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1.1 Earth Observation and forest monitoring 

Forests presently cover approximately 30% of the terrestrial Earth surface and function 
as habitats for organisms, as soil conservers and as carbon pools, thereby constituting one of 
the most important aspects of the Earth's biosphere (www.fao.org/forestry). Nevertheless, 
with the upcoming global warming, forests are under threat. Although forests have responded 
to global warming in the past, the rate of change predicted in the 21st century and the resulting 
feedback effects on global climate is likely to be unprecedented (Saxe et al., 2001; Chapin et 
al., 2005; Hyvönen et al., 2007). To forecast climate change impacts and adaptations, it is a 
requisite to be equipped with spatially-explicit and up-to-date bio-indicators of the health 
status of the Earth’s global forest cover (e.g. photosynthetic activity, carbon and nutrient 
sequestration, defoliation, biomass; e.g. see http://fhm.fs.fed.us/). Earth Observation (EO) 
offers unique opportunities to provide continuous and repetitive data of the Earth forest cover, 
from local to global scale. In many parts of the world space-based EO technologies constitute 
the sole cost-effective data source suitable to report upon forest conditions. Owing to the 
advantages of EO, many national and international agencies have already implemented 
operational EO data streams in forest inventory and monitoring programs (e.g. Canadian 
Forest Service, US-GEOSS Forest Monitoring, GMES Service Element Forest Monitoring). 

This thesis focuses on the use of state-of-the-art optical EO data for forest properties 
mapping. Optical EO data are able to deliver biochemical and structural canopy properties. 
Optical sensors sample the Earth’s reflected visible, near infrared (NIR) and short-wave 
infrared (SWIR) solar electromagnetic radiation to deliver images of the Earth's surface. 
However, an optical sensor only measures the spatially distributed radiation fluxes reflected 
from the Earth's surface in the direction of the sensor. Optical EO measurements are thus 
fundamentally not capable to provide directly the canopy properties that are of interest for 
forest monitoring. An intermediate step is necessary to transform the EO measurements into 
estimates of the vegetation structure or biochemistry. To perform such a transformation, some 
understanding of the involved physics is required.  

The physical process that makes optical EO possible is the interaction between radiation and 
matter, called radiative transfer (RT) (Lillesand et al., 2004). Radiative transfer in vegetation 
comprises reflection, transmission, absorption and emission, intrinsically related to the 
vegetation elements. These vegetation elements cause variations in absorbance and 
transmittance across wavelengths via multiple scattering processes throughout the canopy and 
background (i.e. understory, soil). This implies that EO data can only provide information on 
vegetation properties that have a direct impact on and are sensitive to the measured radiation 
fluxes (Ross, 1981; Goel, 1988; Asner, 1998; Dawson et al., 1999; Chen et al., 2000). In turn, 
the explicit retrieval of vegetation properties based on EO data is limited to variables directly 
involved in the radiative transfer within the canopy, called the radiative state variables 
(Verstraete & Pinty, 1996). These state variables can either have a biochemical nature (e.g., 
chlorophyll content, pigments) or a structural nature (e.g. leaf area index (LAI), canopy cover). 
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The knowledge of the state variables and interacting RT processes is encapsulated into a 
variety of models.  

Fundamentally, the interpretation of EO data always implies the use of a model (Widlowski, 
2002). This model can be empirical, as in the case of various statistical methods that correlate 
raw data or vegetation indices with variables of interest, or can be physical, as in the case of 
RT models whereby information about the variables that influence the propagation of 
radiation fluxes is extracted based on physical rules (e.g. Myneni et al., 1995; Gobron et al., 
2000).  

Despite the large variety of models and derived products, our current understanding of the 
interaction between radiation and forest properties is still far from complete. There are (i) 
limitations on the side of the models; (ii) there is the intrinsic complexity of the forest canopy 
to be accounted for, and (iii) there is the ongoing technological boost towards more powerful 
EO instruments such as imaging spectroscopy and multi-angular instruments, which requires 
an upgrading of our knowledge of the involved mechanisms at a refined spatial, spectral 
and/or angular scale. These points are essentially interconnected and will be briefly outlined 
in the next sections within the context of forest monitoring. They will finally lead to the 
objectives of this thesis that aims to contribute to the broader scientific debate on how multi-
angular imaging spectroscopy can serve monitoring canopy biochemical and structural 
properties.  

 

1.2 EO models 

1.2.1 Empirical models: vegetation indices 

With respect to empirical approaches, vegetation indices (VIs) are among the oldest and most 
widely used tools in EO mapping applications. VIs are simple numerical indicators that 
reduce multispectral (two or more bands) data to a single variable for predicting and assessing 
vegetation characteristics. Along with the development of optical sensors a broad diversity of 
VIs have been developed, aiming for specific purposes (i.e., greenness, chlorophyll content, 
secondary pigments: e.g. carotene, xanthophylls), spatial scales (e.g. leaf, canopy, global) and 
spectral resolutions (i.e. broadband vs. narrowband). Nevertheless, what all vegetation indices 
have in common is that: 

 Data are reduced to one single layer, which is assumed informative about the structural or 
biochemical condition of the vegetation. VIs are powerful when fast and local-to-regional 
assessments are needed;  

 VIs create only empirical relationships and are thus limited in transferring to other images; 

  Besides sensitivity to vegetation properties, VIs can additionally be affected by a number 
of perturbing factors, including: atmospheric effects, clouds, soil effects, anisotropy effects, 
sensor-specific spectral effects.  
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Although quite often effective, this leads to the awareness that VIs are intrinsically limited by 
the empiricism of their design. In any quantitative application that requires a given level of 
accuracy, all the perturbing factors could result in errors or uncertainties that reduce the 
predictive power of VIs below a desired threshold. Furthermore, and more importantly, for 
the majority of VIs their sensitivity towards perturbing factors at canopy level has not been 
systematically studied, particularly with respect to anisotropic effects or in relation to canopy 
heterogeneity. This seriously limits the use of these indices, especially when calculated from 
EO data for forest monitoring applications. Knowledge of the roles perturbing factors play is 
very important when implementing VIs in operational monitoring schemes (Glenn et al., 
2008). Linking VIs with physical models can help to assess these uncertainties (Myneni et al., 
2002).  

 

1.2.2 Physical models: radiative transfer (RT) models 

Since statistical or empirical approaches lack transferability and robustness, this has led to the 
advancement of physical models for estimating biochemical/structural state variables from 
canopy spectra. Physical radiative transfer models describe the transfer and interactions of 
solar radiation inside the canopy based on physical laws and thus provide an explicit link 
between the biochemical and structural characteristics of vegetation scattering elements (e.g. 
the leaf) and the canopy reflectance (Ross, 1981; Goel and Thompson, 2000).  

 
Leaf level 

RT processes at the leaf level take place at the molecular level, e.g., the absorption 
characteristics of the foliar biochemical components, such as electronic transitions in the 
chlorophyll pigments or the bending and stretching vibrations of the biochemical bonds 
(Lichtenthaler, 1987; Curran, 1989). Apart from biochemical components, the foliage optical 
properties are primarily a function of internal leaf structure, leaf surface roughness and water 
content (Ross, 1981; Fourty et al., 1996; Middleton et al., 1997; Bousquet et al., 2005). Leaf 
RT models attempt to explain how radiation interacts with the above-mentioned biophysics 
and biochemistry (Jacquemoud and Baret, 1990; Dawson et al., 1998; Ganapol et al., 1998). 
Popular leaf-level radiative transfer models are PROSPECT (Jacquemoud & Baret, 1990) and 
LIBERTY (Dawson et al., 1998).  

 
Canopy level 

While the optical properties of the leaves can be described by a leaf-level RT model, 
estimates of vegetation properties based on EO data from air- or space-borne platforms have 
to be ultimately assessed at the canopy level. Such canopy models are described by a number 
of state variables. State variables typically encompass LAI, canopy cover, the 
nonphotosynthetic canopy elements and the understory as the main factors driving the EO 
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signal (Spanner et al., 1990; Huemmrich & Goward, 1997; Asner, 1998). In principle, these 
state variables determine the relative contributions of the canopy scattering elements, which 
can be typified as photosynthetic vegetation (PV) and nonphotosynthetic vegetation (NPV).  

There are four broad categories of canopy reflectance models, although some models 
contain elements of more than one category:  

 The simplest canopy RT models are the 1D or turbid media (homogeneous canopies) 
models. Turbid medium models describe the canopy as a horizontally homogeneous layer 
of scattering and absorbing particles of a given density and orientation (e.g. Verhoef, 1984). 
These models (e.g. the SAIL family) are suited for describing dense leafy canopies such as 
closed forests, which can be described as being horizontally homogeneous, but are 
inappropriate for describing forests that are more heterogeneous. 

  Geometrical-optical models (e.g. Li & Strahler, 1992) describe the canopy using a series 
of regular geometric shapes, placed on the soil surface in a prescribed way. The fractions of 
different components are calculated based on the 3D geometric optical principles. Canopy 
reflectance is determined by the interception of light and shadowing by the geometric 
objects and the reflectance from the ground surface. These types of models can be applied 
to describe sparse canopies such as shrublands or open forests.  

 The finest modeling degree is Monte Carlo ray tracing, which stochastically calculates 
photon trajectories within turbid or geometric canopies. A photon is tracked from its source 
until it exits the canopy, with scattering based on probabilistic interactions. Ray tracing is 
used to assess the influence of multiple scattering on spatial aggregation and angular 
dynamics over heterogeneous forests (e.g. Govaerts, 1998; Lewis, 1999; Disney et al., 
2000). Only these sophisticated models, possessing the flexibility to render any kind of 3D 
scene, are able to represent stands with higher levels of complexities. 

