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Abstract—Biophysical parameters such as leaf chlorophyll con-
tent (LCC) and leaf area index (LAI) are standard vegetation
products that can be retrieved from Earth observation imagery.
This paper introduces a new machine learning regression algo-
rithms (MLRAs) toolbox into the scientific Automated Radiative
Transfer Models Operator (ARTMO) software package. ARTMO
facilitates retrieval of biophysical parameters from remote obser-
vations in aMATLAB graphical user interface (GUI) environment.
The MLRA toolbox enables analyzing the predictive power of
various MLRAs in a semiautomatic and systematic manner, and
applying a selected MLRA to multispectral or hyperspectral imag-
ery for mapping applications. It contains both linear and nonlinear
state-of-the-art regression algorithms, in particular linear feature
extraction via principal component regression (PCR), partial least
squares regression (PLSR), decision trees (DTs), neural networks
(NNs), kernel ridge regression (KRR), and Gaussian processes
regression (GPR). The performance of multiple implemented re-
gression strategies has been evaluated against the SPARC dataset
(Barrax, Spain) and simulated Sentinel-2 (8 bands), CHRIS (62
bands) and HyMap (125 bands) observations. In general, nonlinear
regression algorithms (NN, KRR, and GPR) outperformed linear
techniques (PCR and PLSR) in terms of accuracy, bias, and
robustness. Most robust results along gradients of training/valida-
tion partitioning and noise variance were obtained by KRR while
GPRdeliveredmost accurate estimations.We applied aGPRmodel
to a hyperspectral HyMap flightline to map LCC and LAI. We
exploited the associated uncertainty intervals to gain insight in the
per-pixel performance of the model.

Index Terms—Biophysical parameter retrieval, CHRIS,
graphical user interface (GUI) toolbox, HyMap, leaf area index
(LAI), leaf chlorophyll content (LCC), machine learning,
nonparametric regression, Sentinel-2 (S2).

I. INTRODUCTION

L EAF AREA INDEX (LAI) and leaf chlorophyll content
(LCC) are essential land biophysical parameters retriev-

able from optical Earth observation (EO) data [1]–[3]. These
parameters provide information about the phenological stage and
health status (e.g., development, productivity, and stress) of
crops and forests [4]. The quantification of these parameters

from space over large areas has become an important aspect in
agroecological, environmental, and climatic studies [5]. At the
same time, remotely sensed observations are increasingly being
applied at a within-field scale for dedicated agronomic monitor-
ing applications [6]–[8]. With the forthcoming superspectral
Sentinel-2 (S2) and Sentinel-3 missions and the planned EnMAP
and PRISMA imaging spectrometers, the unprecedented data
availability requires retrieval processing techniques that are
accurate, robust, and fast to apply.

Biophysical parameter retrieval always requires an interme-
diate modeling step to transform the measurements into useful
estimates [9]. This modeling step can be approached with either
statistical, physical, or hybrid methods. In this paper, we will
focus on the statistical approximation as this field has advanced
largely over the last two decades [10], [11]. Statisticalmodels can
be categorized into either parametric or nonparametric ap-
proaches. Parametric models assume an explicit relation
between the variables. They rely on the physical knowledge of
the problem and build explicit parametrized expressions that
relate a few spectral channels with the biophysical parameter of
interest. Alternatively, nonparametric models are adjusted to
predict a variable of interest using a training dataset of input–
output data pairs, which come from concurrent measurements of
the parameter and the corresponding reflectance/radiance obser-
vation. Several nonparametric regression algorithms are avail-
able in the statistics and machine learning literature, and recently
they have been introduced for biophysical parameter retrieval
[9], [12].

