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 19 

Abstract: River floodplains in the Netherlands serve as water storage area, while they also have the 20 

function of nature rehabilitation area. Floodplain vegetation is therefore subject to natural processes of 21 

vegetation succession, which obstructs the water flow into the floodplains and increases the flood risk 22 

for the hinterland. Space-based pointable imaging spectroscopy has the potential to quantify vegetation 23 

density from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were 24 

linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates 25 

over a heterogeneous river floodplain. FLIGHT enables to simulate top-of-canopy reflectance of 26 

vegetated surfaces either in turbid (e.g. grasslands) or in 3D (e.g. forests) mode. By inverting FLIGHT 27 

against CHRIS data, the vegetation density parameter leaf area index (LAI) was computed for three 28 

main classified vegetation types, ‘herbaceous’, ‘shrubs’ and ‘forest’, and for the CHRIS view zenith 29 

angles in nadir, backward (-36°) and forward (+36°) scatter direction. The -36° direction showed most 30 

LAI variability within the vegetation types and was best validated, closely followed by the nadir 31 

direction. The +36° direction led to poorest LAI retrievals. The class-based inversion process has been 32 

implemented into a GUI toolbox which would enable the river manager to generate LAI maps in a 33 

semiautomatic way.  34 
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1. Introduction 38 

 39 

Climate change is expected to have a large impact on water resources and flooding risks of the main 40 

rivers in the Netherlands [1]. General circulation models applied on the Rhine river basin predict 41 

higher winter discharge and peak flows as a result of increased winter precipitation and earlier snow-42 

melt in the Alps [2,3]. In the past, measures for improvement of river navigation, as well as 43 

agricultural development have caused the Rhine to lose its natural meanders while significant parts of 44 

the floodplain have been affected by urban development [4,5]. As a result, the capability of the river 45 

system to accommodate peak flows has been reduced which leads to increased flooding risks for the 46 

floodplains and its hinterland [6]. 47 

During the last decades, the water discharge capacity of the river system in the Netherlands has 48 

been increased by lowering and widening of the floodplains, removal of groynes and hydraulic 49 

obstacles in the floodplains and by excavation of secondary channels [7,8]. Concomitantly, these 50 

newly developed river floodplains also serve as nature restoration areas, where succession of 51 

vegetation leads to highly valued ecosystems [9]. However, floodplain vegetation causes resistance to 52 

the water flow within the river floodplains [10]. Because of the complex structure of floodplain 53 

vegetation and the accumulation of material caused by sedimentation processes, flood flow velocities 54 

decrease and the water surface increases during flooding events [11]. For assessment of current and 55 

future river management scenarios in low land rivers like the Rhine in the Netherlands, information on 56 

the spatially complex structure and density of floodplain vegetation is a key issue [12]. 57 

To intervene with the spontaneous vegetation succession, the concept of Cyclic Floodplain 58 

Rejuvenation (CFR) has been introduced for management of the Rhine river system [13]. CFR implies 59 

periodic anthropogenic disturbance of floodplain ecosystems through removal of climax vegetation to 60 

create more space for water. To support this approach, regular monitoring of the spatial distribution 61 

and structure of floodplain vegetation is required for estimating the hydraulic roughness within the 62 

floodplain. Hydraulic roughness indicates to what extent the water flow is obstructed and is directly 63 

related to vegetation height and density, rigidity of the stems and the presence of leaves [12,13]. For 64 

the rivers Rhine and Meuse in the Netherlands, ecotope maps are used for determining hydraulic 65 

roughness values of the vegetation, resulting in one roughness value per ecotope object. Currently, 66 

ecotope maps are based on digital false colour aerial photographs and ancillary in situ data on flood 67 
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duration, management, water depth and morphodynamics [14]. However these techniques are tedious 68 

and time-consuming and no information on spatial variability of vegetation density within the ecotopes 69 

is provided.  70 

Alternatively, satellite based Earth observation (EO) can play a major role by providing a 71 

quantifiable, spatially-explicit and replicable technique for monitoring and assessing the magnitude of 72 

vegetation density. With optical EO data, vegetation properties can be characterised into a few 73 

essential structural variables such as leaf area index (LAI), defined as the total of one-sided area of 74 

leaves per area (m
2
/m

2
) [15]. Within this approach for approximating hydraulic roughness, LAI 75 

provides continuous vegetation density information at the pixel level.  Implementing LAI in hydraulic 76 

roughness calculation schemes may bypass the need for many elaborative field measurements [16]. 77 

The retrieval of LAI from EO data is often based on empirical relationships between spectral 78 

vegetation indices and ground-based measurements [17,18]. These relationships work well under 79 

particular viewing and illumination geometry and for specific vegetation phenology, but they tend to 80 

produce inaccurate results when applied over a broad range of land cover types and optical and 81 

geometric conditions encountered in satellite images. Canopy reflectance is the result of several 82 

intricately coupled physical processes and it is therefore difficult to estimate the influence of a single 83 

parameter from experimental data (e.g., [19]). Contrary to empirical approaches, radiative transfer 84 

(RT) models take the physical features of a plant canopy into account and are therefore more realistic 85 

in describing the interaction of solar radiation with vegetation components. From a radiative transfer 86 

point of view, a vegetation canopy composed of components like leaves, stems, flowers, etc., can be 87 

considered as an ensemble of scattering elements, bounded by a background, e.g., soil [20]. A physical 88 

RT model describes the transfer and interactions of solar radiation inside such a canopy and thus 89 

provides an explicit link between the structural characteristics of vegetation scattering elements and the 90 

canopy reflectance. In these RT models the spectral signal is a function of canopy geometry, defined 91 

by canopy structural variables such as LAI, leaf angle distribution and fractional vegetation cover, 92 

optical leaf and soil properties, illumination and viewing geometry [21-23]. LAI is a typical state 93 

variable of RT models, describing the density of the scattering elements. In turn, these biophysical 94 

variables can be extracted from RT models through model inversion. 95 

Among RT models, FLIGHT [24] is a physical three dimensional (3D) ray tracing model based on 96 