 Hybrid models combine elements of both the turbid medium, the geometric optical or the 
ray tracing models. In this case, the geometric shapes representing the canopy, for example, 
are treated as a turbid medium, or simple geometric shapes are introduced in a ray tracing 
environment. Often the amount of a priori knowledge can be a limiting factor when 
constructing a detailed 3D description of a canopy. In this case, a less detailed approach 
with a smaller number of input parameters might be preferred, e.g., such as FLIGHT 
(Forest LIGHT interaction model) (North, 1996). The model is hybrid because of the 
combination of a geometrical-optical model and Monte Carlo simulations of photon 
transport. 

 

1.2.3 Applying radiative transfer models  

The advantage of physical RT models is that they can be coupled (e.g. leaf with canopy 
level), thereby providing a physically based linkage between optical EO data and biochemical 
or structural state variables (Verhoef & Bach, 2003; Jacquemoud et al., 2009). Once having 
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such coupling established it allows inferring foliar biochemistry at canopy scale. Moreover, 
with a coupling not only the relationships between foliar biochemistry (e.g. chlorophyll 
content) and reflectance data (and derived vegetation indices) can be analyzed, but also the 
effects of additional factors perturbing these relationships, such as sun-target-sensor geometry 
and canopy structure (Zarco-Tejada et al., 2001). RT models can be applied in many ways for 
forestry applications; some can be run in the forward mode, some both in the forward and 
inverse modes.  

Running RT models in its direct or forward mode enables creating a database covering a 
wide range of situations and configurations. Such forward RT model simulations allow for 
sensitivity studies of canopy parameters relative to diverse observation specifications, which 
can lead to an improved understanding of the EO signal as well as to an optimized instrument 
design of future EO systems (Myneni et al., 1995; Gobron, 1997; Jacquemoud et al., 2000; 
Pinty et al., 2001).  

Inversion of the RT model enables retrieving vegetation characteristics from EO data. The 
unique and explicit solution for a model inversion depends on the number of free model 
parameters relative to the number of available independent observations. A prerequisite for a 
successful inversion is therefore the choice of a validated and appropriate RT model, which 
correctly represents the radiative transfer within the observed target (Pinty and Verstraete, 
1992; Myneni et al., 1995). When a unique solution is not achieved (unified theorem of 
Hadamard well-posedness) then more a priori information is required to overcome the ill-
posed problem, a condition that is not always achieved (Combal et al., 2003).  

To overcome the problem of a priori information, semi-empirical models may function as a 
compromise. Semi-empirical models are simple models that contain aspects of both physical 
and empirical models by retaining some physical interpretation with empirical linkages to 
describe the pattern of reflectance anisotropy rather than maintain fidelity with biophysical 
parameters (Pinty et al., 1989; Su et al., 2009).  

 

1.3 Forests and radiative transfer models  

1.3.1 Forest dynamics: the case of an Alpine old-growth forest 

Having the models for EO data interpretation available, a next step is to select the appropriate 
model for linking with a forested target. The design of the model should be such that it is able 
to mimic the radiative fluxes throughout the forest canopy at an acceptable degree of detail for 
reliable retrievals. Therefore, some knowledge of forest development is required. A forest is 
not static and becomes more heterogeneous in structure and composition over time (Franklin 
et al., 2002). Consequently, the spectral response of a forest is heavily dependent on its 
development stage. The most noteworthy dynamics causing spectral changes over time will 
be further discussed in the context of an Alpine coniferous forest; however, the growth 
dynamics are broadly applicable to boreal and temperate forests.  



Chapter 1 

8 

Forests are long-living ecosystems, i.e. they can grow up to 1000 years old (also termed 
old-growth or primary forest). During the development of a forest ecosystem, its structure 
undergoes dramatic changes in vertical and horizontal dimension during aging (Brown and 
Parker, 1994; Franklin and Van Pelt, 2004). Both individual structures and their spatial 
arrangements are relevant to the understanding of key processes in the development of a long-
living forest. For instance, young (typically between 10 and 30 years) and old-growth forests 
(exceeding 150 years) offer extreme contrasts in foliage distribution. In young forests, foliage 
is concentrated high in the canopy with little or none lower in the canopy. In old-growth 
forests, foliage and living branches are distributed continuously from the ground to the top of 
the canopy (Franklin et al., 2002). Apart from heterogeneity, the increment of woody 
elements such as dead standing trees and coarse woody debris (CWD) are other features that 
characterize old-growth forests (Keddy & Drumnond, 1996); a high density of CWD may 
account for as much as 90% of forest floor mass (Woldendorp & Keenan, 2005).  

From an EO perspective, the spectral trajectory over many decades of old-growth forests is 
hence governed by (i) an increase of NPV (e.g. dead standing trees, CWD) at the expense of 
PV, and (ii) a more heterogeneous 3D distribution of PV and NPV elements. This implies that 
for old-growth forests EO-based retrieval of foliar biochemistry is affected by the complex 
combination of structural heterogeneity and optical scattering properties of accumulating 
woody elements.  

 

1.3.2 Radiative transfer models and forests1  

Old-growth forests play an important role in species diversity through niche diversification 
and may act as important carbon sinks, due to the long period of forest stability (Knohl et al., 
2003; Luyssaert et al., 2008). Despite the relevance of old-growth forests, a comprehensive 
review in scientific literature (in Remote Sensing of Environment) revealed that the majority 
of physically-based approaches have been applied on young to mature forests, rather than the 
more structurally complex canopies of old-growth forests. Figure 1.1 displays studies of 
applications of RT models in the last decade. RT models can be categorized as (i) 1D or 
turbid-medium models; or (ii) when the canopy space consists of crown architectural 
elements, as 3D models. In Figure 1.1, the symbols indicate whether biophysical (open 
symbols) or biochemical (closed symbols) variables are quantified. At a glance, the intuitive 
perception that relatively simple 1D models are still preferred in the scientific community 
(e.g. Huang et al., 2008) is not confirmed by this figure. Some studies have evidently relied 
on the turbid-medium type of models such as the SAIL family, yet the majority of the 
encountered studies effectively applied canopy models in 3D space. For most of the presented 

                                                 
1 paragraph based on paragraph 8.3 (written by J. Verrelst) in: Schaepman, M.E., Ustin, S.L., Plaza, A.J., Painter, T.H., 
Verrelst, J., & Liang, S. (2009). Earth system science related imaging spectroscopy-An assessment. Remote Sensing of 
Environment, 113, S123-S137 
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forestry applications RT models are linked with optical EO data through numerical inversion 
methods with the purpose of inferring one or more state variables. For other forestry 
applications RT models are run in forward mode to generate synthetic data, e.g. for mapping 
purposes based on spectral unmixing or classification techniques.  

 

 

Figure 1.1: Stand age study site compared for year of publication per radiative transfer model used. The open 
symbols represent biophysical retrievals (e.g. fraction cover, LAI), while the closed symbols represent 
biochemical retrievals (e.g. chlorophyll). Symbols are plotted on the averaged age. The grey lines represent the 
full range of stand age of the used study site. (Referenced legend a: Bruniquel-Pinel & Gastellu-Etchegorry, 
1998; b: Gemmell, 1998; c: Gemmell and Varjo, 1999; d: Gastellu-Etchegorry et al., 1999; e: Gemmell, 
1999; f: Brown et al., 2000; g:Demarez & Gastellu-Etchegorry, 2000; h: Kuusk & Nilson, 2000; i: Hu et al., 
2000; j: Gao et al., 2000; k: Huemmrich, 2001; l: Gastellu-Etchegorry & Bruniquel-Pinel, 2001 m: Lacaze & 
Roujean, 2001; n: Gemmell et al., 2001; o: Kimes et al., 2002; p: Gemmell et al., 2002; q: Song et al., 
2002; r: Wang et al., 2003; s: Shabanov et al., 2003; t: Gastellu-Etchegorry et al., 2003; u: Rautiainen et al., 
2004; v: Zarco-Tejeda et al., 2004; w: Peddle et al., 2004; x: Fernandes et al., 2004; y: Meroni et al., 
2004; z, aa: Kötz et al., 2004; ab, ac: Fang et al., 2003; ad: Zhang et al., 2005; ae: Rautiainen & Stenberg, 
2005; af: Rautiainen, 2005; ag: Disney et al., 2006; ah: Schlerf & Atzberger, 2006; ai: Eriksson et al., 
2006; aj: Soudani et al., 2006; ak, al: Cheng et al., 2006; am: Zhang et al., 2006; an Song et al., 2007; ao: Koetz 
et al., 2007; ap: Colombo et al., 2008; aq: Lang et al., 2007; ar: Malenovský et al., 2008; as, at: Kuusk et al., 
2008; au: Huang et al., 2008; av: Suarez et al., 2008; aw: Verrelst et al., 2008b; ax: Quaife et al., 
2008; ay: Moorthy et al., 2008). 
 

A model-driven motivation for selecting younger, structurally more homogeneous stands 
may be the smaller degrees of uncertainty; hence these stands are better suited for model 
parameterization and validation. Simple, turbid medium models are well suited for dense 
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vegetation canopies, such as young, homogeneous stands. Also, due to the ill-posed nature of 
the inversion problem (Combal et al., 2003; Atzberger, 2004), a simplified approximation of 
the canopy representation may be required simply because larger numbers of variables will 
increase the uncertainty of the inversion. The abundant presence of understory and CWD 
typical in boreal coniferous forests poses nevertheless a problem for the correct image 
interpretation using simplified physically based models (Chen & Cihlar, 1996; Eklundh et al., 
2001; Stenberg et al., 2004; Peltoniemi et al., 2005; Rautiainen et al., 2007). 

Only very few contributions have discussed spectral characteristics of old-growth forests 
(Song et al., 2002; Song et al., 2007). In these studies, canopy structural variables and leaf 
optical properties were entered in a hybrid geometric-optical radiative transfer model (GORT) 
to mimic structural canopy changes characteristic of successional change. Figure 1.1 also 
suggests a significant imbalance towards canopy biophysical properties compared to canopy 
(or even leaf) chemistry. The retrieval of leaf chemistry is usually resolved by coupling a 
relatively simple leaf-level RT model with a canopy-level RT model. The woody component 
is typically fixed in these retrieval studies, an assumption that does not necessarily match 
reality (Roberts et al., 2004). A challenge remaining to be resolved is to make the models 
more adjustable to canopy compositional variability, e.g. in terms of variable proportions of 
foliage and woody elements, which is common in old-growth forests (Franklin et al., 2002). 
An assessment on the contributions of canopy woodiness to canopy reflectance for a wide 
range of canopies would be a first step to do. 