Particularly, the family of machine learning regression algo-
rithms (MLRAs) emerged as a powerful nonparametric approach
for delivering biophysical parameters. MLRAs have the poten-
tial to generate adaptive, robust relationships, and once trained,
they are very fast to apply [13]. Typically, machine learning
methods are able to cope with the strong nonlinearity of the
functional dependence between the biophysical parameter and
the observed reflected radiance. They may therefore be suitable
candidates for operational applications. Effectively, algorithms
such as neural networks (NNs) are already implemented in
operational retrieval chains (e.g., CYCLOPES products) [14],
[15]. It still remains to be questioned whether NNs offer the most
flexible tools for parameter estimation, gaining insight in the
retrievals, and evaluating retrieval performances. Besides, train-
ing NNs involve tuning several parameters that may greatly
impact the final robustness of the model. In part, this why in the
recent years alternative and simpler to train regression methods
have started replacing NNs. Specifically, the family of kernel
methods [10] has emerged as an alternative to NNs in many
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scenarios. Kernel methods typically involve few and intuitive
hyperparameters to be tuned, and can perform flexible
input–output nonlinear mappings. Even though MLRAs are
widely recognized as very powerful methods, some questions
still remain open, e.g., how robust are these models in case of
noisy situations, and howmuch they depend on changes between
the training and testing data distributions. Perhaps more impor-
tant is the fact that, for the broader remote sensing community,
they are also perceived as complicated black boxes with several
parameters to be tuned, which requires expertise. Further, until
now no user-friendly graphical user interface (GUI) toolbox
exists that brings several state-of-the-art MLRAs together. To
facilitate and automate the use of MLRAs, in this work, we
present a novel software package that allows systematically
analyzing and applying MLRA-developed models. The so-
calledMLRA toolbox has been implementedwithin the in-house
developed toolbox called Automated Radiative Transfer Models
Operator (ARTMO). ARTMO is a scientific GUI toolbox dedi-
cated to the retrieval of vegetation properties from optical
imagery [16].

This brings us to the objectives of this work that are: 1) to
present the novel MLRA toolbox for semiautomatic retrieval of
biophysical parameters, 2) to evaluate the different MLRAs on
their performance and robustness, and 3) to apply the best
performing MLRA to EO imagery to test the robustness and
accuracy in real scenarios.

The following sections will first briefly describe the
considered nonparametric regression algorithms and then
the latest status of ARTMO, followed by an introduction of
the most important components of the new MLRA toolbox. The
used data is subsequently described and an evaluation of six
nonparametric regression methods is presented. A discussion on
the use of these models for EO processing and a conclusion
closes this paper.

II. MACHINE LEARNING REGRESSION ALGORITHMS

MLRAs learn the relationship between the input (e.g., reflec-
tances) and output (e.g., biophysical parameters) by fitting a
flexible model looking at the structure of the data. The hyper-
parameters of the model are typically adjusted to minimize the
prediction error in an independent validation dataset. This way,
one looks for the best generalization capabilities, not only a good
performance in the training set that would give rise to an over-
fitted solution. In this paper, we compare several regression
algorithms. A first family of linear methods follow a simple
chained approach: first data dimensionality is applied to alleviate
collinearity problems which is then followed by canonical least
squares linear regression (LR). A second family of methods
consists of building nonlinear functions of the data directly.
Several state-of-the-art methods are considered here: 1) regres-
sion trees (RTs); 2) artificial NNs; 3) kernel ridge regression
(KRR), also known as least squares support vector machine; and
4) Gaussian processes regression (GPR). All these regression
techniques are popular in various application domains, thanks to
its relatively fast training, good performance, and robustness to
the overfitting problem. In the following sections, we briefly
summarize them.

A. Dimensionality Reduction and LR

Let us consider a supervised regression problem, and let and
be the input and output centered matrices of sizes and

, respectively.Here, is the number of training data points in
the problem and is the data dimension. The objective of
standard LR is to adjust a linear model for predicting the output
variable from the input features , where contains the
regression model coefficients (weights) and has size .
Ordinary least-squares (OLS) regression solution is

, where is the Moore–Penrose pseu-
doinverse of . Highly correlated input variables can result in
rank-deficient covariance matrix , making the
inversion unfeasible. The same situation is encountered in the
small-sample-size case.

A common approach in statistics to alleviate these problems
considers first in reducing the data dimensionality and then
applying the OLS normal equations to the projected data or
scores [17]. These scores reduce to a linear transformation of the
original data , where is referred
to as the projection matrix, being the th projection vector and

the number of extracted features. The best known linear
dimensionality reduction method is principal component analy-
sis (PCA) [18] which reduces to solve the eigenproblem

An alternative supervised method is partial least squares (PLS)
[19] in which we have to solve

Note that PCA disregards the target data and exploits correla-
tions between the input variables to maximize the variance of the
projections, while PLS looks for projections that maximize the
covariance between the features and the target data. In both cases,
the user selects the dimensionality of the projected data . After
projection, the OLS equations are solved using . The ap-
proaches respectively lead to the so-called principal component
regression (PCR) [20] and the partial least squares regression
(PLSR) [21] methods. Particularly, PLSR emerged as a popular
regression technique for interpreting hyperspectral data with
various experimental applications in vegetation properties map-
ping (e.g., [22]–[25]).