Monte Carlo simulations of photon transport. FLIGHT is accurate in mimicking vegetation structure: it 97 

simulates interactions between geometric primitives representing the canopy and solar radiation on a 98 

photon-by-photon basis. Inversion of the model against measured reflectance data allows retrievals of 99 

LAI at the sensor sub-pixel scale. 100 
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Apart from the expected enhancement of the physical RT modelling approach for retrieval 101 

accuracy, additional gains are to be expected with the use of pointable sensors. Canopy reflectance 102 

measurements acquired under different observation angles have shown to yield unique information 103 

pertaining to vegetation structure [25-31]. The presence of shadows in the canopy forms an important 104 

argument for exploring pointable data because the shadowing effect in vegetated surfaces will result in 105 

enhanced reflectance in the backscatter direction and reduced reflectance in the forward scatter 106 

direction of the principal plane [32]. Hence, observed variation in reflectance anisotropy is a function 107 

of sun-target-sensor geometry and the composition and structure of the vegetation cover. Therefore, 108 

the combined use of RT methods with pointable imaging spectroscopy data may lead to a more robust 109 

approach to map the complex floodplain vegetation structure and density from space. 110 

The ESA’s Compact High Resolution Imaging Spectrometer (CHRIS) on board the Project for On 111 

Board Autonomy (PROBA) satellite is a pointable, imaging spectroscopy sensor that was designed as a 112 

technology demonstrator [28]. CHRIS is capable of measuring reflected radiation in the visible and 113 

near-infrared (NIR) wavelengths from five different viewing angles by pointing five times to the same 114 

target during a single overpass. The sensor can be configured in different imaging modes with specific 115 

spectral and spatial settings. Especially, mode 3 is appropriate for vegetation structure mapping as it is 116 

characterized by both a high spatial (~17m) and high spectral resolution with 18 bands measuring in 117 

the visible and NIR wavelengths from 400 to 1050 nm, thereby covering a region of 13 by 13 km (full 118 

swath) [28]. 119 

Several studies have been performed using pointable CHRIS data combined with an RT modelling 120 

approach to derive LAI values for homogeneous vegetation stands in agricultural fields [33-34]. 121 

FLIGHT has proven to be successful in combination with angular CHRIS data and its use for 122 

retrieving vegetation structure because of simulating vegetated surfaces at the same spatial resolution 123 

[19,35]. However, research on quantitative vegetation density retrieval in heterogeneous floodplain 124 

ecosystems, taking into account different vegetation types such as species-rich grasslands grading 125 

towards shrub and tree encroachments, have rarely garnered attention in the scientific literature.  126 

In this study we aim at characterizing the vegetation density of a spatially and spectrally complex 127 

river floodplain ecosystem using angular CHRIS data. The objective is threefold: i) to develop a 128 

methodology for physically-based mapping of the density variable LAI of several vegetation types in a 129 

river floodplain ecosystem using FLIGHT; ii) to explore the added value of the use of the pointable 130 

dimension in the applied methodology; and iii) to assess the opportunities to upscale the methodology 131 

developed for a local floodplain to a complete river section at the regional scale. 132 

 133 

  134 
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2. Materials and Methods 135 

2.1. Study site 136 

 137 

The study site is the floodplain Millingerwaard (51° 84' N, 5° 99' E) along the river Waal, which is 138 

the main branch of the river Rhine in the Netherlands (figure 1). Millingerwaard (700 ha) is one of the 139 

main floodplains of the nature reserve Gelderse Poort, with a total surface area of 6700 hectare. Within 140 

the Netherlands, the Gelderse Poort serves as important riparian corridor within the Natura 2000 141 

network of the European Union. Before 1990, Millingerwaard was used as an agricultural area with 142 

intensively managed grassland and arable crops (e.g., maize). Starting from 1990, agricultural 143 

management was gradually reduced and a nature rehabilitation plan was started. By digging out clay 144 

deposits from the topsoil, the old patterns of side streams, natural levees and isles were reconstructed 145 

in the landscape. Floodplain vegetation was going through natural succession and a regime of grazing 146 

by cattle and horses in low densities was introduced. Current vegetation of the Millingerwaard 147 

floodplain consists of mixed patches and ecotones, i.e. transitions between communities with a 148 

dominance of grass, herbaceous vegetation, dwarf and tall shrubs, and a large softwood forest [36]. 149 

Softwood forest in Millingerwaard is dominated by willow trees (Salix fragilis and Salix alba). The 150 

forest canopy has an open structure with dense undergrowth (Urtica dioica (stinging nettle), Arctium 151 

lappa (greater burdock), Galium aparine (cleavers)) and open water bodies due to the low elevation 152 

and high ground water levels. The non-forest vegetation is characterized by a heterogeneous patchy 153 

structure of different vegetation succession stages. Dominant species are Urtica dioica, Calamagrostis 154 

epigejos (wood small-reed), and Rubus caesius (dewberries). Finally, a limited number of parcels is 155 

still in agricultural use. Vegetation types present in Millingerwaard are representative for the 156 

vegetation succession stages of the other floodplains within the Gelderse Poort nature reserve. At this 157 

moment, the surface area of agricultural land in the complete Gelderse Poort is relatively high 158 

compared to that of the Millingerwaard, however, this will change over the coming decade as 159 

agricultural management will be changed to a nature management regime.  160 

 161 

  162 
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Figure 1. The study area which is located in the east of the Netherlands, indicated on the CHRIS nadir 163 

image in true colour band composition (R: 675.2 nm, G: 551.7 nm, B: 490.5 nm). The red circle 164 

represents the river floodplains of Millingerwaard. The black outlined river area overlain on the 165 