Simple turbid medium RT models are likely unable to account for such structural and 
compositional changes. Geometrical-optical models, ray tracing models or hybrid models that 
have 3D functionalities are expected to be better equipped to simulate the radiative transfer 
fluxes within a heterogeneous, woody canopy. Owing to the capability of simulating radiative 
fluxes almost on a photon-by-photon basis, meanwhile preserving simplicity in generating 3D 
scenes, FLIGHT seems to be particularly suitable to link canopy variables with reflectance 
data. Having outlined canopy models and their relationships with forest, a next step is linking 
them with recent technologies in EO: imaging spectroscopy and multi-angular EO. 

 

1.4 Imaging spectroscopy  

While in the 90ies EO was limited to a few broad bands and a limited number of state 
variables could be estimated from broad spectral regions, with the advent of imaging 
spectroscopy during the last decennium EO has entered a new paradigm. Imaging 
spectrometers use many contiguous and narrow bands (up to more than one hundred). Such a 
high number of bands makes it possible to capture most absorption features in a vegetation 
reflectance spectrum (Green et al., 1998; Ustin et al., 2004). This opened new avenues for EO 
science: the availability of many narrow bands enabled to define new state variables, active in 
specific, usually small spectral regions.  
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Given this refined concept of state variables, various examples of the retrieval of foliar 
chemistry and canopy composition exist, using the spectral information dimension 
encapsulated in the narrow spectral bands of imaging spectroscopy instruments. Examples 
include: pigments (e.g. chlorophyll a & b, carotenoids), relationships with nutrients (e.g. 
nitrogen, phosphorus), foliage water content, dry matter, understory and canopy composition. 
See Schaepman et al. (2009) for an overview. A common and straightforward approach of 
using imaging spectroscopy data for inferring canopy properties is to apply narrowband 
vegetation indices (Majeke et al., 2008). However, questions related to up-scaling 
uncertainties (e.g., anisotropy effects, influence of structure) have to be resolved beforehand.  

 

1.4.1 Space-borne imaging spectrometer: CHRIS 

Until now, there are not many true imaging spectrometers in space, satisfying a strict 
definition of the criterion of contiguity over an extended spectral range, either the visible/ 
near-infrared or from the visible into the shortwave infrared. The development of imaging 
spectrometer initiatives for space satellites remains difficult and very expensive in terms of 
payload design, maintenance and calibration. In any case, these difficulties have not deterred 
the space agencies to fund innovative missions carrying on board imaging spectrometry 
payloads (Schaepman et al., 2009). This is the case with CHRIS (Compact High Resolution 
Imaging Spectrometer) developed by a European consortium funded by European Space 
Agency (ESA). CHRIS is the sensor of interest in this thesis. 

The imaging spectrometer CHRIS on board the PRoject for On Board Autonomy 1 
(PROBA-1) satellite was launched on October 21, 2001 as a technology demonstrator. 
PROBA-1 is a small platform, weighing approximately 100 kg and measuring approximately 
60×60×80 cm. CHRIS can acquire up to 62 spectral bands in the range of 400–1050 nm with 
a spectral resolution of 5–12 nm. The CHRIS/PROBA system has several unique features: the 
sensor can be commissioned from the ground station, allowing different acquisition modes in 
terms of both spectral channels and spatial resolution (Barnsley et al., 2004), with a nominal 
ground resolution between ~17 and 34 m. The nominal swath is 13 km. Five principal modes 
have been selected according to the requirements for five major application fields: aerosol, 
land cover, vegetation, coastal zones and water bodies.  

Despite its flexible configuration, however, the uniqueness of CHRIS lies not only in its 
fine spectral sampling. The CHRIS sensor has been the first high spatial resolution sensor 
with advanced pointing capability, dedicated to the acquisition of nearly simultaneous images 
with multiple viewing angles. Thanks to its four reaction wheels the platform is highly 
maneuverable: along-track pointing allows a given site to be imaged five times during a single 
overpass. The system acquires the images at times when its zenith angle is approximately 
equal to a set of so-called fly-by zenith angles: ±0°, ±36° and ±55° (Barnsley et al., 2004). 
The added value of multi-angular EO is explained below. 
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1.5 Multi-angular Earth Observation 

Traditional EO applications have mostly focused on extracting structural and biochemical 
information from the spectral domain; only recently space-borne multi-angular sensors 
became available to exploit the angular domain. Multi-angular EO sensors are designed to 
acquire imagery at varying angles explicitly to collect multiple looks over as short a 
timeframe as possible, taking into account the constraints imposed by the orbits of their 
platforms (Chopping, 2008). Multi-angular EO seeks to exploit the reflectance anisotropy of 
the Earth’s surface that is described by the bidirectional reflectance distribution function 
(BRDF) that describes the angular distribution of spectral radiation scattered by a surface 
(Nicodemus et al., 1977). The BRDF describes the reflectance anisotropy of a target as a 
function of illumination geometry and viewing geometry; it depends on wavelength and is 
determined by the intrinsic surface properties. Sampling the angular distribution of surface-
leaving radiation from multiple viewing angles therefore has an added value compared to 
mono-angular remotely sensed data which mostly give a view on the top of the canopy (nadir 
view).  

Similar to the interpretation of EO data in the spectral domain, interpretation of EO data in 
the angular domain relies on the use of models (Wanner et al., 1997). These models should 
enable the pixel-by-pixel inversion of measured reflectance anisotropy over wide areas into 
useful products (Lucht et al., 2000). Although being most realistic, physical models are 
computationally too demanding to allow rapid inversion over wide areas, and the necessity of 
a priori knowledge for parameterization makes that they are inflexible to account for a range 
of surface cover types (Roberts, 2001). Semi-empirical models do not require a priori 
knowledge; usually three or four independent parameters are sufficient for describing the 
reflectance anisotropy of a target. As such, they are particularly useful for angular 
extrapolation and interpolation schemes in view of the limited angular sampling delivered by 
multi-angular EO platforms. Among the semi-empirical models, the Rahman–Pinty–
Verstraete (RPV) model (Rahman et al., 1993) describes the reflectance anisotropy based on 
four parameters. Inversion of the model against angular reflectance data allows quantifying 
the surface reflectance anisotropy in one single parameter, the so-called Minnaert-k parameter.  

 

1.5.1 Spectrodirectional data for forest structure mapping 

Multi-angular EO data provide access to surface properties by exploiting their anisotropic 
reflectance characteristics. It is this reflectance anisotropy that enables information about the 
structural properties of the surface to be inferred (Asner et al., 1998; Deering et al., 1999; 
Sandmeier & Deering, 1999; Diner et al., 1999, 2005). Although not always straightforward, 
in the last few years multi-angular EO data have been used to develop a variety of approaches 
that map structural properties of forests, such as:  
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 Tree density estimates (Sabol et al., 2002; Wessels et al., 2004; Chopping et al., 2006, 
2008, 2009) 

 LAI (Pocewicz et al., 2007) 

 Tree height (Kimes et al., 2006; Heiskanen, 2006, Chopping et al., 2008, 2009) 

 Foliage clumping index (Chen et al., 2005; Leblanc et al., 2005) 

 Canopy heterogeneity (Widlowski et al., 2001; Pinty et al., 2002). 

While these studies demonstrated that there is some structurally-related information 
embedded in the angular domain, almost all of them were using the Multi-angle Imaging 
Spectroradiometer (MISR) on board the Terra platform (Diner et al., 1998). The advantage of 
the MISR instrument lies in its 9 viewing angles; however, the relatively high angular 
sampling is at the expense of a low spectral resolution (5 broad bands) and a coarse spatial 
resolution (275 m in red, 1100 m in the other broad bands). Although the use of MISR data 
led to an improved understanding of angular anisotropy of vegetation canopy reflectance and 
to the development of methods that derive structural information from it, basically all these 
methods were developed in the red spectral broadband because of it has the best spatial 
resolution. MISR is unable to record reflectance anisotropy over the full VNIR (visible and 
NIR), which is a gap to be filled because of the close coupling between optical and structural 
parameters (Roujean et al., 2004). 

The rich information content of CHRIS data at a relatively high spatial resolution may 
refine our understanding on how vegetation properties impact the partitioning of the canopy-
leaving radiation in the VNIR. More precisely, CHRIS may open opportunities to decouple 
the angular domain from the spectral domain, thereby linking the spectral domain with 
biochemistry and the angular domain with canopy structure at the tree canopy level. It is 
therefore of interest to investigate how space-borne spectrodirectional (combined multi-
angular and spectroscopy) data can contribute to forest monitoring, specifically in the case of 
natural, heterogeneous old-growth forests.  

 

1.6 Objectives  

The main objective of this thesis is to evaluate how space-borne spectrodirectional data can 
contribute to the mapping and monitoring of biochemical and structural properties of a 
heterogeneous old-growth forest.  

While anisotropy of vegetation canopy reflectance is known to be related to canopy 
structure, our knowledge about the embedded information richness of angular reflectance 
anisotropy as measured over the whole VNIR is limited. The imaging spectrometer CHRIS 
provides an excellent instrument to fill this knowledge gap.  

One way to quantify the canopy reflectance anisotropy of an old-growth forest is by means 
of assessing the angular response of vegetation indices. Imaging spectroscopy data allow 
calculating a large range of vegetation indices at the canopy level that may be useful for forest 
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monitoring. The effects of canopy reflectance anisotropy on the performance of vegetation 
indices are nevertheless largely unknown. Therefore, the first hypothesis is: Multi-angular 
imaging spectroscopy enables assessing the robustness of vegetation indices with respect to 
reflectance anisotropy.  