B. Regression Trees (RTs)

RTs build predictive models that take the observations as
inputs andmap them to the target variable. Themodel structure is
made out of nodes (or leaves) and branches. Leaves represent
output variable discrete values and branches constitute piece-
wise linear decisions. Decision tree (DT) learning can be done in
several ways and using different algorithms, which mainly vary
on the procedure used to determine where to split. In this paper,
we focused on the standard Breiman’s algorithm [26]. RTs have
several advantages, among them: 1) they can manage a high
number of features and examples in an easy way; 2) they are
nonparametric flexible methods so they do not impose a specific
functional form to the solution; and 3) the variables, or
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combination of variables, used at each node to divide the samples
into subgroups are the most discriminative features since they
assure the lowest estimated error.

The main advantage for analysts in remote sensing applica-
tions is that RTs allow knowledge discovery and full interpret-
ability by analyzing the surrogate and main splits of the tree.
They have been successfully used to estimate land surface
variables such as LAI, fraction of photosynthetically active
radiation (FAPAR) and chlorophyll content from VEGETA-
TION/SPOT4 [27], or broadband albedo from the Earth Observ-
ing 1 (EO-1) data [28], just to name a few applications.

C. Neural Networks (NNs)

The most common approach to develop nonparametric and
nonlinear regression is based on artificial NNs [29]. An NN is a
(potentially fully) connected structure of neurons organized in
layers. A neuron basically performs a LR followed by a nonlinear
function .Neurons of different layers are interconnectedwith
the corresponding links (weights). Therefore, in the limit case of
using an NN with only one neuron, the results would be similar
(or slightly better because of the nonlinearity) than those ob-
tained with OLS regression. Training an NN implies selecting a
structure (number of hidden layers and nodes per layer), initialize
the weights, shape of the nonlinearity, learning rate, and regu-
larization parameters to prevent overfitting. In addition, the
selection of a training algorithm and the loss function both have
an impact on the final model. In this work, we used the standard
multi-layer perceptron, which is a fully connected network. We
selected just one hidden layer of neurons. We optimized the NN
structure using the Levenberg–Marquardt learning algorithm
with a squared loss function. A cross-validation procedure was
employed to avoid overfitting issues. NN weights were initial-
ized randomly according to the Nguyen–Widrow method,
and model regularization was done by limiting the maximum
number of net weights to half the number of training samples.
NNs have been vastly used in biophysical parameter retrieval
(e.g., [14] and [30]–[33]), and are very useful in operational
settings (e.g., [34]) because they scale well with the number of
training examples.

D. Kernel Ridge Regression (KRR)

KRRminimizes the squared residuals in a higher dimensional
feature space, and can be considered as the kernel version of the
(regularized) OLS LR [35], [36]. The LR model is defined in a
Hilbert space H of a very high dimensionality, where samples
have been mapped to through a mapping . In matrix
notation, the model is given by . Notationally,
we want to solve a regularized OLS problem in Hilbert spaces

Taking derivatives with respect to model weights and , and
equating them to zero, leads to an equivalent problem depending
on the unknown mapping function , which in principle is
unknown. The problem can be solved by applying the Repre-
senter’s theorem, by which the weights can be expressed as a
linear combination ofmapped samples, . The

prediction for a test sample is obtained as a function of the dual
weights (one per sample), as follows:

E �

where contains the (kernel) similarities between the test
example and all training data points. Note that for obtaining the
model, only the inversion of the Gram (or kernel) matrix of
size regularized by is needed. We have used the RBF
kernel function, whose components are

Therefore, in KRR only the regularization parameter and
the kernel parameter have to be selected. Both parameters
were optimized via standard cross-validation. It is worth noting
that KRR has been recently used in remote sensing applications
[10], [37].

E. Gaussian Processes Regression (GPR)

GPR has been recently introduced as a powerful regression
tool [38] and applied to remote sensing data [39]–[42]. The
model provides a probabilistic approach for learning generic
regression problems with kernels. The GPR model establishes a
relation between the input and the output variables (biophysical
parameter) in the same way as KRR (see Eq. 2). However, two
main advantages of GPR must be noted.

