 (1.8) 0.1 (0.0)
PLS-GPR 0.93 (0.04) 0.43 (0.03) 7.8 (1.8) 0.5 (0.0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

R2 CV

Components

PCA PLS CCA OPLS MNF KPCA
KPLS KCCA KOPLS KMNF KECA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

R2 CV

Components

PCA PLS CCA OPLS MNF KPCA
KPLS KCCA KOPLS KMNF KECA

Fig. 7. HyMap R2
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drylands. Low uncertainties are encountered on the green irrigated
fields, which can be attributed to the applied sampling design that
predominantly focused on crops in vegetative status (Verrelst
et al., 2013). Hence, the uncertainty maps of both retrieval algo-
rithms can be compared to derive conclusions about the processing
quality of a GPR model. To quantify the extent of reduced uncer-
tainties, the absolute and relative differences between GPR and
PLS-GPR maps are mapped in Fig. 9. These maps are dominated
by shades of blue, which indicates that for most of the land covers
uncertainties are systematically reduced by the PLS-GPR model,
mostly on the order of 50%. This thus suggests that training the
regression algorithm with components from a DR method not only
speeds up image processing but also leads to more certain esti-
mates and thus higher quality maps.



Fig. 8. HyMap LAI map [m2/m2] processed by GPR using all 125 bands (top left), LAI map processed by PLS-GPR using 5 components (top right), associated GPR uncertainty
estimates (r), respectively (bottom).

Fig. 9. Differences in SD (r) between GPR all 125 bands and PLS-GPR in terms of absolute (left) and relative (right) differences.
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5. Discussion

The application of MLRAs to hyperspectral data mining and
analysis in the area of retrieval algorithms is rapidly gaining inter-
est in the community (Verrelst et al., 2015a). However, the large
number of (collinear) bands hampers the development of accurate
and fast MRA models, and DR methods that reduce the complexity
without loss of information become strictly necessary. In this work,
we have demonstrated that simple linear and nonlinear DR meth-
ods as brought together into one library (SIMFEAT) can be com-
bined with MLRAs for the quantification of biophysical variables.
These methods are implemented in ARTMO’s MLRA toolbox as a
two-step workflow: first the spectral data is converted into compo-
nents with a DR method, and second regression is applied over the
components. The analysis of DR + MLRA ensembles makes this
toolbox powerful in a wide range of mapping applications,



J.P. Rivera-Caicedo et al. / ISPRS Journal of Photogrammetry and Remote Sensing 132 (2017) 88–101 99
especially in view of processing imaging spectroscopy data. To
illustrate its utility, we have analyzed the predictive power of
DR + MLRA ensembles both to simulated PROSAIL (2101 bands)
and experimental HyMap (125 bands) data. The following general
findings are briefly discussed.

First, the PROSAIL dataset demonstrated that the classical PCA is
not always the best choice when combining with machine learning
regression algorithms. In fact, superior accuracies were achieved
for the majority of tested MLRAs without a PCA conversion. Never-
theless, most of the alternative DR methods did not perform much
better, and also the MLRAs without using DR methods, despite
being adaptive, did not lead to excellent accuracies (at best with
KRR R2

CV of 0.76). Two reasons can be identified why the MLRAs
alone or with PCA faced difficulties with this dataset: (1) the sim-
ulated spectral dataset is complex in a sense that is not only driven
by LAI, but also by 7 other PROSAIL input variables, which makes
that the other variables confound the LAI relationships; (2) the
spectral response to LAI is well known to reach a saturation around
medium LAI (i.e., LAI of 3) (Gao et al., 2000). The saturation effect
was also observed when plotting the scatter plots for models
trained with all bands and even when applying a PCA. Remarkably
only the DR methods that additionally decomposes the input vari-
ables into clusters, i.e. CCA and OPLS, dealt excellently with the
multi-dimensional simulated dataset and largely resolved the sat-
uration problem (R2

CV around 0.94). Consequently, first clustering
the dataset, i.e. discretizing the output space to k dimensions,
and then projecting to a lower dimensional space before proceed-
ing with regression proved to be a successful method in dealing
with such simulated data. Although here only a LUT of 500 samples
was used, and additional testing with larger LUT sizes is required,
this proposed approach opens opportunities towards new genera-
tion of hybrid retrieval strategies that are based on advanced
machine learning methods, and are applicable to imaging spec-
troscopy data.