CHRIS nadir image represents the nature reserve the Gelderse Poort which was used for upscaling of 166 

the method. 167 

 168 
 169 

2.2. CHRIS data 170 

 171 

Concomitant pointable CHRIS images for the Millingerwaard and a large part of the Gelderse Poort 172 

(figure 1) were acquired on 6 September 2005 in mode 3 under cloud-free conditions around solar 173 

noon. Data were available in five different nominal viewing zenith angles (VZA): nadir, ±36º, ±55º. 174 

The pointable observations are named as such hereafter. The actual position of the sensor during the 175 

satellite overpass is shown in the polar plot of figure 2. Negative viewing angles represent 176 

measurements in the backscatter direction, where most sunlit canopy is viewed by the sensor; positive 177 

viewing angles represent measurements in the forward scatter direction, where most shadowing effects 178 

are present. The solar zenith angle during acquisition was 46º. For the purpose of this research, the 179 

images of VZA nadir and ±36º were used, because the ±55º angular images did not cover the 180 

Millingerwaard study area. 181 

 182 

  183 
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Figure 2. Polar plot showing the actual positions of the 5 angular CHRIS images during acquisition on 184 

6 September 2005. The solar zenith angle was 46°, the solar azimuth angle 170°. 185 

 186 

 187 
 188 

Automatic image registration of the CHRIS nadir and ±36º images was performed according to the 189 

method of [37] to reference the three separate images to each other. Geometric correction of these 190 

three images was carried out with use of 34 ground control points (GCP’s) which were collected from 191 

a high spatial resolution (0.5 m) aerial photograph from early spring 2006. Because the CHRIS images 192 

were already referenced to each other, the GCP’s were taken from the nadir image only and also 193 

applied to the ±36º images. A 2
nd

 order polynomial model with nearest neighbourhood resampling 194 

technique was used for geometric correction of the three images which resulted in a control point error 195 

of 0.31 pixels. Atmospheric correction of the images was performed according to the method described 196 

by [38] using the CHRIS-Box software developed as a plug-in for the BEAM toolbox (Brockmann 197 

Consult, http://www.brockmann-consult.de/beam).  198 

 199 

2.3. Land cover classification of CHRIS nadir image 200 

 201 

Prior to vegetation density retrieval in canopies comprised of a heterogeneous mix of vegetation 202 

types, these vegetation types need to be identified so that the RT model can be parameterized 203 

accordingly. Such vegetation class-based inversion approach is operationally being done at a global 204 

scale to derive MODIS products [39] and was recently introduced by [40] at local scale for precision 205 

farming applications. Here, using information from the three observation angles, a map was created 206 

that included eight major land cover classes. The vegetated classes consisted of ‘bare and pioneer 207 

communities’, ‘grasses and herbaceous vegetation’, ‘herbaceous and low woody vegetation’, ‘shrubs’, 208 

and ‘forest’. These classes are in accordance to the class definitions used by [41] that serve as a 209 

minimum set to estimate hydraulic resistance for river management purposes. The class ‘forest’ 210 

represents the areas that consist of pixels with tree cover. The classes ‘water’, ‘build up area’, and 211 

‘arable land’ were added to be able to classify the whole CHRIS image. A summary of all classes and 212 

their main characteristics is listed in table 1, the undertaken steps are shortly explained below.  213 
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 214 

Table 1. Classes used for classification of the CHRIS image. 215 

 216 

 Class name Class characteristics 

1 Bare soil & pioneer vegetation mainly sand 

2 Grasses and low herbaceous vegetation vegetation < 1m 

3 Higher herbaceous vegetation vegetation between 1m and 2m 

4 Shrubs shrubs and trees < 5m 

5 Forest trees > 5m 

6 Water water 

7 Build up streets, houses 

8 Arable land maize 

 217 

 218 

Maximum likelihood (ML) classification was performed on the CHRIS nadir image to classify the 219 

identified land cover classes within the boundaries of Millingerwaard (figure 1). First, a training data 220 

set was defined on which the classification was based. Regions of interest (ROIs) were selected as 221 

training data for each land cover class. The CHRIS nadir image was used to roughly discriminate 222 

between classes. Field knowledge and aerial photographs of early spring 2006 were used as reference 223 

for selecting ROIs. The principal component (PC)-bands of the stacked images (nadir and VZA ±36º) 224 

were very useful to identify sharp boundaries between different land cover classes; because certain PC-225 

band combinations showed bright colourful images which made it easy to distinguish the different land 226 

cover types. The selection of ROIs was evaluated by computing ROI separability based on the 227 

transformed divergence and Jeffries-Matusita Distance of the whole visible and NIR (VNIR) spectrum 228 

from the CHRIS nadir image. The separability values showed that the pair of ‘higher herbaceous 229 

vegetation’ and ‘grasses and low herbaceous vegetation’ had highly comparable spectral 230 

characteristics.  231 

The aerial photographs of 2006 were used as basis for selection of data-points to validate the 232 

classification result of the major land cover classes. A set of twenty random sample points was selected 233 

per class resulting in the selection of 160 points in total. The distance between two points was set to a 234 

minimum of 100 m to prevent choosing points located too close to each other. A difficulty with the use 235 

of aerial photographs was to differentiate between ‘low grasses & herbaceous vegetation’ and ‘higher 236 

herbaceous vegetation’. Based on field knowledge, and the assumption that patches of grasslands with 237 

an irregular shape consisted of taller grasses and herbaceous vegetation, those patches were labelled to 238 

the class of ‘higher herbaceous vegetation’. Finally, classification accuracies and the kappa statistic 239 

were calculated for the classified land cover map. 240 

 241 

  242 
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2.4 FLIGHT model inversion to derive LAI  243 