Due to the forest heterogeneity, it is expected that not only reflectance anisotropy but also 
structural and compositional canopy variables affect the efficacy of vegetation indices in 
assessing foliar biochemistry (e.g. chlorophyll content). The role perturbing variables play in 
the performance of indices can be theoretically analyzed and quantified by means of forward 
RT modeling. Therefore the second hypothesis is: Radiative transfer models can provide a 
theoretical framework for assessing the efficacy of vegetation indices over heterogeneous 
forested areas. 

Having theoretically identified some cause-effect relationships between reflectance 
anisotropy and canopy variables in the VNIR, a next step is to analyze how space-borne 
measured canopy anisotropy can be applied to derive mappable forest structural properties. 
Inversion of the RPV model with CHRIS data can be useful for this purpose. The RPV model 
enables to decompose and quantify reflectance anisotropy at one single wavelength in one 
single parameter, the Minnaert-k parameter. A systematic evaluation of the information 
content of the Minnaert-k parameter across the spectral domain may lead to improved canopy 
structure mapping. Therefore the third hypothesis is: The Minnaert-k parameter allows to 
systematically estimate the dynamics of reflectance anisotropy across the VNIR wavelengths. 

This research should ultimately lead to an improved exploitation of the angular and spectral 
domain with the purpose of developing a mapping routine that quantifies structural 
heterogeneity with a level of detail that cannot be reached by mono-angular optical data. 
Therefore the final hypothesis is: Simultaneous exploitation of the angular and spectral 
domain should lead to improved forest heterogeneity mapping. 

Based on the above hypotheses the following research questions will be investigated in this 
thesis: 
A. To what extent does the anisotropic reflectance of vegetated surfaces as measured by 

CHRIS influence the performance of vegetation indices, and what are the underlying 
mechanisms (investigated in chapter 2)? 

B. Can foliar chlorophyll content be reliably estimated in woody, heterogeneous forest 
types using vegetation indices (investigated in chapter 3)? 

C. How does reflectance anisotropy of a heterogeneous forest behave across the spectral 
VNIR domain as measured by CHRIS (investigated in chapter 4)? 

D. Can spectrodirectional CHRIS data be applied for forest heterogeneity mapping 
(investigated in chapter 5)? 
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1.7 Outline of this thesis 

The core of this thesis (Chapters 2–5) is based on a series of four peer-reviewed papers. Each 
chapter is introduced here by stating its research goals and by outlining its relationship with 
other relevant work.  

Chapter 2 explores the influence of reflectance anisotropy on a suite of broadband and 
narrowband vegetation indices as measured by CHRIS and tries to explain some mechanisms 
underlying the observed angular variation.  

Chapter 3 goes further in evaluating the efficacy of vegetation indices at the canopy scale. 
By coupling a leaf reflectance model (PROSPECT) with a canopy reflectance model 
(FLIGHT) the contribution of canopy variables in perturbing the performance of chlorophyll-
sensitive vegetation indices is theoretically analyzed.  

Chapter 4 uses CHRIS images of coniferous forests under winter conditions. The RPV 
model is used to quantify the anisotropic behavior into a single parameter: the Minnaert-k 
parameter. This study exploits the unique structurally-related information content that is 
embedded in the angular domain.  

Chapter 5 aims at developing a mapping application based on the Minnaert-k parameter. 
The underlying idea is that the information content derived from the angular domain can be 
combined with the information content derived from the spectral domain to yield improved 
forest cover heterogeneity mapping. 

Finally, chapter 6 concludes this thesis with conclusions, discussion of the main findings 
and suggestions for future work. 
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Angular sensitivity analysis of vegetation indices derived 
from CHRIS/PROBA data 

 

Abstract 

View angle effects present in spectral vegetation indices can either be regarded as an added 
source of uncertainty for variable retrieval or as a source of additional information, enhancing 
the variable retrieval; however, the magnitude of these angular effects remains for most 
indices unknown or unquantified. We use the ESA-mission CHRIS/PROBA (Compact High 
Resolution Imaging Spectrometer onboard the Project for On-board Autonomy) providing 
space-borne imaging spectrometer and multi-angular data to assess the reflectance anisotropy 
of broadband as well as recently developed narrowband indices. Multi-angular variability of 
Hemispherical Directional Reflectance Factor (HDRF) is a prime factor determining the 
indices´ angular response. Two contrasting structural vegetation types, pine forest and 
meadow, were selected to study the effect of reflectance anisotropy on the angular response. 
Calculated indices were standardized and statistically evaluated for their varying HDRF. 
Additionally we employed a coupled radiative transfer model (PROSPECT/FLIGHT) to 
quantify and substantiate the findings beyond an incidental case study. Nearly all tested 
indices manifested a prominent anisotropic behavior. Apart from the conventional broadband 
greenness indices e.g. Simple Ratio Index (SRI), Normalized Difference Vegetation Index 
(NDVI), light use efficiency and leaf pigment indices e.g. Structure Insensitive Pigment Index 
(SIPI), Photochemical Reflectance Index (PRI) and Anthocyanin Reflectance Index (ARI) did 
express significant different angular responses depending on the vegetation type. Following 
the quantification of the impact, we conclude that the angular-dependent fraction of non-
photosynthetic material is of critical importance shaping the angular signature of these VIs. 
This work highlights the influence of viewing geometry and surface reflectance anisotropy, 
particularly when using light use efficiency and leaf pigment indices. 

Keywords: vegetation indices, multi-angular remote sensing, narrowband indices, light use 
efficiency, coniferous canopy, reflectance anisotropy, photochemical reflectance index 
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2.1. Introduction 

Spectral vegetation indices (VIs) are designed to assess vegetation photosynthetic activities, 
leaf area, biomass and physiological functioning (Myneni et al., 1995) on the land surface 
while reducing the effects of extraneous factors such as background substrate, atmosphere and 
illumination effects (Vincent, 1997) and so enabling multi-temporal and cross-sensor 
comparisons (e.g. Goetz, 1997; Lenney et al., 1996). However, it has been demonstrated 
already that VIs do not only minimize but, in fact, can also exaggerate impacts of solar zenith 
and view angle (Jackson et al., 1990, Kimes et al., 1985; Pinter et al., 1987). VIs do suffer 
from directionality not only because of the reflectance anisotropy of surfaces due to 
vegetation type, canopy structure, non-photosynthetic material, background contributions and 
shadowing (Kimes et al., 1985; Leblanc et al., 1997; Qi et al., 1995), but also because of the 
inherent viewing geometry of (large swath) sensors. The Normalized Difference Vegetation 
Index (NDVI), the most frequently used index in remote sensing applications, usually has 
higher values at larger viewing angles than at nadir position (Huete et al., 1992; Jackson et al., 
1990; Pinter et al., 1987). Typically, over vegetation canopies near infrared (NIR) photons are 
more affected by multiple scattering than red photons that cause an increase of the spectral 
contrast between the NIR and red band (Kimes, 1983). In addition, surface reflectance 
anisotropy affects the relationship of red and NIR reflectance values, resulting in slightly 
varying directional responses per vegetation type (Leblanc et al., 1997; Qi et al., 1995). Also 
for other indices, such as the Soil Adjusted Vegetation Index (SAVI) and the Global 
Environmental Monitoring Index (GEMI), similar patterns for various vegetation types were 
observed with higher values at off-nadir angles than at nadir position (Gemmell & McDonald, 
2000; Huete et al., 1992). These and other studies (e.g. Deering et al., 1999) demonstrated that 
broadband indices are equally dependent on variations in sun–target–sensor geometry, as in 
single band measurements, and thus caution is required when using spectral vegetation 
indices. 

One way to cope with the influence of directional effects is through the development of 
correction approaches either by following an empirical or a physical logic. Huete et al. (1992) 
minimized variations in SAVI-view angle response with a simple empirically derived cosine 
function, although this approach does not allow extrapolation to other indices. A number of 
methods have been recently proposed using physical Bidirectional Reflectance Distribution 
Function (BRDF) models to reduce uncertainties caused by sun/view angle and surface 
variations (Bacour et al., 2006; Csiszar et al., 2001; Huete et al., 2002; Los et al., 2005). For 
example, the angular concerns and the regional heterogeneity of the surface area of the 
MODIS VI products are standardized by BRDF models (Schaaf et al., 2002) to produce nadir 
equivalent reflectance values from which the indices are computed (Huete et al., 2002; Van 
Leeuwen et al., 1999). 

An alternative to minimizing the impact of directional effects to the status of a source of 
error, is the exploitation of the anisotropic characteristics of the surface for improving indices´ 
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performances. Followers of the multi-angular approach advocated that a multi-angular 
viewing improved the performance of indices (e.g. NDVI) for discriminating cover and leaf 
area index (LAI), when compared to nadir viewing because it explicitly accounts for 
structural heterogeneity and canopy shading (Diner et al., 1999; Gemmell & McDonald, 
2000). 

In any case, whether directional effects are treated either as superfluous information or as a 
source of additional information is only important if the magnitude and significance of the 
angular variability is assessed, quantified, and finally included in interpretation of the data. 
Apart from the conventional broadband indices, a notion of the directional response is for 
most indices absent. Particularly for the recently developed narrowband indices have 
directional effects not yet been adequately addressed. 