Second, a drawback of CCA and OPLS is that these methods tend
to be sensitive to spectral noise. Relationships started to break
down already when injecting a tiny bit of noise to the PROSAIL
dataset. A solution to make these methods more robust to noise
would be to introduce a regularization term (Nielsen et al.,
1998), although that goes along with additional tuning. On the
other hand, when instead using the kernel version of CCA and
OPLS, i.e. KCCA and KOPLS, then these methods responded more
robust to noise, making them attractive alternatives to consider
in real data applications. When effectively using real (noisy)
HyMap data, then not only KCCA and KOPLS but also PCA and
PLS and their kernel variants performed more robust than CCA
and OPLS, although improvements as compared to no using a DR
method are also more modest. PCA and PLS do not consider the
separability of classes to generate a lower dimensional representa-
tion of original data. That PCA remains an attractive method for
hyperspectral data when including sufficient components has been
observed before. Martinez and Kak (2001) earlier noted that PCA
can outperform other methods when the number of training sam-
ples is limited, and also, PCA has less sensitivity to different train-
ing datasets.

Noteworthy hereby is that in case of linear regression (LR) it
was not PCA or PLS that were best performing (R2

CV around 0.84).
This deserves special attention because PCA and PLS in combina-
tion with LR are widely applied in remote sensing mapping appli-
cations in the form of PCR and PLSR (see Verrelst et al. (2015a) for
review). On the other hand, the HyMap results revealed that PLS
matched best with neural networks and the kernel machine learn-
ing methods KRR and GPR. For instance, PLS in combination with
KRR or GPR yielded a R2

CV of 0.93. This suggests that the classical
PLSR formulation delivers rather suboptimal results as compared
to when combining with non-linear regression algorithms. It also
implies that new opportunities are opened to reach more accurate
mapping applications by exploiting DR methods in combination
with MLRAs. On the other hand, it does not escape our attention
that GPR and KRR were more successful in processing HyMap data
without using a DR method (R2

CV : 0.93). This can be attributed to
the versatility of these advanced methods, but also to the nature
of the HyMap dataset. The dataset consists of relatively few sam-
ples, i.e. 118, and relatively few bands, i.e. 125. Considering that
real data is not free from noise implies that the problem of
collinearity is less prevailing to this experimental airborne dataset.
Effectively, Rivera et al. (2014a) earlier found that NN, KRR and
GPR tend to cope well with experimental airborne and spaceborne
hyperspectral datasets. But it goes at a computational cost that can
be alleviated by combining with an appropriate DR method. More-
over, these hyperspectral datasets were rather small with at most
125 HyMap bands. When moving towards new-generation imag-
ing spectrometers equiped with a few hunderd spectral bands
(e.g., FLEX, ENMAP,HySPIRI, PRISMA) then DR methods become
indispensable in their data processing by advanced statistical
regression methods.

Another widely used DR method applied to hyperspectral data
involves MNF. MNF analysis minimizes the noise fraction, or equiv-
alently, maximizes the signal-to-noise ratio of linear combinations
of zero-mean variables (Green et al., 1988). However, MNF was in
none of the tested cases evaluated as an attractive candidate to be
combined with regression analysis, although it is to be noted that
its kernel version seems more promising.

Third, the nonlinear kernel variants of the DR methods trig-
gered mostly improvements but did not always lead to superior
results. Their utility largely depended on the nature of the applied
regression algorithm. On the one hand, for LR the kernel DR
methods substantially improved accuracies. This was most
noticeable for LR with KCCA or KOPLS given noisy simulated data
or real (noisy) HyMap data. The success of combining a nonlinear
DR with LR was to be expected, since LR does nothing more than
an ordinary least squares regression. Hence, when combining LR
with a nonlinear DR method makes the regression algorithm
more adaptive and fast in processing. Conversely, when a nonlin-
ear DR method is combined with an advanced, nonlinear MLRA
then improvements in accuracies were less obvious. For instance,
in case of HyMap data as processed by GPR then KCCA, KOPLS and
KMNF outperformed their non-kernel versions, but accuracies
were on the same order as combined with PCA and PLS, especially
when trained with enough components (e.g. 10). It suggests that
a nonlinear DR method does not provide much added value when
already a powerful nonlinear regression model is used. The little
to no gain achieved by combining two kernel methods can be
explained by the tendency to overfitting and implies extra regu-
larization efforts to alleviate numerical instabilities (Shawe-
Taylor and Cristianini, 2004). A second important problem is
related to the computational cost. Since Kx is of size l� l, begin
l the number of training samples, the complexity of the methods
scales quadratically with l in terms of memory, and cubically with
respect to the computation time. Further, the solution of the max-
imization problem is not sparse, so the feature extraction for new
data requires the evaluation of l kernel functions per pattern,
becoming computationally expensive for large l. The opposite sit-
uation is worth mentioning: when l is small, the extracted fea-
tures may be useless, especially for high-dimensional data
(Abrahamsen and Hansen, 2011). To address these problems, sev-
eral solutions can be devised: either search for sparse models in
which one expresses the solution as a combination of a subset
of optimized training data (Arenas-Garcia et al., 2013), or by
approximating the kernel functions with randomized versions
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(Perez-Suay et al., 2017). These alternatives are being considered
to be implemented into the MLRA toolbox.