 244 

The ray tracing FLIGHT model simulates photon trajectories, starting from a solar source, through 245 

successive interactions with the vegetation, to a predetermined sensor viewing angle [24]. The model 246 

incorporates the probability of free path, absorption and scattering of photons and accounts for 247 

shadowing effect, crown overlapping and multiple scattering between crowns. Within the crown, 248 

photons are scattered based on probability density functions. The individual photons are followed until 249 

they are either absorbed or exited by the canopy. The model outcome is scene top-of-canopy bi-250 

directional reflectance (BRF) values, the result of a unique stand configuration, solar illumination 251 

direction, surface reflection direction and spectral wavelength (λ). FLIGHT can be operated either in 252 

1D or 3D mode. In 1D mode, the vegetation canopy is modelled as turbid medium, which can be seen 253 

as a layer that contains a mix of different canopy elements which represent the vegetation density 254 

characteristics. Vegetation density of a scene is exclusively controlled by LAI. In 3D mode, the 255 

vegetation canopy is modelled as a 3D representation of tree crowns, which are idealized by 256 

volumetric primitives of defined shapes with associated shadowing effects. Vegetation density within 257 

the volumetric primitives is controlled by LAI and the density of the primitives within a scene is 258 

controlled by fractional vegetation cover. This 1D/3D flexibility enables to employ a better 259 

representation of patchy landscapes, i.e., homogeneous areas can be simulated in 1D mode while 260 

heterogeneous areas (e.g., ‘forest’) can be simulated in 3D mode.  261 

The vegetation classes used in the classification were simplified to form a base map for the class-262 

based model inversion. From the five vegetation classes ‘bare and pioneer communities’; ‘grasses and 263 

herbaceous vegetation’; ‘herbaceous and low woody vegetation’; ‘shrubs’; and ‘forest’, the vegetation 264 

class ‘bare soil and pioneer communities’ was omitted from further analysis because this class does not 265 

have a complex structure thus the influence on the hydraulic resistance can be neglected. The two 266 

classes ‘low grasses and herbaceous vegetation’ and ‘higher herbaceous vegetation’ which showed a 267 

relatively low separability were aggregated into one class of ‘herbaceous’ vegetation. This led to three 268 

distinct vegetation classes ‘herbaceous’, ‘shrubs’ and ‘forest’, for parameterization of FLIGHT. The 269 

‘herbaceous’ and ‘shrubs’ classes were parameterized in 1D mode because of its continuous horizontal 270 

distribution, while ‘forest’ was parameterized in 3D mode. For each vegetation class, model 271 

parameters; leaf, woody and background spectra; and LAI variable ranges were defined and fed into 272 

FLIGHT (table 2). Vegetation model parameters were defined based on field measurements and ranges 273 

of variables were defined based on findings in literature [42-44]. Leaf reflectance and transmittance 274 

spectra were measured with an ASD field spectrometer during a field campaign in 2004. Also tree 275 

geometry indicators were measured and are listed in table 2. We assumed that changes in leaf structure 276 
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and composition of willow trees (> 20 years old), as present in Millingerwaard, are small within a 277 

period of one year, and that therefore the field measurements match the reflectance spectra of leaves of 278 

willow trees in 2005. Additional reflectance spectra of various bark and background types were 279 

collected in April 2009 with an ASD field spectrometer. The spectra were resampled to the band 280 

settings of the CHRIS sensor. 281 

 282 

Table 2. FLIGHT model parameters and variables, and input spectra. 283 

 284 

Class name Input spectra 

  

 

Leaf Background Bark 

Herbaceous Calamagrostis epigejos 0.95*forest background + 0.05*sandy soil 

 Shrubs Salix alba average (water, grass & forest background) Salix alba 

Forest Salix alba forest background Salix alba 

 285 

Class name Variables 

 

Fixed parameters 

 

Fcover LAI (m²/m²) PV Scene Leaf size (m) 

Herbaceous 0.2-1; step: 0.02 0.2-10; step: 0.1 until 5; step: 0.5 until 10 1 1D 0.027 

Shrubs 0.2-1; step: 0.02 0.2-10; step: 0.1 until 5; step: 0.5 until 10 0.7 1D 0.02 

Forest 0.2-1; step: 0.02 0.2-10; step: 0.1 until 5; step: 0.5 until 10 0.7 3D 0.02 

 286 

Fixed parameters tree geometry 

Crown shape ellipsoid 

crown radius 3 

Centre to top distance 3 

Height to first branch:     

Min: 1 

Max: 4 

Trunk DBH 0.4 

 287 

Model inversion is required in order to retrieve vegetation characteristics from reflectance data 288 

through physically based models [45]. Inversion was accomplished by means of a lookup-table (LUT) 289 

approach [46]. The LUT provides a simple way of the inversion of a radiative transfer model and also 290 

reduces the computational demand compared to the traditional optimization approach [48,49]. For each 291 

VZA and each vegetation class a LUT containing simulated reflectance data was built by means of 292 

combining the canopy variables following the steps as provided in table 2. Given the LUT input 293 

parameters, FLIGHT subsequently computed the BRF for 18 spectral bands corresponding to the band 294 

settings of the CHRIS sensor. The inversion itself was done by first calculating the root mean square 295 

errors (RMSE) between each measured reflectance spectrum from the CHRIS nadir and ±36° images 296 

and all simulated BRF spectra as stored in the LUT. Because multiple variable combinations may lead 297 

to the same spectra (the problem of ill-posedness), the solution applied here is the average of variable 298 
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combinations found within less than 10% of the lowest RMSE value. The 10% threshold agrees with 299 

several studies that attempted to optimize inversion (e.g., [49-51]). As such, LAI values were pixelwise 300 

retrieved per vegetation class for the nadir and the ±36° VZAs. Additionally, RMSE residuals were 301 

provided to obtain information about the performance of the retrievals. The residuals reveal the 302 

closeness of actual spectral observations to that of the simulated spectra in the inversion; lower 303 

residual means a better match. This enabled to compare differences in retrieval performances between 304 

angles. Finally, for each of the three viewing angles the maps with the class-specific retrievals from the 305 

herbaceous, shrubs and forest class were aggregated in order to generate LAI maps for the entire area 306 

of Millingerwaard.  307 

An essential step in asserting the appropriateness of optical EO measurements to partake in the 308 

characterization of vegetation density variables is to seek evidence in the validity of the variables. 309 