Recently developed narrowband indices are often no longer exclusively based on broad 
spectral bands located in the well-known red and NIR spectral regions but are found 
anywhere within the 400 to 2500 nm wavelength range having typically a spectral resolution 
of 2 to 15 nm. Many of these indices originate from studies on specific absorption features of 
pigments and structure in single leaves e.g. Photochemical Reflectance Index (PRI) and were, 
with the advent of space-borne imaging spectrometry (Ustin et al., 2004), upscaled to canopy 
level (e.g. Asner et al., 2004; Nichol et al., 2000; Nichol et al., 2002; Peñuelas & Inoue, 
2000; Rahman et al., 2001). These indices possess the capability to assess – formerly 
undetectable – biochemical and biophysical properties such as variation in photosynthetic 
Light Use Efficiency (LUE) (e.g. Gamon et al., 1997; Peñuelas et al., 1995; Stylinski et al., 
2002; Trotter et al., 2002), which is a primary driver of Net Primary Production (NPP) and 
thus ecosystem functioning (Monteith, 1972). To date only a small subset of narrowband 
indices has been systematically tested at canopy level (e.g. He et al., 2006; Schlerf et al., 
2005; Xavier et al., 2006; Zarco-Tejada et al., 2005), and even less were tested on their 
directional response. This lack of directional testing limits the potential use of the vegetation 
indices for consistent and accurate longterm monitoring of vegetation on larger to global 
scales. 

The objective of this work is to assess and consistently compare on a statistical basis the 
magnitude of surface reflectance anisotropy of commonly used spectral reflectance indices. 
Further some of the key factors governing the reflectance anisotropy have been identified and 
investigated using a coupled radiative transfer (RT) model. The selected indices are 
categorized into broadband and narrowband greenness, light use efficiency and leaf pigments. 
Because reflectance properties of land surface are anisotropic in nature, indices are assumed 
to be sensitive to changing viewing angles depending on the spectral bands used and the 
degree of surface anisotropy present in the observed scene. The pushbroom CHRIS (Compact 
High Resolution Imaging Spectrometer) sensor mounted on the PROBA (Project for On-
Board Autonomy) platform offers a unique availability of continuous spectral bands and 
multi-angular views from space. This wealth of data enabled the assessment of the angular 
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variability for a wide range of broadband and narrowband indices, exemplified over two 
Alpine vegetation types exhibiting different degrees of reflectance anisotropy. 

 

2.2. Data 

2.2.1. Study site 

The test site for this study is located in the eastern Ofenpass valley, which is part of the Swiss 
National Park (SNP) in South East Switzerland (10°13′48″E/ 46°39′45″N). The Ofenpass 
represents a dry inner-alpine valley with rather limited precipitation (900–1100 mm/a) at an 
average altitude of about 1900 m asl. The south-facing slope of the Ofenpass valley floor is 
considered as the core test site and has long been a subject to ecological studies (e.g. Kötz et 
al., 2004) and described extensively (Schaepman et al., 2005). Two dominant subalpine 
ecosystems characterized by contrasting anisotropy features (Koetz et al., 2005), being an old-
growth coniferous forest and a meadow, were chosen as vegetation types to assess angular 
sensitivity. 

The evergreen coniferous forest is dominated firstly by mountain pine (Pinus Montana 
ssp.arborea) and secondly by stone pine (Pinus cembra), being of interest for natural 
succession. The forest ecosystem can be classified as woodland associations of Erico-Pinetum 
mugo. The understory is characterized by low and dense vegetation composed mainly of 
Vaccinium, Ericaceae, and Seslaraia species. The second vegetation type, a subalpine 
meadow, can be characterized as poor grassland over calcareous soils. The mixed grassland 
ecosystem belongs to the floristic association Seslerio-Caricetum sempervirentis. 

 

2.2.2. Satellite data 

The CHRIS sensor on PROBA provides co-registered, spectral contiguous bands at 17 m 
ground sampling distance, in the spectral wavelength range from 415 nm to 1050 nm. 
PROBA is an experimental ESA space platform that enables the sensor to capture images 
from five viewing angles. CHRIS Mode 3 (Land) data were acquired over the SNP on 2004-
06-27, 10:41 AM, under partly cloudy conditions (1/8th cloud cover) and low aerosol 
conditions (Aerosol Optical Depth (AOD) < 0.086 at 412 nm, < 0.022 at 862 nm). Data 
specifications are shown in Table 2.1 and the viewing geometry is shown in Figure 2.1. Solar 
position can be regarded as constant for all five CHRIS Fly-by Zenith Angles (FZA), since 
the time difference between first and last recording during the satellite overpass was less than 
two minutes. In the current along-track pointing configuration, the FZA is equivalent to the 
nominal view angle, which might deviate from the actual observation angle. Actual view 
angle for the nadir scene was +21.21° in the forward-looking direction (28° off the solar 
principal plane). FZA +36° was acquired exactly in the solar principal plane. FZA +55° 
differed only 14° from the solar principal plane and is further referred as forward-scatter. The 
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backscatter angles of FZA −36° and FZA −55° differed 53° and 45°, respectively, from the 
solar principal plane and lie in backscatter direction. 

 
Table 2.1: CHRIS specifications for Land Mode 3 

Sampling Image area View angles 
Spectral 
bands 

Spectral 
range 

~17 m @ 
556 km 
altitude 

13 x 13 km 
(744 x 748 

pixels) 

5 nominal 
angles @ 0°, 
±36°, ±55° 

18 bands 
with 6-

33nm width 

447−1035 
nm 
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Figure 2.1: Polar plot of CHRIS image acquisition and illumination geometry as of June 27, 2004. PP: Principal 
Plane. 

 

The CHRIS image set was geometrically and radiometrically corrected following an 
approach dedicated for rugged terrains (Kneubühler et al., 2005). The geometric correction 
relies on a parametric approach taking into account the viewing geometry, and geometric 
distortion due to the sensor, platform and topography. Atmospheric correction of the CHRIS 
radiance data was performed using the physically based radiative transfer model ATCOR-3 
(Richter, 1998), which is based on MODTRAN-4. ATCOR-3 enables the processing of data 
from tilted sensors by accounting for varying path lengths through the atmosphere, varying 
transmittance and for terrain effects by incorporating digital terrain model (DTM) data and 
their derivatives (slope and aspect, sky view factor and solar illumination) (Richter & 
Schläpfer, 2002). One particularity of this approach is that ATCOR-3 corrects for path 
scattered radiance and adjacency effects, however not for hemispherical irradiance. The 
ATCOR-3 generated ‘surface reflectance’ is therefore representing Hemispherical Directional 
Reflectance Factor (HDRF), following the reflectance terminology of Schaepman-Strub et al. 
(2006). 
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The evaluated accuracy of the acquisition geometry of CHRIS/PROBA in the core of the 
Ofenpass test site after preprocessing resulted in a geolocation uncertainty for nadir and off-
nadir scenes of 0.5–1 pixels (Kneubühler et al., 2005). All preprocessing efforts of CHRIS 
data finally resulted in geometrically corrected HDRF data with a spatial resolution of 17 m. 
The core test site was located in the scene centre line of each scene, implying that cross-track 
effects could be considered as negligible. 

A cloud present above this site, particularly when observed from the +55° FZA, was 
masked out for all scenes, considerably limiting the inclusion of a number of potential forest 
pixels at lower slopes. 

 

2.3. Methods 

Among the most commonly used indices, we selected those that fit the wavelengths, or 
closely approach, the centre wavelength positions of the spectral resolution of CHRIS Land 
Mode 3 (Figure 2.2). The VIs were calculated using the remote sensing software package 
ENVI (ITTVIS, Boulder, CO, USA). Calculated indices were subsequently standardized and 
studied for their angular effects by means of an Analysis of Variance Repeated Measurements 
(ANOVA RM) and an independent sample students' t-test. 

 

 

Figure 2.2: A typical canopy reflectance (438–1035 nm) of Swiss pine forest from the CHRIS sensor with its 
respective bandwidths (Mode 3). 

 
The indices listed in Table 2.2 were selected to be calculated from multi-angular CHRIS 

HDRF data. We use four general categories of VIs according to their plant physiological 
functioning: (a) broadband greenness VIs (1–3), being measures of the overall amount of 
photosynthetic material in vegetation; (b) narrowband greenness VIs (4–6), being measures of 
the overall amount and quality of pigment content in vegetation; (c) Light Use Efficiency 
(LUE) VIs (6–9), being measures of the efficiency with which vegetation is able to use 
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incident light for photosynthesis, and (d) leaf pigment VI (10), being a measure of stress-
related pigments present in vegetation. In case an index could not be calculated for a certain 
scene pixel (e.g. because of cloud cover, or non-vegetation cover), such a pixel was not 
included in the study. After pixel cleaning indices values for 353 meadow pixels for the 5 
scenes were collected, whilst for forest 3488 pixels were collected. 

Vegetation indices were calculated from HDRF data for each scene. Even though the 
Atmospherically Resistant Vegetation Index (ARVI) intends to minimize atmospheric effects, 
we still preferred to apply ARVI on HDRF data. This allowed preserving consistency in the 
quantitative inter-index evaluation of the angular signatures, and following Santer et al. 
(2007) in dark dense vegetation (DDV) trends of ARVI are not significantly different from 
spectral radiance or HDRF data. However, the primary use of ARVI is for top-of-the-
atmosphere radiance data (Kaufman & Tanré, 1992), while in this case we use the DDV 
approximation to justify the use of ARVI derived from HDRF. In all other situations than the 
one above, ARVI must be derived from TOA radiances. 

Despite the dedicated atmospheric correction, the impression arose that the extreme 
topography still exerted influence on reflectance anisotropy and, in turn, on indices' values. 
The influence that topographic attributes may have on VIs is discussed in Deng et al. (2007), 
where many subtle but important variations in topography–vegetation relationships were 
observed. Since the Alps face an erratic topography which is often paired with changing land 
cover characteristics, the inclusion of topography might significantly perturb surface 
reflectance anisotropy. To limit our approach in uncertainty, we decoupled topographic 
effects from our analysis. Multiple regression analysis assessed stepwise the contribution of 
topographic attributes, which are slope and solar illumination, to the variability of indices' 
values. These attributes accounted for up to 13% of the variations of the indices' values for 
each angular scene. To ensure that topographic effects are sufficiently decoupled in further 
analysis a topographic subset was thresholded. At the valley floor the topography is relatively 
flat and smooth consisting of monotonous coniferous forests and patches of uniform subalpine 
meadow. Restricting the study site to homogenous topographic conditions of the south-facing 
slope less than 8° and full sunlight conditions (solar illumination > 90%), enabled a reduction 
of topographic influences on the indices' values to about 3% for meadow and about 2% for 
forest. Such small correlation coefficients led to the assumption that considered topographical 
attributes were sufficiently decoupled. Within the remaining forest data pool an equal number 
of forest pixels and meadow pixels were randomly sampled (#308), ensuring a sound basis for 
statistical comparison. 