Finally, the predictive power of DR + MLRA ensembles can also
be appreciated when comparing against more conventional map-
ping methods such as vegetation indices. In a similar paper using
the same HyMap dataset, all possible two-band combinations
was fitted using various fitting functions (e.g., linear, polynomial,
exponential, power). From all those possible combinations, opti-
mized regression models were at best validated with an R2 of
0.83 (Rivera et al., 2014b). At the same time, an attractive advan-
tage of applying a DR prior to an advanced regression algorithm
is the gain in processing speed. The HyMap exercises revealed that
processing speed accelerated about 14 times with PLS-GPR as com-
pared to GPR alone. This is not trivial, particularly in view of devel-
oping new-generation hybrid algorithms for operational
processing of imaging spectroscopy data. The question now arises
whether DR + MLRA ensembles can be successfully applied to
retrieve other vegetation properties. While LAI is known to have
a broad sensitive spectral response, and therefore relevant infor-
mation can be successfully captured by lower-dimensional compo-
nents, other biophysical variables may have a more narrow
sensitive spectral response. For instance, the absorption region of
leaf chlorophyll content (LCC) is restricted to the visible and the
red edge, e.g. see Verrelst et al. (2015c). In this respect, for vari-
ables that are only sensitive to specific absorption regions, the
question arises whether the DR methods will be able to capture
the relevant information into their main components. In principle
such analysis can be easily done by ARTMO’s MLRA toolbox - this
is one of the research lines we will explore in future works.
6. Conclusions

We present an evaluation of a proposed statistical biophysical
variable retrieval workflow implemented into ARTMO’s machine
learning toolbox. The approach consists of extracting features
(components) from spectral data that are then fed to linear or non-
linear machine learning regression models. We evaluated a library
consisting of 11 dimensionality reduction (DR) methods and 8
machine learning regression algorithms (MLRAs). These DR meth-
ods enable to reduce the numbers of bands largely while preserv-
ing desired intrinsic information of the data. The combination of
DR with regression can be powerful for biophysical variable retrie-
val, as it leads to an accessible feature space of lower dimensional-
ity, which in turn leads to solving simpler, faster convex
optimization problems, and eventually results into a more efficient
retrieval algorithms. This ensemble approach is especially attrac-
tive for processing hyperspectral datasets, typically characterized
by a large amount of redundant bands. To demonstrate their pre-
dictive power, we applied DR + MLRA ensembles to a PROSAIL sim-
ulated dataset consisting of 2101 bands. Training regression
algorithms with inputs from CCA or OPLS outperformed any other
DR method, or when using directly all bands irrespective of the
regression method used. This clearly demonstrates the asset of
having a DR step integrated into a hybrid retrieval strategy. How-
ever, when shifting towards more real (noisy) sensor data, e.g. as
tested here with hyperspectral HyMap data (125 bands), then
these DR methods no longer excelled. Instead the kernel version
of CCA (i.e., KCCA) led to excellent accuracies when applying linear
regression (R2

CV of 0.92 as opposed to 0.47 without a DR method).
When combining DR methods with nonlinear MLRAs, then the
classical PCA or PLS methods were top performing in terms of accu-
racy and processing speed. The nonlinear kernelized DR methods
hardly led to accuracy improvements, which suggests that combin-
ing a linear DR method with a nonlinear regression algorithm
would be a first choice to convert hyperspectral data into estimates
of biophysical variables. LAI maps with associated uncertainties
were generated from an HyMap subset using Gaussian processes
regression (GPR) as trained with (1) all bands, and (2) with compo-
nents coming from PLS. Applying a DR method to a GPR model not
only accelerated processing speed, but also systematically reduced
mapping uncertainties. In conclusion, when dealing with hyper-
spectral data we recommend to test ensembles of dimensionality
reduction and regression strategies to enable optimizing biophys-
ical variable mapping in terms of accuracy and processing speed.
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