Validation of LAI measurements were derived from a ground sampling campaign which was carried 310 

out in first two weeks of august 2004 in the Millingerwaard [52]. The dataset consisted of 13 sample 311 

plots of 20x20 m in the forest area, which were selected following a random sampling scheme with a 312 

minimum of 20 m distance from each other. Each plot was set up according to the VALERI 313 

(Validation of Land European Remote Sensing Instruments) protocol [53] and consisted of 12 314 

measurement points per plot. At each point within the plot one measurement in 180° upward direction 315 

and one measurement in 180° downward direction were taken with the hemispherical camera. The 316 

hemispherical photographs were processed with use of the neural network based software CAN_EYE 317 

to calculate the gap fraction and to derive the clumping factor and true LAI values [54]. The validation 318 

dataset from 2005 consisted of 16 sample plots of 20x20 m with more or less homogeneous vegetation 319 

cover in herbaceous, shrubs and forest vegetation. The sample plots were also set up according to the 320 

VALERI protocol. The effective LAI was estimated with use of hemispherical photography and 321 

subsequently corrected into true LAI values with use of the average clumping index per plant-322 

functional type from TRAC (Tracing Radiation and Architecture of Canopies) measurements and 323 

woody-to-total area ratio from the hemispherical photographs [55].  324 

 325 

2.5 Upscaling of the method 326 

 327 

Finally, the methodology was upscaled to all floodplains within the complete river section of the 328 

Gelderse Poort nature reserve (figure 1). RT models are not limited to site or sensor-specific 329 

dependencies [56] and can therefore be applied to larger floodplain areas without having to 330 

compromise on the retrieval quality. First, a land cover classification was made, based on the same 331 

training dataset which was used for the Millingerwaard. Thereafter, FLIGHT model inversion was 332 



Remote Sens. 2012, 4                            

 

 

12 

applied per vegetation class for the Gelderse Poort to derive LAI values. Because of the class-based 333 

inversion approach and the broad range of simulations present in the LUT for each vegetation class, 334 

covering a large variety of plausible canopies, no additional adjustments had to be made to upscale the 335 

same methodology to the larger floodplain area. Finally, in view of applying the class-based model 336 

inversion approach to images from any imaging spectrometer, the whole methodology has been 337 

implemented into a Matlab-based graphical user interface (GUI) toolbox called ARTMO (Automated 338 

Radiative Transfer Models Operator) [57]. Hence, with ARTMO LAI maps can be obtained in a 339 

semiautomatic way thereby taking the distinct nature of different land cover classes into account. 340 

 341 

3. Results 342 

3.1 Classification 343 

 344 

The classified land cover map of the CHRIS nadir image for the Millingerwaard is presented in 345 

figure 3b and has an overall accuracy of 68% and a kappa coefficient of 0.56 (table 3). Notably, most 346 

misclassifications occurred between the ‘grasses and herbaceous vegetation’ and the ‘herbaceous and 347 

low woody vegetation’, because the spectral characteristics of these classes have similarities and 348 

mixing of different vegetation types occurred in the pixels (~17 m) of the CHRIS image. When 349 

merging these two classes, the overall accuracy improved to 73%. The largest part of Millingerwaard 350 

was covered by grasses and (low and higher) herbaceous vegetation. Some parts of the river 351 

floodplains have recently been excavated and consisted of bare soil. Shrubs and softwood forest 352 

surrounded the lakes. Some pieces of land in the eastern part with a rectangular shape and 353 

homogeneous land cover represented arable land and agricultural grassland. The remaining part of the 354 

area had a heterogeneous land cover with transitions between land cover types on the pixel-level which 355 

is characteristic for a natural river floodplain ecosystem. 356 

 357 

  358 
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Figure 3. Maximum likelihood classification result of the CHRIS nadir image of the (a) Gelderse 359 

Poort and (b) Millingerwaard (indicated with the black square) into major land cover types. 360 

 361 

 362 

 363 

Table 3. Accuracy matrix of CHRIS nadir maximum likelihood classification. 364 

 365 
Classified data Reference data

Bare soil

Grass & low 

herbaceous

Higher 

herbaceous Shrubs Forest Agricultural Water Build up

User's 

accuracy

Bare soil 11 3 0 0 0 1 3 2 55%

Grass & low herbaceous 0 19 1 0 0 0 0 0 95%

Higher herbaceous 1 6 8 2 2 0 1 0 40%

Shrubs 0 5 1 9 4 0 1 0 45%

Forest 2 1 0 1 16 0 0 0 80%

Agricultural 0 3 0 0 0 17 0 0 85%

Water 0 1 0 0 1 0 18 0 90%

Build up 3 1 1 0 3 1 0 11 55%

Producer's accuracy 65% 49% 73% 75% 62% 89% 78% 85%  366 
  367 
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3.2 Vegetation class based angular LAI retrievals 368 

 369 

LAI maps were generated through model inversion for the vegetation cover classes of ‘herbaceous’, 370 

‘shrub’ and ‘forest’ vegetation within the Millingerwaard study site. LAI results for herbaceous, shrub 371 

and forest vegetation were combined into a single map for each viewing direction (figure 4 [left]). 372 

White parts in the maps represent areas that were not included in one of the three vegetation classes. 373 

Large variation in retrieved LAI values could be observed within all the three classes in the river 374 

floodplain area, which reinforces the significance of quantifying density at the pixel level. Largest LAI 375 

variability was obtained in the -36º VZA, closely followed by the nadir direction, whereas the variation 376 

of the inverted values was considerably lower for +36º VZA. Spurious high LAI values between 8 and 377 