First, not only a predictive mean but also a predictive variance
can be obtained

V

Note that the mean prediction in (2) is a linear combination of
observations , whereas the predictive variance
in (4) only depends on input data and can be taken as the
difference between the prior kernel and the information given
by observations about the approximation function.

The second advantage is that one can use very sophisticated
kernel functions because hyperparameters can be learned effi-
ciently bymaximizing the marginal likelihood in the training set.
See [38], [43], and [40] for further details. We used a scaled
anisotropic Gaussian kernel function

where is a scaling factor, is the number of bands, and is a
dedicated parameter controlling the spread of the relations for
each particular spectral band .

Summarizing, three important properties of the method are
worth stressing here. First, the obtained weights after optimi-
zation give the relevance of each spectrum . Second, the
inverse of represents the relevance of band . Intuitively,
high values of mean that relations largely extend along that
band, hence suggesting a lower informative content. Finally, a
GPR model provides not only a pixel-wise prediction for each
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spectrum but also an uncertainty (or confidence) level for the
prediction.

The previous methods are implemented from the simple
regression toolbox [44], simpleR, freely available at http://
www.uv.es/gcamps/code/simpleR.html. The simpleR toolbox
contains simple educational code for LR, DTs (TREE), NNs,
support vector regression (SVR), KRR, aka least squares SVM,
Gaussian process regression (GPR), and variational heterosce-
dastic Gaussian process regression (VHGPR). The toolbox is not
explicitly included in ARTMO, but may be of interest for the
reader, as it provides more regression and analysis tools.

III. ARTMO

ARTMO brings multiple leaf and canopy radiative transfer
models (RTMs) together along with essential tools required for
semiautomatic retrieval of biophysical parameters in one GUI
toolbox. In short, the toolbox permits the user: 1) to choose
between various invertible leaf and canopy RTMs of a low to
high complexity (e.g., PROSPECT-4, PROSPECT-5, DLM,
4SAIL, and FLIGHT); 2) to specify or select spectral band
settings specifically for various existing air- and space-borne
sensors or user defined settings, typically for recently developed
or future sensor systems; 3) to simulate large datasets of top-of-
canopy (TOC) reflectance spectra for sensors sensitive in the
optical range (400–2500 nm); 4) to generate look-up tables
(LUTs), which are stored in a relational SQL database manage-
ment system (MySQL, version 5.5 or higher; local installment
required), and finally; 5) to configure and run various retrieval
scenarios using EO reflectance datasets for biophysical parame-
ter mapping applications. ARTMO is developed in MATLAB
(2009 version or higher) and does not require additional MA-
TLAB toolboxes. Fig. 1 presents ARTMO v3’s main window
and a systematic overview of the drop-down menu below. To
start with, in the main window, a new project can be initiated, a
sensor chosen and a comment added, whereas all processing
modules are accessible through drop-down menus at the top bar.

A first rudimentary version of ARTMOhas been used in LUT-
based inversion applications [45], [46]. ARTMO v3 is formally
presented in this paper. The software package is freely down-
loadable at: http://ipl.uv.es/artmo. Its most important novelties
are briefly listed below.

1) ARTMO v3 is designed modularly. Its modular architec-
ture offers the possibility for easy addition (or removal) of
components, such as RTM models and post-processing
modules.

2) The MySQL database is organized in such a way that it
supports the modular architecture of ARTMO v3. This
avoids redundancy and increases the processing speed. For
instance, all spectral datasets are stored as binary objects.

3) New retrieval toolboxes are incorporated. They are based
on parametric and nonparametric regression as well as
physically based inversion using a LUT. This has led to the
development of a: 1) “Spectral Indices assessment tool-
box” [47]; 2) “MLRA toolbox”; and 3) “LUT-based
inversion toolbox” [48].

This paper introduces the “MLRAmodule.” Its general archi-
tecture is outlined in Fig. 2.

A. MLRA Settings Module

The following step addresses the analysis of multiple MLRA-
based retrieval strategies. A first step to do is inserting input data
(i.e., a plain text file), which refers to retrievable biophysical
parameters and associated spectra. This is done in “Input” and
can be either RTM-simulated data or can be ground truth data as
measured in the field. The GUI will guide the user through the
data selection steps and checks if data is properly read (not
displayed for brevity). Once data is inserted the “MLRA set-
tings”module can be configured (Fig. 3). It can be opted to select
either single-output or multi-output regression algorithm.
Currently, only PLSR, NN, and KRR encompass multi-output
capabilities. Obviously, these models can also be used for single-
output applications.