Finally, all indices were normalized against their averaged nadir value, so nadir-position 
values were set at 1. Normalization provided an opportunity to compare statistically the 
angular shape of the indices within the same magnitude. A coupled RT model 
(PROSPECT/FLIGHT (Jacquemoud & Baret, 1990; North, 1996) was then applied to assess 
scale independent and in a physical manner the underlying driving factors governing the 
angular signatures. 



 

 

Table 2.2: Overview of selected vegetation indices 
 Index Formula Description Reference 
a: Broadband Greenness    

1 
NDVI: normalized difference 
vegetation index 

(RNIR – RRED) / ( RNIR + RRED) 
Measure of green vegetation cover.  
(CHRISmid: NIR = 781 nm, RED = 672 nm) 

Tucker, 1979 

2 SRI: simple ratio index RNIR / RRED 
Measure of green vegetation cover.  
(CHRISmid: NIR = 781 nm, RED = 672 nm) 

Tucker, 1979 

3 
ARVI: atmospherically resistant 
vegetation index 

(RNIR – (2RRED – RBLUE)) / (RNIR + (2RRED –
 RBLUE)) 

Similar as NDVI while being less sensitive to aerosol 
effects 
(CHRISmid: NIR = 781 nm, RED= 672 nm, 
BLUE = 490 nm) 
 

Kaufman & Tanre, 
1992 

b: Narrowband Greenness    

4 
NDVI705: red edge normalized 
difference vegetation index 

 
(R750–R705) / (R750 + R705) 
 

Leaf chlorophyll contents 
(CHRISmid: R703, R748 nm) 

Gitelson & Merzlyak, 
1994 

5 
mSRI705: modified red edge simple 
ratio index 

(R750 – R445) / (R705 + R445) 
Narrowband SRI, compensates for high leaf surface 
(specular) reflectance 
(CHRISmid: R442, R703, R748 nm) 

Sims & Gamon, 2002 

6 
mNDVI705: modified red edge 
normalized difference vegetation 
index 

(R750 – R705) / (R750 + R705 – R445) 
Narrowband NDVI, compensates for high leaf surface 
(specular) reflectance 
(CHRISmid: R442, R703, R748 nm) 

Sims & Gamon, 2002 

c: Light Use Efficiency    

7 
PRI: photochemical reflectance 
index 

(R531 – R570) / (R531 + R570) 
Index of photosynthetic radiation use efficiency. 
Sensitive to carotenoid/ chlorophyll ratio 
(CHRISmid: R530, R570 nm) 

Gamon et al., 1992 

8 
SIPI: structure insensitive pigment 
index 

(R800 – R455) / (R800 + R705) 
Carotenoid/chlorophyll a while decreasing sensitivity 
to variation in canopy structure 
(CHRISmid: R442, R703, R781 nm) 

Penuelas et al., 1995 

9 RGRI: red green ratio index 
Mean of all bands in the red range divided 
by the mean of all bands in the green range 

Anthocyanins/chlorophyll 
(CHRISmid: R530, R551, R570, R631, R661, R672, R697 nm) 

Gamon et al., 1999 

d: Leaf Pigments    

10 
ARI: anthocyanin reflectance 
index  

(R550)
-1 – (R700)

-1 Leaf anthocyanins content 
(CHRISmid: R551, R703 nm) 

Gitelson et al., 2001 

R, reflectance. CHRISmid denotes the centre of the used CHRIS bands in Mode 3 (http://www.chris-proba.org.uk/mission/bandsets2.html). The wavelengths in the Formula 
column stand for the original proposed VI wavelengths, while the wavelengths in the Description column stand for the CHRIS wavelengths that approached closest to the 
original proposed wavelengths. 
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2.3.1. Statistical analyses 

Mean and Standard Error of Mean (SEM) were used to represent angular variability per 
vegetation type and ANOVA RMs were additionally calculated to compare per index off-
nadir values to nadir values. ANOVA RMs were typically used to identify differences for two 
datasets measured over succeeding steps (e.g. time steps). 

Accordingly, comparing the indices' off-nadir values to the nadir values, the underlying null 
hypothesis is that there is no effect of angularity. Resultant F values, which are a 
measurement of distance between individual distributions, will function as an angular 
sensitivity indicator. If the null hypothesis is correct then F is expected to be about 1, whereas 
a ‘large’ F value indicates a larger between-viewing-angle variance than a within-viewing-
angle variance, and can thus be interpreted as being an angular effect. Given the assumption 
that a forest pronounces a higher anisotropy and is spatially more heterogeneous than a 
meadow, then it is of interest to verify how this reflects in magnitude of the F value. Absolute 
t values of the independent sample t-test provide a likewise measure of the (dis-) similarity of 
the angular shapes of both structural types. 

 

2.3.2. FLIGHT simulations 

The Forest LIGHT Interaction Model (FLIGHT) developed by North (1996) is a Monte Carlo 
numerical ray-tracer simulating photon propagation through a 3D heterogeneous leaf canopy. 
The model allows the representation of complex vegetation structures and a correct treatment 
of multiple scattering within the scene composed of various scatter elements. For 3D 
simulations, tree crowns are represented by geometric primitives with defined shapes and 
positions of individual trees with associated shadow effects. Within each crown envelope 
foliage is approximated by volume-averaged parameters with optical properties of both leaf 
and woody scattering elements. Canopy reflectance of a range of forest stands parameterized 
by field-measured canopy variables and CHRIS acquisition geometries have been simulated. 
The FLIGHT parameterization was based on averaged field measurements of four core test 
sites within the forest. Crowns were represented by cones; the canopy structure and optical 
specifications are further described in Kötz et al. (2004). The foliage optical properties were 
modeled by PROSPECT (Jacquemoud & Baret, 1990) coupled with FLIGHT while the 
spectral properties of the woody parts and understory were characterized by spectrometric 
field measurements (Kötz et al., 2004). Finally, the BRF output of FLIGHT is compared with 
the approximated HDRF of the CHRIS data. Since the HDRF approximation produced by 
ATCOR includes a hemispherical and adjacency component, the approximation – at least in 
its trend – is valid. 
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2.4. Results 

The assessment of the angular sensitivity of the two considered structural canopy types 
required similar topographical conditions and normalization of the angular shapes to a 
reference level. Intra- and inter-angular statistical comparisons enabled subsequently good 
validation of the directional performance of the considered indices. 

 

2.4.1. Assessment of angular sensitivity 

The key feature in the statistical comparison exercise is the assessment of the angular 
response of the indices; however the true biophysical impact of this is not assessed in this 
study. The angular dynamics of the vegetation indices in response to meadow and forest are 
shown in Figure 2.3 and Figure 2.4 respectively. These figures show the nadir-normalized 
averaged values for the sampled pixels including ±1 Standard Error of Mean (SEM). As a 
reference the nadir value is plotted, which is 1, or −1 in case of PRI. Note that directional 
effects are most extreme in the solar principal plane (Myneni et al., 1997) implying that it 
should be taken into account that the maximum angular variability is most likely not reached 
in this study. 
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Figure 2.3: Averaged angular VIs values (normalized against its averaged nadir value) from meadow reflectance 
values. x-axis denotes viewing angles (negative angles are in back-scattering direction, positive angles are in 
forward-scattering direction). y-axis denotes normalized VIs. The error bars shown are ±1 SEM. Angular values 
were compared with nadir values by means of ANOVA RMs: significance 
levels: *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 2.4: Averaged angular VIs values (normalized against its averaged nadir value) from forest reflectance 
values. x-axis denotes viewing angles (negative angles are in back-scattering direction, positive angles are in 
forward-scattering direction). y-axis denotes normalized VIs. The error bars shown are ±1 SEM. Angular values 
were compared with nadir values by means of ANOVA RMs: significance levels: *p < 0.05, **p < 0.01, 
***p < 0.001. 

 

Because of normalization and rescaling the values of some indices, typically operating at 
smaller ranges (e.g. nadir-average PRI around −0.02, nadir-average ARI around 0.007), are 
dramatically expanded. For others operating at around 1 or higher (SRI, ARVI, mSRI705, SIPI, 
RGRI) normalization implied diminishing of actual values. For the sake of consistent 
interpretation, the graphs should be interpreted in combination with their statistical analysis. 
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ANOVA RMs' results are shown graphically in Figure 2.3 and Figure 2.4; F values of 
calculated ANOVAs are presented in Table 2.3. Apart from mSRI705 and mNDVI705, the 
indices exhibited significant differences for the two vegetation types. 

 
Table 2.3: Percentages of change compared to nadir values for extreme viewing angles and ANOVA 
RM F values (off-nadir values compared to nadir values) for meadow and forest. 

Index 

–55° vs. 
nadir 

Meadow 
(%) 

+55° vs. 
nadir 

Meadow 
(%) 

–55° vs. 
nadir 
Forest 

(%) 

+55° vs. 
nadir 
Forest 
(%) 

ANOVA 
F-values 
meadow 
(F1,614=) 

ANOVA 
F-values 
Forest 

(F1,614=) 
NDVI 7 12 8 8 137.4*** 116.3*** 
SRI 16 36 18 34 167.3*** 200.2*** 
ARVI 11 10 13 –7 99.9*** 10.4** 
NDVI705 4 13 9 16 122.8*** 184.1*** 
mSRI705 3 1 12 –9 4.5* 0.097 (p = 0.761) 
mNDVI705 2 1 6 –6 5.2* 0.05 (p = 0.814) 
PRI –6 –26 –32 –108 12.3*** 74.359*** 
SIPI –3 –1 –2 11 10.6*** 129.126*** 
RGRI –2 0 –3 9 29.6*** 59.4*** 
ARI 6 40 –5 68 106.3*** 120.1*** 

*p < 0.05, ** p < 0.01, ***p < 0.001. 