9 occurred in several fields and along the dikes. Due to their rectangular shape and homogeneous land 378 

cover (figure 3) it could be deduced that these dense vegetated areas are probably related to intensively 379 

managed agricultural grasslands. Similar orders of magnitude were observed along the dike in the 380 

south of Millingerwaard, also due to agricultural use (grassland or maize). These agricultural areas are 381 

excluded in further analysis. The generated histograms show the LAI distribution of the river 382 

floodplain for the three viewing angles (figure 4[right]). From these histograms it can be observed that 383 

nadir failed to identify pixels with very low LAI (<1), which are present over the sandy river banks. In 384 

case of -36 VZA, LAI values ranged between 0.3 and 6 for the shrubs and herbaceous areas. Large 385 

variations were obtained within the herbaceous vegetation class west of the lakes. Peaks in LAI 386 

indicated the spatial pattern of shrub encroachment, where the highest values belonged to the fast 387 

growing shrub Crataegus monogyna (hawthorn). Also the shrub class around the lakes showed great 388 

variation in LAI. This concerned mainly Salix (willow) species which vary in density and height. The 389 

forest class, which was simulated in 3D, yielded LAI values within a narrow range, between 5 and 7.  390 

When validating the LAI results, it can be observed from the scatter plots (figure 5) that the nadir 391 

and -36º VZA performed alike, with a somewhat better RMSE accuracy for -36º VZA. The RMSE 392 

accuracies were 1.05 for -36º VZA and 1.23 for nadir respectively. For both viewing angles the 393 

retrieved LAI values were overall closely positioned to the 1:1-line. The retrieved LAI values fell 394 

within the same range between 2 and 7 as the LAI values obtained with the hemispherical camera 395 

(figure 5). Though, it has to be noted that over the pixels labelled as forest hardly variation in LAI was 396 

detected. Conversely, the +36º VZA led to considerably poorer accuracies (RMSE: 2.63), suggesting 397 

that this viewing angle leads to suboptimal retrievals.  398 

Another way of evaluating the performances of the LAI retrievals is inspecting the RMSE residuals, 399 

which were mapped in figure 6 [left]. Although no validation per se, these RMSE maps can give us a 400 

better spatial understanding of the success of the inversion process. When comparing the viewing 401 
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angles it can be noted that nadir and -36º VZAs performed alike, while forward scatter +36º VZA had 402 

more difficulty with the inversion. The latter not only led to overall poorer residuals but also delivered 403 

considerably more patches with very poor retrievals (dark red spots). This implies that some degree of 404 

mismatch between actual spectra and the simulated spectra took place. It suggests that either FLIGHT 405 

was not well able to represent the complex shadowing effects in this direction or that a more accurate 406 

atmospheric correction regime is needed at this angle. The RMSE maps also suggested that there were 407 

no indications that one vegetation class performed worse than the other classes; the image was 408 

consistently inverted with some patches (dark red spots) of poorer residuals. These patches typically 409 

emerged on landscape edges or on areas with high LAI retrievals. Finally, when looking closer to the 410 

residuals at nadir and -36º, despite some patches of poor retrievals, -36º VZA showed slightly better 411 

performances throughout the whole image. This can also be observed in the histograms of the residual 412 

maps (figure 6 [right]), where the -36º VZA led to considerably more pixels with very low RMSE 413 

values (very left part of histogram).  414 

Figure 4. LAI maps (left) and derived histograms for LAI<8.5 (right) of Millingerwaard for the 415 

backward scattering direction (-36° VZA) (top), the nadir direction (middle) and the forward scattering 416 

direction (+36° VZA) (down), derived with FLIGHT model inversion. 417 

 418 
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Figure 5. Validation results of the estimated LAI obtained with FLIGHT model inversion, plotted 419 

against the measured LAI values obtained with the hemispherical camera for the backward scattering 420 

direction (-36° VZA), the nadir direction and the forward scattering direction (+36° VZA). 421 

 422 

 423 

 424 

Figure 6. Maps of minimum RMSEs for LAI retrievals  (left) and derived histograms for <8.5 (right) 425 

of Millingerwaard for the backward scattering direction (-36° VZA) (top), the nadir direction (middle) 426 

and the forward scattering direction (+36° VZA) (down), derived with FLIGHT model inversion. 427 

 428 

 429 
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3.2 Upscaling LAI maps to the larger floodplain ‘Gelderse Poort’  430 

 431 

To demonstrate the portability of the class-based model inversion, the complete methodology was 432 

applied to the larger floodplain area of the Gelderse Poort nature reserve. This resulted first in a land 433 

cover map (figure 3a) and subsequently LAI maps for the three viewing angles for this area. The land 434 

cover map reveals that most natural vegetation is present in the southern part of the land cover map. 435 

The Millingerwaard floodplain is located here, but the landscape is also characterized by patches of 436 

semi-natural grasslands, shrubs, bare soil and lakes and agricultural fields. To the North, the landscape 437 

is dominated by agricultural crops and grasslands. These parts have not yet been subject to the natural 438 

management regime. The map formed the basis for the class-based LAI retrieval. Figure 7 shows as an 439 

example of the LAI map for the -36º VZA, the viewing angle that was best validated and where most 440 

variability was perceived. Generated LAI values over the larger floodplain were within the same range 441 

as over the Millingerwaard. Large LAI variability can be observed in the more natural areas, especially 442 

in the South and South-eastern part of the map, but also in some parts along the river in the centre and 443 

North of the map. More northwards, where more agricultural fields were present, areas of high LAI 444 

values suggest that these parcels consisted of homogeneous agricultural vegetation cover, such as 445 

mature maize fields. 446 

 447 

Figure 7. LAI map and histogram for the backward scattering direction (-36˚ VZA), derived with 448 