The “MLRA settings”module configures the regression algo-
rithms given various options. First, if a land cover map in ENVI
format (Exelis Inc.) has been provided then retrieval strategies
can be configured per land cover class. Second, multiple regres-
sion algorithms at once can be selected, which means that they
will be analyzed one-by-one. Third, options to add Gaussian
noise are provided. Noise can be added both on the parameters to
retrieve and on the spectra. A range of noise level can be
configured, so that multiple noise scenarios can be evaluated.

Fig. 1. Screenshot of ARTMO’s main window and schematic overview of its
drop-down menu.

Fig. 2. Screenshot of MLRA’s toolbox and schematic overview of its drop-
down menu.
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The injection of noise can be of importance to account for
environmental and instrumental uncertainties when synthetic
spectra from RTMs are used for training. Fourth, the training/
validation data partition can be controlled by setting the percent-
age of howmuch data from anRTMor user-defined is assigned to
training or to validation (i.e., split-sample approach). Thereby,
the user can evaluate the impact of ranging training/validation
partitioning by entering a range of training/validation partitions.
For each training/validation partition, the MLRA toolbox inter-
nally divides the defined training set into subsets using a -fold
cross-validation strategy in order to tune the free parameters of
the model.

B. Validation Module

Once that the training/validationdata splittinghasbeendefined
and MLRA settings configured, a range of scenarios can be run,
tested and their performance assessed. This is done by naming a
validation set in the “Validation”module. Each regressionmodel
strategy over the configured ranges are one-by-one analyzed
throughgoodness-of-fitmeasuresandvalidationresults are stored
in a MySQL database. As such, a large number of results can be
stored in a systematic manner, so that they can be easily queried
and compared. Validation results are presented in the “MLRA
validation table” (Fig. 4). The table shows the best performing
validation results according to a selected land cover class (if
loaded), parameter, and statical goodness-of-fitmeasure.Various
options to display the results are provided, e.g., 1:1-line, plotting
the band relevance as given by the GPRmodel, and 2-Dmatrices
of performances along ranges of noise and varying training/
validation distribution (see Section V). Finally, by clicking on
“Retrieval,” an analyzed regression function can be selected for
each retrievable parameter (e.g., the best one). Such regression
function will be accessed in the “Retrieval”GUI and can then be
applied to a remote sensing image.

C. Retrieval Module

The “Retrieval” module enables to run an evaluated model or
directly configure a model and apply it to an image (provided in

standard ENVI file format) to map a parameter (Fig. 5). Hence,
the user can select the required land cover class (if available), the
retrievable parameter, the regression algorithms and training/
validation splitting. Similarly, noise can be added to the spectra
or parameters and the size of the training data can be selected. The
user will then be invited to select one or multiple remote sensing
images to which the developed model will be applied. Generated
maps are stored in ENVI format.

IV. MAPPING APPLICATIONS

Having the MLRA toolbox presented, it is subsequently
applied for evaluating the performance of the six presented
nonparametric regression techniques to achieve optimized bio-
physical parameters estimation. Used data is first outlined,
followed by the experimental setup. Results are then presented
and a mapping application is shown.

A. Used Data

A diverse field dataset, covering various crop types, growing
phases, canopy geometries, and soil conditions was collected

Fig. 4. MLRA’s validation window.

Fig. 5. MLRA’s retrieval window.

Fig. 3. MLRA’s setting window.
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during SPARC (Spectra bARrax Campaign). The SPARC-2003
campaign took place during 12–14 July in Barrax, La Mancha,
Spain (coordinates , , 700 m altitude). Biophysi-
cal parameters were measured within a total of 110 elementary
sampling units (ESUs) among different crops (garlic, alfalfa,
onion, sunflower, corn, potato, sugar beet, vineyard, and wheat).
ESU refers to a plot size compatible with pixel dimensions of
about . LCCwas derived bymeasuringwithin each
ESU about 50 samples with a calibrated CCM-200 Chlorophyll
Content Meter [49] Green LAI was derived from canopy mea-
surements made with a LiCor LAI-2000 digital analyser.
Each ESU was assigned to an LAI value, which was obtained
as a statistical mean of 24 measures (

) with standard errors between 5% and 10%
[50]. In total, LAI varies between 0.4 and 6.3 and LCC between
2 and . Additionally, 60 random spectra over bare
soils, man-made surfaces, and water bodies were added to
broaden the dataset to nonvegetation samples (i.e., with an LCC
and LAI value of zero), leading to a total of 170 samples.