 

2.4.2. Statistical results 

ANOVA RM F values (4 off-nadir subsets, each compared to the nadir subset; subset = 308 
pixels), shown in Table 2.3, were used to evaluate the magnitude of the angular variability 
compared to nadir values. Based on this small-scale statistical exercise with 2 vegetation 
types, the traditional broadband indices NDVI and SRI, NDVI705 and ARI yielded the highest 
values for both structural types, especially forest, (in general: F > 106; p < 0.001) and can 
therefore be considered as most sensitive to changing viewing angles. Regardless of the 
apparently greatest angular response shown by the PRI graphs (Figure 2.3 and Figure 2.4), the 
F values for forest expressed relatively small numbers (F forest 74.4, F meadow 12.3, 
see Table 2.3). In contrast, no significant differences compared to nadir values were found 
when using mSR705 (p = 0.761) and mNDVI705 (p = 0.814) over forest. 

A greater degree of anisotropy (forest) did not always automatically translate into higher 
F values. In the case of NDVI, mSR705, mNDVI705 and prominently in the case of ARVI a 
higher F value for meadow than for forest was found. Here, near-nadir position showed a flat 
response; only when observed under larger viewing angles was the true anisotropy perceived. 

Based on the ANOVA's of the two contrasting vegetation structures, VIs that show, in either 
case, significant (p < 0.05) angular variability (Table 2.3) will be referred to as ‘anisotropic’, 
whereas those VIs not revealing a prominent angular behavior are further referred as 
‘Lambertian’, as is the case for mSR705 and mNDVI705. The VIs were further ranked in Table 
2.4 according to the summed F values of meadow and forest, ranging from displaying 
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primarily anisotropic sensitivity to exhibiting Lambertian behavior. Regarding the two 
ecosystems, the SRI, the simplest index, was most sensitive to changing viewing angles, 
followed by the NDVI705 and NDVI. Because of the resulting low F value above meadow, 
PRI exhibited the smallest anisotropic behaviour, yet it was still largely significant. 

 

Table 2.4: Ranked overview table based on statistical analysis ANOVA RM from most anisotropic to 
Lambertian (= no significant differences). Meadow and forest values were compared with an independent sample 
student's t-test (n = 1540).  

Index 

Summed meadow-forest 
ANOVA F-values 

Angular 
Sensitivity 

Meadow-forest 
comparison 

student’ t and p-values 
SRI 337.5 anisotropic t = 0.444 (p = 0.657) 
NDVI705 306.9 anisotropic t = 6.519*** 
NDVI 253.7 anisotropic t = –1.154 (p = 0.249) 
ARI 226.4 anisotropic t = 4.105*** 
SIPI 139.7 anisotropic t = 17.280*** 
ARVI 110.3 anisotropic t = –9.232*** 
RGRI 89.0 anisotropic t = 16.120*** 
PRI 86.7 anisotropic t = –10.488*** 
mNDVI705 5.2 Lambertian t = –3.344** 
mSRI705 4.6 Lambertian t = –1.919 (p = 0.055) 

*p < 0.05, **p < 0.01, ***p < 0.001. 
 

An independent sample student's t-test compared the influence of the two vegetation types 
on the indices' angular behavior. Apart from NDVI, SRI and mSRI705, the angular response 
was for all remaining indices vegetation-type dependent (Table 2.4). The mNDVI705 did 
express significant different angular shapes depending on the structural types; however, as 
shown earlier, mNDVI705 did not express significant angular variability compared to nadir 
values. The student's t-test indicated that for the remaining narrowband indices and ARVI 
angular responses were not solely affected by viewing angles, but also by vegetation type. 
SIPI, RGRI and PRI yielded the highest student's t values, indicating that – from the set of 
tested indices – they were most affected by the contrasting vegetation types. 

 

2.5. Discussion of VIs angular responses 

The angular behavior of the single vegetation indices and influential factors are discussed in 
the next section in more detail. The greenness indices (SRI, NDVI, NDVI705, mSRI705, 
mNDVI705 and ARVI) and the light use efficiency and leaf pigment indices (SIPI, RGRI, PRI 
and ARI) are discussed individually. 
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2.5.1. Greenness indices 

Traditional broadband indices based on red and NIR are known to inherently exhibit 
anisotropic behavior, eventually additionally linked to vegetation type or soil conditions (Qi 
et al., 1995; Leblanc et al., 1997). Indeed, SRI (NIR/red) gave rise to the most pronounced 
angular variability with the highest values apparent in the extreme forward-scatter direction 
and the lowest values at nadir position (Figure 2.3b and Figure 2.4b). Measured NDVI shapes 
(Figure 2.3a and Figure 2.4a) were consistent with earlier studies (Galvão et al., 2004; Huete 
et al., 1992; Leblanc et al., 1997) and radiative transfer modeling (Sellers, 1985). The angular 
shape remained unchanged in the case of the narrowband red edge NDVI (NDVI705) (Figure 
2.3d and Figure 2.4d). In contrast, mSRI705 and mNDVI705, which were designed to eliminate 
the effect of leaf surface reflectance (Sims & Gamon, 2002), responded in Lambertian fashion 
to changing viewing angles (Figure 2.3e,f and Figure 2.4e,f). This Lambertian phenomenon 
can be explained by including the 445 nm reference band, the only modification compared to 
the NDVI705. The angular distribution of this blue band was rather flat, with a slight 
decreasing trend in the extreme forward-scatter direction. A similar flattening in the blue was 
observed by Jin et al. (2002) and Abdou et al. (2006) when using Multi-angle Imaging 
SpectroRadiometer (MISR) surface BRF products. It was recognized that this phenomenon 
originates in part from the low values in the blue and uncertainties due to atmospheric 
correction. 

ARVI, designed to minimize atmospheric effects in the sensor output by replacing the 
aerosol sensitive red wavelength used in the NDVI with a combination of the red and blue 
wavelength (Kaufman & Tanré, 1992), proved to be symmetrical around nadir for the 
meadow site (at both sides +10%) (Figure 2.3c and Figure 2.4c). Such a symmetrical trend 
was also observed in an earlier study over grass cover (Huete et al., 1992), and therefore a 
simple cosine adjustment was suggested to correct for viewing effects. ARVI angular 
response above forest, however, did not reveal a symmetrical trend. The inclusion of the blue 
band in the algorithm to correct for atmospheric effects flattened values around the nadir 
position though performed less successfully at large viewing angles. 

 

2.5.2. Light use efficiency/leaf pigment indices 

2.5.2.1. Photochemical Reflectance Index (PRI) 

The measured PRI exhibited a very significant angular anisotropy for both meadow and forest 
canopies, but it was specifically perceived above forest canopy (Figure 2.4g). Average 
absolute forest PRI values, –0.014 (nadir) and –0.0234 (+55°) (values not shown), were 
coherent with canopy observation over evergreen shrub species (Stylinski et al., 2002) and 
with spruce stands (Lewis et al., 2005). The extent to which canopy structure, view and 
illumination angles are likely to influence the measured PRI values was further investigated 
based on the FLIGHT model similar to a modeling study by Barton and North (2001). 
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FLIGHT simulations were carried out considering field measurements taken in the core test 
site of the Swiss National Park (SNP). Over this site LAI values varied between 1.5 and 4.5, 
when derived from nadir observations (Kötz et al., 2004). In addition, the woody fraction (ca. 
30%) is relatively high because of the advanced age of the pine forest and as forest 
management practice stopped 70 years ago. Consequently, given the relatively woody stands 
characterized by gaps between branches and trees, it may be reasonable to expect that 
observed proportions of photosynthetic vegetation (PV) and non-photosynthetic vegetation 
(NPV) depend on viewing angle. For instance, it is likely that at greater viewing angles lower 
proportion of PV and a greater proportion of NPV contribute to the observed canopy 
reflectance. This hypothesis was tested by FLIGHT simulations for which we increased the 
within-crown NPV proportions as a function of viewing angle (Figure 2.5). The resulting 
angular signature of the PRI based on the simulated BRF produced a concave shape similar as 
observed by CHRIS (Figure 2.4g). However, the PRI showed a convex shape when FLIGHT 
was parameterized with constant PV/NPV proportions for all view angles. Similar 
observations were published in the study of Barton and North (2001). 

 

 

 

 
Figure 2.5: FLIGHT-simulated angular PRI values (normalized against their nadir value) for a coniferous forest. 
Viewing geometry is according to CHRIS FZAs (0°, ± 36°, ± 55°). Within-crown PV and NPV proportions 
varied with viewing angle (%NPV = 100 − %PV). 

 

Shadow is another key factor in affecting the anisotropy of forest canopies (Gerard & North, 
1997) and therefore the angular response of VIs. The shadowed canopy (forward-scattering 
values) demonstrated an unequivocally larger PRI drop (−108%) than the sunlit canopy (back-
scattering values: −32%), which implies that shadow effects are prevalent in the PRI 
response. However, since a drop is apparent at both sides around nadir, one can conclude that 
shadow is not the prime driving factor. 

The presented RT model simulations demonstrate that an index exclusively sensitive to leaf 
photosynthesis activity will be substantially distorted, both spatially and directionally, by the 
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contribution of NPV present in a canopy pixel (e.g. branches, trunks). Indeed, in the spatial 
domain, variations in NPV and background reflectance affect the performance of greenness 
VIs (e.g. NDVI, SRI) (Asrar et al., 1992; Baret & Guyot, 1991; Goward & Huemmrich, 
1992). In the directional domain, it is the viewing angle that determines the proportion of 
photosynthetic, non-photosynthetic and background compounds that are exposed to solar 
radiation in that direction. Then, similar to spatial variations, varying NPV fractions along 
changing angles may equally impose effects on the angular VI signal. For canopies with 
LAI < 5.0, NPV has been shown to impose a significant effect on the canopy reflectance in 
woody plant canopies (Asner, 1998). This is especially the case in conifer canopies where the 
primary reflectance compounds (foliage, branches) are systematically organized at the shoot, 
branch, whirls, and crown level (Malenovský et al., 2008). 