FLIGHT model inversion after upscaling to the Gelderse Poort area. 449 

 450 
 451 
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4. Discussion 452 

 453 

New methods are required to automate approaches and streamline the tedious process of hydraulic 454 

roughness calculation for vegetation in river floodplains [14]. The overall goal of this study was to 455 

develop and test a methodology for spatially-explicit estimation of vegetation density using data from 456 

pointable EO spaceborne platforms. In the next sections, first the characterization of vegetation density 457 

in terms of LAI for a river floodplain, and next the proposed approach of customized model inversion 458 

against pointable, imaging spectroscopy data will be discussed in more detail. Finally, the discussion 459 

will be closed with recommendations towards operational river floodplain monitoring. 460 

 461 

4.1. Vegetation density characterization 462 

 463 

LAI is one of the main biophysical variables that can be derived from space [15]. At the same time, 464 

LAI can be considered as an important proxy of vegetation density, e.g. for the calculation of hydraulic 465 

roughness of river floodplains. Specifically the vegetated areas with high LAI have potential to 466 

generate a high accumulation of biomass, and are most critical for the estimation of the hydraulic 467 

conductivity of the floodplain. For these areas removal of vegetation under the Cyclic Floodplain 468 

Regime could be considered [13]. Moreover, deriving LAI from pointable observations may be 469 

beneficial compared to conventional nadir observation because of the ability of controlling the 470 

contribution of shadowing effects.  471 

Our results show a prominent spatial and angular variability in LAI values within the studied 472 

floodplain across the -36°, nadir and +36° VZAs (figure 4). When comparing LAI retrievals from the 473 

different angles, it appeared that the -36° VZA demonstrated largest variability and best retrieval 474 

performances. Particularly subtle LAI variations in case of low LAI were best detected in this viewing 475 

configuration (figure 4[top]). An explanation for this observation is that the -36° VZA approached the 476 

hotspot most closely, which implies the least influence of shadowing effects and therefore an enhanced 477 

richness of subtle variations in reflectance [23,58]. Such enhanced subtleties are assumed to be in a 478 

way related to an increased sensitivity towards structural variables [59,60], which makes the viewing 479 

angle closest to the hotspot of specific interest. 480 

Slightly less accuracy and variability in LAI retrievals was observed in nadir VZA (figure 481 

4[middle]). The lowest accuracy in LAI retrievals occurred at +36° VZA (figure 4[bottom]). In this 482 

direction most of the leaf surfaces are shaded, thereby suppressing variations in reflectance and thus 483 

sensitivity in assessing foliage density. Similar results but for a coarser resolution of 275 m were 484 

obtained with the usage of multi-angular broadband MISR data [61,62]. These studies underlined that 485 
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the surface anisotropy signatures varied with sun-target-sensor geometry as well as with seasonality 486 

due to changes in canopy composition and structure. Other studies [63,29] found increased sensitivities 487 

to vegetation structure and reduced understory effects in off-nadir viewing angles when compared to 488 

mono-directional nadir data. This evidence of increased sensitivity to vegetation structure supports the 489 

observation that the LAI retrievals from -36° VZA lead to superior results when compared to the 490 

conventional nadir VZA. However, as our results showed that the differences between -36° and nadir 491 

direction were rather small, which suggests that nadir observations are still a valid option. 492 

 493 

4.2. Combined classification and radiative transfer modelling approach 494 

 495 

Vegetation classification prior to model inversion proved to be a vital step for proper retrieval of 496 

biophysical parameters in heterogeneous or patchy landscapes. Effectively, one of the main drawbacks 497 

regarding the usage of RT models is the poor representation of the ensemble of vegetation structural 498 

variables and optical properties present in the field (e.g., [64-66]). RT models are typically 499 

parameterized for a specific land cover type, e.g., crops, forest, grassland, thereby restricting model 500 

inversion to this specific land cover type. However, in patchy or heterogeneous landscapes, such as 501 

river floodplains, it cannot be assumed that model parameterization for one vegetation type is valid for 502 

the whole landscape. In this respect, the proposed 1D/3D parameterization (along with distinct optical 503 

properties) per vegetation class ensures a more accurate representation of the landscape heterogeneity. 504 

From the generated LAI maps it can be observed that the three proposed classes of herbaceous, shrubs 505 

and forest proved to be valid within the floodplain of the Millingerwaard. Though, at the same time the 506 

fact that spurious high results appeared over agricultural (maize) areas in the larger region suggests 507 

that these areas fell not within the range of simulations that were parameterized according to the 508 

‘herbaceous’ class. For improved LAI retrievals it would therefore be wise to consider these areas as a 509 

new class and parameterize the RT model accordingly.  510 

A difficulty of vegetation class-based inversion is that it relies on a classified map of sufficient 511 

quality. Apart from the enriched information content for retrievals of vegetation density properties, 512 

pointable data can also enhance the classification process itself. For instance, here ROIs were 513 

identified with great precision because in certain PC-band combinations of the stacked layers of the 514 

three viewing angles the different classes had bright, distinctive colours. However, the potential of 515 

pointable data in the classification process has not yet been exploited to the fullest. In this study, 516 

classification was performed on the CHRIS nadir image only. Owing to the advantages of the multi-517 

dimensionality of CHRIS, pointable observations may also be used as input into the classification 518 

method. For instance, [67] found that differences in classes were more evident in multi-angular band 519 
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compositions than in RGB true colour compositions. By using stacked layers of all multi-angular 520 