During the campaign airborne hyperspectral spaceborne
CHRIS images and airborne HyMap flightlines were acquired.
CHRIS provides high spatial resolution hyperspectral data over
theVNIR spectra from 400 to 1050 nm. It can operate in different
modes, balancing the number of spectral bands, size of the
covered area, and spatial resolution because of on-boardmemory
storage reasons [51]. We made use of nominal nadir CHRIS
observation inMode 1 (62 bands,maximal spectral information),
which were acquired during the SPARC campaign (12 July
2003). CHRIS Mode 1 has a spatial resolution of 34 m at nadir.
The spectral resolution provides a bandwidth from 6 to 33 nm
depending on the wavelength. CHRIS imagery was processed
using ESA’s CHRIS-Box available in VISAT/BEAM, which
includes radiometric recalibration, coherent-noise reduction,
geometric correction and atmospheric correction [52], [53].
HyMap was configured with 125 bands between 430 and
2490 nm with bandwidths varying between 11 and 21 nm and a
pixel size of 5 m. The same geometric and atmospheric pre-
processing as for CHRIS was applied, but given a superior
signal-to-noise ratio this sensor provides a better radiometric
quality than CHRIS.

B. Experimental Setup

SPARC field data were used for training and validation, and
associated spectral data came from CHRIS and HyMap. In view
of ESA’s forthcoming S2 mission, also S2 data at a spatial
resolution of 20 m were additionally generated. S2 satellites
capitalize on the technology and the vast experience acquired
with SPOT and Landsat over the past decades. It provides a set of
13 spectral bands spanning between 443 and 2190 nm, four
bands at 10 m, six bands at 20 m and three bands at 60 m spatial
resolution [54]. Because of being spaceborne and providing
similar pixel size, CHRIS data were resampled to the band
settings of S2. Nearest neighbor was used for the spatial resam-
pling and a Gaussian model with full width at half maximum
(FWHM) spacings was used for spectral resampling. Con-
strained by the spectral range of CHRIS, a dataset of eight bands
at 20 m (4 bands at 20 m plus 4 bands at 10 m coarse-grained at
20 m) was prepared, hereafter referred as “S2-20 m.”

The MLRA toolbox was used to evaluate the performance of
the different regression algorithms along gradients of changing
training/validation distributions (from 5% to 95% training, with
steps of 5%; the remaining data go to validation) and increasing
Gaussian noise levels (from 0% to 20% with steps of 2%). By
systematically evaluating the performance along those two
dimensions in a 2-D matrix format, an indication about the
robustness of these regression methods can be obtained. Models
were developed both for LCC and LAI. The predictive power of
the developed models was evaluated with the absolute root-
mean-squared error (RMSE), the normalized RMSE (

) and the
coefficient of determination ( ) to account for the goodness-of-
fit. Here, validation results are presented in the form of NRMSE,
which allows accuracy comparison across different parameters.
Typically, remote sensing end users require an error threshold
below 10%.

V. RESULTS

A. Regression Method Evaluation

For each parameter, sensor type and regression algorithm,
NRMSE results along varying training/validation distribution
and increasing noise levels are presented in 2-Dmatrices (Fig. 6).
The best performing scenario for each matrix is also shown in
Table I. When comparing these matrices, the following observa-
tions can be made.

Startingwith PCR, thismethod proved to perform rather stable
within the matrix space. For S2-20 m and CHRIS data, PCR
seems to be hardly affected by a varying training/validation
partition and noise injection. In fact, injection of some noise
rather improved accuracies of CHRIS and HyMap. Hence,
adding noise can lead to a closer match between training and
validation data. However, results were never outstanding, and
LCC prediction with HyMap data completely failed. Only for
HyMap LAI results improved to up to 0.97 when 95% of
the data were assigned to the training process. Therefore, on the
whole, PCR is evaluated as suboptimal performing.

Second, the partial least square regression (PLSR) is an
improved version of the PCR and widely used in EO applica-
tions. It systematically outperforms PCR in absence of noise.
Improvements are particularly notable for LCC ( up to 0.96 for
CHRIS and HyMap). But PLSR is also more affected by the
injection of noise. Low noise levels led to superior results, but
above about 8% accuracies degraded rapidly.

Third, DTs yielded on the whole poorest results. Particularly,
unacceptable poor results were obtained with low training data,
and when many bands are involved. This suggests that DTs
would not be a good choice for applying to hyperspectral data
unless a large database is available. In fact, only good results
were obtained [ up to 0.94 (LCC) and 0.97 (LAI)] in case of
“S2-20 m” (8 bands) when more than 80% was used for training
and below 8% noise added.

Fourth, NNs are characterized by causing erratic patterns in
each of the matrices. While being able to deliver very accurate
results in some cases (e.g., for LAI using CHRIS and HyMap:
up to 0.96 and 0.99) NN also showed to perform rather unstable,
with large probability of delivering poor results. Particularly,
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whenmore noise is involved andwhen less data are dedicated for
training NN tends to perform more unstable. This erratic behav-
ior can be explained by the complicated training phasewhereby a
highly specialized model is developed, but therefore easily faces
the problem of overfitting. The lack of robustness to noise
along with the complexity in training are therefore major draw-
backs of NN.

Fifth, from all evaluated regression algorithms, KRR yielded
most robust results. It led to excellent accuracies with maxima
between 0.94 and 0.99 for all datasets, andmore importantly also
proved to perform very stable with increasing noise levels. Also,
it should be noted that from all tested nonlinear MLRAs, this
regression technique is fastest in developing their models (see
[12] for a quantitative comparison).

Finally, GPR appears to be the most promising regression
algorithm. It easily leads to excellent performances, with
maxima between 0.94 and 0.99 for all datasets. Though, in
comparison to KRR, GPR is somewhat more affected by noise
injection. Note that the predictive mean equations for KRR and
GPR are exactly the same so in principle the results should be

exactly identical. Nevertheless, in GPR, we used a very flexible
kernel to account for different lengthscales per feature. Although
beneficial without noise, this turns to be a curse in these particular
experiments because noise affected the marginal likelihood
estimation of hyperparameters. For this reason, it can be con-
cluded that GPR performs slightly less robust than KRR.

B. Biophysical Parameter Mapping

The developed models can be applied to any EO imagery
given the same band settings as those presented during the
training phase. From all considered regression techniques, GPR
was evaluated as reaching highest accuracies for the majority of
cases. Moreover, GPR has unique additional features: 1) it
reveals most relevant bands when developing the model and
2) it provides uncertainty intervals ( ) associated with the mean
predictions ( ). Therefore the consecutive approachwas to apply
GPR to a hyperspectral HyMap imagery for mapping LCC and
LAI estimates along with associated uncertainty intervals
(Fig. 7). In the obtained maps, the irrigated circular agricultural
fields are clearly differentiated, includingwithin-field variability.

Fig. 6. NRMSE matrices of validation results for LCC and LAI retrieval using a regression algorithm displaying the impact of percentage noise ( -axis) against
multiple solutions ( -axis). The more bluish, the lower relative errors and thus the better the retrieval.
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In the uncertainty maps, the lower the (whiter color) indicate
the more certain the retrieval as processed by the trained model.
The delivery of uncertainty estimates allows us to provide insight
on a pixelwise basis when applied to any image and so enables
the interpretation at which land covers retrievals were associated
with great certainty and land covers would benefit from addi-
tional sampling. It can be observed that, particularly over the
circular agricultural parcels, LCC was processed with high
certainty. This is less obvious for LAI retrievals; however, it
should be kept in mind that is also related to the magnitude of
the mean estimates ( ). For this reason, relative uncertainties
( ) may provide a more meaningful interpretation. These
maps can function as a spatial mask that enables displaying only
pixels with great certainty. Moreover, uncertainty maps can also
give information about the portability of the regression models
when applied to images over areas other than the training site
[41], [42].