CHRIS observations as classification input instead of relying on solely the nadir image they improved 521 

the neural network classification results with 7%. Several other studies demonstrated the strength of 522 

multi-angular information in improving land cover classification [68,23]. The latter authors improved 523 

the classification accuracy with a combination of nadir and off-nadir data, because as such they were 524 

better able to catch the canopy characteristics. Further, in a study by [69] nadir classification accuracy 525 

was improved by using additional anisotropic information derived from reflectance ratios of different 526 

viewing angles from CHRIS data, enhanced with PCA. Given these examples, a next step would be to 527 

elaborate on a more standardized protocol using data from pointable imaging spectrometers so that 528 

classifications and vegetation density retrievals can be realized in a more operational way. Besides, a 529 

more precise land cover map as base map may also lead to more accurate LAI retrievals. Apart from 530 

the here applied Maximum Likelihood classification numerous alternative classifiers exist which may 531 

be more successful in heterogeneous areas, such as unsupervised classifiers, support vector machines, 532 

fuzzy classifiers, neural networks (see review [70]). Finally, when moving towards operational use, 533 

additional gain in accuracy can be achieved through i) synchronizing acquisition of field data with the 534 

satellite overpass , and ii) fine-tuning parameterization of vegetation classes for improved class-based 535 

model inversion.  536 

 537 

4.3. Towards space-based river floodplain monitoring 538 

 539 

Overall, this study profited from the availability of pointable hyperspectral CHRIS data and the 540 

advantages of the RT approach. With a physical model, the specific background and vegetation 541 

reflectances for each vegetation type were taken into account, which makes LAI retrievals more 542 

accurate [33]. Because no additional in situ calibration data sets were needed for this RT approach, the 543 

class-based model inversion was easily applied to the larger area of the Gelderse Poort, which 544 

demonstrated the suitability of this approach to map the floodplains of the whole river catchment. 545 

While CHRIS data were successfully inverted into vegetation density variables, it should 546 

nonetheless not be forgotten that PROBA is not an operational spacecraft but was designed as a 547 

technology demonstrator. In fact PROBA was initially intended as a one year mission [28]. Currently 548 

no new multi-angular imaging spectrometer missions are planned to be launched. Conversely, there is 549 

a growing trend to design a new generation of imaging spectrometers with pointable capabilities. 550 

EnMAP is such an example with ± 30º off-nadir pointing capabilities that aims to deliver operational 551 

data products [71]. In addition, another upcoming superspectral spaceborne system, named Vegetation 552 

and Environmental New micro Spacecraft (VENµS), also has pointable capabilities within the range of 553 
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30º along and across track and will be launched in 2013 [72]. For both of these sensors, vegetation 554 

monitoring of both crops and natural vegetation will be an important application domain. Our results 555 

support that off-nadir images benefit to the retrieval of vegetation density parameters and may 556 

therefore be of specific interest in view of these upcoming pointable sensors. Further study is required 557 

to investigate the viewing angle effect on RT model inversion of vegetation properties, including the 558 

consequences for changing temporal resolutions.  559 

Regardless of progress with respect to refined LAI mapping, eventually one single hydraulic 560 

roughness parameter is required by the river manager. It remains to be investigated whether LAI alone 561 

would suffice for deriving hydraulic roughness estimates or if additional information is required. 562 

Therefore, a next research step would be to explore LAI outcomes in conjunction with other relevant 563 

structural variables that can be derived from space such as fractional vegetation cover and vegetation 564 

height [13]. Straatsma and Baptist [12] used both spectral and altimetry airborne data sets to estimate 565 

roughness input parameters such as vegetation height and vegetation density, and subsequently used 566 

these data as input into a hydrodynamic model to compute hydraulic roughness values of a local river 567 

floodplain. When having a vegetation class map of the larger area available, class-based inversion of 568 

LAI can be easily upscaled to a whole river catchment area. Compared to the traditional ecotope 569 

approach spaceborne optical data offer a standardized, spatially-explicit and repeatable methodology 570 

that can cover complete river catchments with high spatial detail. Benefitting from the enriched 571 

information present in the backscatter direction, it is beyond doubt that operational pointable sensors 572 

(e.g. EnMAP, VENµS) will play an important role in monitoring programmes. Given this all, further 573 

research efforts should lie in elaborating on the compatibility of hydrodynamic models with 574 

spaceborne-derived input variables. 575 

 576 

 577 

5. Conclusions 578 

 579 

Pointable imaging spectrometers possess advanced capabilities to observe vegetation under a 580 

preferred viewing angle. The use of pointable CHRIS images for mapping vegetation density of a river 581 

floodplain in the Netherlands was investigated. The spatial distribution of leaf area index (LAI) was 582 

estimated from CHRIS data using the ray tracing model FLIGHT. The CHRIS nadir image was first 583 

classified into three distinct vegetation classes (‘herbaceous’, ‘shrubs’, ‘forest’) that formed the basis 584 

for class-based model inversion. By configuring FLIGHT per vegetation class a more accurate 585 

representation of the heterogeneous nature of a river floodplain can be achieved, e.g., herbaceous and 586 

shrubs were simulated in 1D mode while forest was simulated in 3D mode. LAI values were 587 



Remote Sens. 2012, 4                            

 

 

22 

subsequently pixelwise and class-based derived through model inversion, and this for each view zenith 588 

angle (VZA: -36°, nadir, +36°) separately. LAI retrievals matched best with validation data at -36° 589 

backscatter direction, which is the viewing angle that was positioned near to the solar position, closely 590 

followed by nadir VZA. Also most LAI variability was observed in these two viewing angles. This 591 

suggests that in absence of pointable observations nadir-based observations would be perfectly 592 

appropriate for vegetation density monitoring applications. The forward scatterer +36° VZA led to 593 

considerably poorer retrievals and is not recommended to be used for quantifying vegetation density. 594 

The here proposed methodology has been implemented in a software package ARTMO. With ARTMO 595 

LAI maps over larger areas can be generated in a semi-automatic way, while at the same time the 596 

heterogeneous nature of the landscape and the viewing configurations of the sensor have been properly 597 

interpreted. This opens opportunities in view of upcoming operational sensors with pointing 598 

capabilities such as EnMAP and VENµS. 599 
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