VI. DISCUSSION

The hereby presented MLRA toolbox allows evaluating and
applying a wide range of regression techniques in a semiauto-
matic and user-friendly way. As a case study, we applied the

MLRA toolbox to compare six regression algorithms on their
performance and robustness along ranges of varying training/
validation distribution and noise variance. These algorithms can
be categorized in either data dimensionality transformations
(PCR, PLSR) and nonlinear algorithms (DT, NN, KRR, GPR).
For all used datasets (S2-20 m, CHRIS and HyMap) pronounced
differentiation in their best performances emerged. While for
PCR, PLSR and DT best accuracies fell within a range of 4.7%–

20.5% ( : 0.86–0.97) theMLRA algorithmsNN,KPR andGPR
yielded higher accuracies between 3.5% and 7.7% ( : 0.94–
0.99). Hence, each of these MLRAs reached accuracies below
10%,which is typically demanded in operational products. These
excellent performances can be explained by that MLRAs may
find the nonlinear feature relations by building more flexible and
adaptive models than those restricted to linear projections or
regression. The excellent performance of the MLRAs becomes
even more apparent when comparing against other classic re-
trievals methods. The same validation dataset reached on the
order of 0.85 by using vegetation indices from CHRIS data [40],
and up to 0.77 for the same S2-20 m bands by using LUT
inversion of the PROSAIL radiative transfer (RT)model through
cost functions [46]. Moreover, apart from the evaluated algo-
rithms here, others can be added relatively easily. Meanwhile, a

TABLE I
VALIDATION STATISTICS [NOISE LEVEL (%), TRAINING (%), RMSE, NRMSE, AND ] SORTED ACCORDING TO BEST EVALUATED NRMSE FOR LCC AND LAI RETRIEVAL

Best NRMSE result per sensor and biophysical parameter is bold typed.
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wide array of new MLRAs have already been implemented,
among others: SVR, extreme learning machines (ELMs), and
VHGPR [44], [55].

An urging open question is about evaluating how well these
algorithms performwhen being fed by large datasets as generated
by canopy RT models. The advantage of RT models is that a
broad range of land cover situations can be simulated (e.g., up to
hundred thousands), leading to a dataset several times bigger
than what can be collected during a field campaign. Operational
processing chains typically rely on this hybrid approach [15], and
similar strategies could be developed by the ARTMO toolbox. It
remains, however, to be investigated how well kernel-based
MLRAs perform with large datasets. This is not a trivial point.
For instance, the computational load of the GPR increases
exponentially with each added sample, making that this function
faces difficulties when being trained by several thousand (in
principle distinct) samples. Alternatively, dimensionality reduc-
tion techniques may largely overcome the burden of large
datasets. Currently, a diversity of linear and nonlinear PCA
techniques are being implemented (e.g., kernel PCA) in order
to apply dimensionality reduction. On the other hand, redundan-
cy also takes place along the simulated spectra, e.g., because not
all RTM parameters lead to spectral variations, causing redun-
dancy along the dataset. Therefore, the emerging field of redun-
dant data reduction is expected to further reduce the dataset while
preserving good performance [56], [57]. The field is also related
to active learning approaches [58]. These dimensionality reduc-
tion techniques are foreseen to be implemented as well, which
will eventually facilitate a smooth coupling between RTM-
generated simulated spectra and powerful MLRAs for generic
and operational retrieval applications.

VII. CONCLUSION

ARTMO’s new “MLRA toolbox” enables applying and
analyzing the predictive power of various MLRAs in a semi-
automatic manner. Various regularization options have been
implemented into the toolbox, e.g., training/validation data
splitting, adding noise, and regression models can be developed
and evaluated per land cover class. Data can either come from
field campaigns or from simulations as generated by RTMs. The
predictive power of multiple nonparametric regression algo-
rithms was evaluated across gradients of varying training/
validation distribution and increasing noise levels. By using the
local SPARC dataset and multispectral simulated S2 and hyper-
spectral CHRIS and HyMap imagery over the Barrax (Spain)
agricultural area, KRR andGPR emerged asmost robust and best
performing regression algorithms ( up to 0.94–0.99 and
NRMSE down to 7.0%–3.0%). Moreover, GPR provides addi-
tional uncertainty estimates on a pixelwise basis, which provides
insight in the performance of the model. In all generality, the
linear nonparametric algorithms such as the popular PLSR
performed systematically poorer than the nonlinear, kernel-
based regression algorithms (KRR, GPR).

The presented experimental results demonstrated the utility of
the MLRA toolbox, which essentially has been developed to
serve efficient and optimized surface properties mapping.
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