 

2.5.2.2. Structural Invariant Pigment Index (SIPI) and Red Green Ratio Index 
(RGRI) 

Despite its apparent resemblance and flat shape, off-nadir values of SIPI (Figure 2.3h and 
Figure 2.4h) and RGRI (Figure 2.3i and Figure 2.4i) differed from nadir values (ANOVA 
RM, p < 0.001) and the total angular shape differed for both structural types (student's t-
test, p < 0.001). The differences between both indices revealed only when considering the 
F values in Table 2.3. Whereas forest RGRI F was twice as large as F in meadow conditions, 
in case of SIPI, however, the forest F was more than ten times larger than the meadow F. The 
reason this behavior occurs can be partly explained because SIPI is designed to reduce the 
impact of leaf surface and mesophyll structure while estimating carotenoids to chlorophyll a. 
In a coniferous forest, carotenoids were not expected to play an important role but the greater 
variability of NPV and PV might account for a larger angular variability. The higher SIPI 
angular sensitivity over forest relative to RGRI can be partly understood because of the 
averaging of all red (600 nm to 699 nm) and all green (500 nm to 599 nm) channels in the 
RGRI. Indeed, for a range of varying view angle-specific PV−NPV settings, FLIGHT 
recorded an averaged relative flattening of –160% (SD: 81) in the far back-scattering direction 
and –74% (SD: 25) in the far forward-scattering direction when broadening the spectral range 
from a centre red band (CHRIS redmid: 661 nm) and a centre green band (CHRIS 
greenmid: 551 nm) towards all red and green bands. 
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2.5.2.3. Anthocyanin Reflectance Index (ARI) 

An Anthocyanin Reflectance Index in the form of ARI = (R550)
−1 − (R700)

−1 estimates 
anthocyanin accumulation in intact senescing and stressed leaves (Gitelson et al., 2001). 
Whereas reflectance at 700 nm depends solely upon chlorophyll content, reflectance at 
550 nm depends on both chlorophyll and anthocyanin content. Pronounced angular responses 
over meadow and coniferous stands emphasize the large variability that can occur. In 
backscatter direction values tended to fluctuate around or below nadir, in forward-scatter 
direction a prominent increase was apparent (Figure 2.3j and Figure 2.4j). Shadow effects and 
the influence of a likely greater fraction of observed non-photosynthetic material at larger off-
nadir sensor view angles are again most likely contributing to the angular response. Due to the 
inversion of the two wavelengths, a larger decrease of reflectance at 550 nm rather than 
700 nm implied a larger contrast and subsequently a rising ARI. 

In general, one must be cautious when applying indices at the canopy level, which were 
originally based and adapted to leaf level observations. At leaf level a decrease in the green 
reflectance was related to an increase in anthocyanin content, whereas the reflectance in the 
blue, red and NIR ranges remained basically the same (Gitelson et al., 2001). At canopy level 
a decrease in green reflectance might have multiple causes; one of which is an increase in 
anthocyanin content. Woody compounds, litter, shadow, and soil conditions are other driving 
factors leading to a decrease in the green in a pixel. In turn the feedback on reflectance of 
these dynamics varies under changing viewing angles. 

 

2.6. Summary and conclusions 

Viewing geometry is a major determinant controlling the spectral behavior of vegetation 
canopies and thus affecting the quality of extracted biochemical parameters. The angular 
responses of four classes of vegetation indices were compared. Evidence from a sparse 
angular sampling of four off-nadir CHRIS recordings indicates the following: 

Nearly all indices manifested a prominent reflectance anisotropy in the two alpine 
ecosystems. Indices where off-nadir values significantly differed from nadir values were 
labeled as being ‘Anisotropic’. The traditional SRI, NDVI, NDVI705, and ARI gave sign of 
greatest angular sensitivity. The greenness indices which use reflectance at 445 nm as a 
reference wavelength (mSRI705, mNDVI705) responded rather insensitive and have been 
labeled as being ‘Lambertian’. Further, an independent sample t-test showed that, apart from 
NDVI, SRI and mSR705, most indices did express varying angular shapes depending on the 
vegetation type. For those indices the specific surface reflectance anisotropy additionally 
affects the angular responses. 

Reflectance anisotropy of broadband indices observed (NDVI, SRI, and ARVI) concurs 
with earlier observations (Galvão et al., 2004; Huete et al., 1992; Leblanc et al., 1997). Also 
Light Use Efficiency indices PRI, SIPI, RGRI and ARI gave rise to significant reflectance 
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anisotropy with an emphasis over forest and in forward-scatter direction. FLIGHT simulations 
showed that structural variability, in terms of the organization of PV and NPV elements, is a 
key player in shaping the angular signature of PRI. We therefore suggest that when applying a 
VI designed to assess leaf processes at canopy level, the accuracy of the biochemical 
parameter mapping can be greatly improved if the fractions of NPV and background (Canisius 
& Chen, 2007) are being taken into account. 

Traditional broadband indices continue to be applied at large-scale analyses of ecosystem 
monitoring, for example the boreal forests (e.g. Beck et al., 2006; Goetz et al., 2006). 
Presently a growing fleet of narrow spectral resolution sensors are operational (e.g. MERIS, 
MODIS, Hyperion, ALI, etc) with capacities to upscale light use efficiency and leaf pigments 
indices at canopy level over large areas. Furthermore, indices products are increasingly 
subject to joint multi-temporal (e.g. Telesca & Lasaponara, 2006; Xiao et al., 2006) and cross-
sensor studies (e.g. Chen et al., 2005; Ferreira et al., 2003). 

This work highlights the importance of viewing geometry, and, by relying on the Helmholtz 
Reciprocity Principle (Magda et al., 2001), also solar geometry inevitably propagating in 
multi-temporal and multi-sensor studies. Because reflectance properties of the land surface 
are anisotropic in nature, sun–target–sensor geometry may create artificial noise imposed 
upon basically all VIs. Furthermore, space-borne and airborne sensors with large FOVs (e.g. 
Hymap: 61.3°, MERIS: 68.5°) are equally subject to within-scene viewing effects. In turn 
utmost caution is mandatory when inter-comparing results from an anisotropy-sensitive index 
acquired under varying sun–target–sensor configurations for a given land cover type. In the 
present era of multi-temporal and cross-sensor applications, standardization of vegetation 
indices is therefore desired to establish confidence in the reliability of its use. Standardization 
to correct for sensor-specific characteristics is nowadays achieved by applying cross-sensor 
translation equations (e.g. Miura et al., 2006; Teillet et al., 1997; Trishchenko et al., 2002; 
Steven et al., 2003), but a prerequisite to reduce cross-sensor uncertainty is that atmospheric 
corrections and processing strategies are adequately addressed (van Leeuwen et al., 2006). 
Standardization to correct for reflectance anisotropy is nowadays achieved by BRDF models 
from which VIs normalized to a standard geometry could be computed (e.g. Bacour et al., 
2006; Csiszar et al., 2001; Huete et al., 2002; Los et al., 2005). Nevertheless, until now, these 
advanced approaches have remained restricted to the traditional broadband indices (e.g. 
NDVI). Now that a wealth of fine-tuned narrowband indices has been developed, evaluation 
of their compatibility and consistency may be a first step to allow for large-scale and multi-
temporal studies. 

On the other hand, research on the potential information content inherent to the directional 
dimension of many VIs regarding surface anisotropy has been largely left aside (however, 
see Barnsley et al., 1997; Pocewicz et al., 2007). Evidence from the employed work 
demonstrated that the angular shape of most of the studied indices, particularly narrowband 
indices, differs depending on the vegetation structural type. It is therefore suggested that 
exploiting the angular dimension, parallel to the indices' actual measures, opens opportunities 
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to provide a quick, additional, source of information regarding structural matters. Future work 
should further investigate how the angular variability of specific indices (e.g. PRI, SIPI) 
independently relates to structural features (e.g. LAI, fraction cover). 

Finally, with the advent of having multi-angular imaging spectrometers in space, the 
decoupling of atmospheric and surface-induced reflectance anisotropy will gain in 
importance. On the one hand to achieve consistent retrievals of biochemical and structural 
variables at unprecedented accuracies over large swaths, time frames and regions; on the other 
hand to decrease retrieval uncertainties related to anisotropy effects. In any case, both 
approaches will be required simultaneously to allow for a consistent process monitoring of 
land and water surface properties (Schaepman, 2007). Vegetation indices as discussed in this 
contribution will then be a major contributor to the measurement of ecosystem changes and 
disturbance in an operational fashion. 
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Effects of woody elements on simulated canopy 
reflectance: Implications for forest chlorophyll content 

retrieval 
 
 

Abstract 

An important bio-indicator of actual plant health status, the foliar content of chlorophyll a and 
b (Cab), can be estimated using imaging spectroscopy. For forest canopies, however, the 
relationship between the spectral response and leaf chemistry is confounded by factors such as 
background (e.g. understory), canopy structure, and the presence of non-photosynthetic 
vegetation (NPV, e.g. woody elements) – particularly the appreciable amounts of standing and 
fallen dead wood found in older forests. We present a sensitivity analysis for the estimation of 
chlorophyll content in woody coniferous canopies using radiative transfer modeling, and use 
the modeled top-of-canopy reflectance data to analyze the contribution of woody elements, 
leaf area index (LAI), and crown cover (CC) to the retrieval of foliar Cab content. The 
radiative transfer model used comprises two linked submodels: one at leaf-level (PROSPECT) 
and one at canopy-level (FLIGHT). This generated bidirectional reflectance data according to 
the band settings of the Compact High Resolution Imaging Spectrometer (CHRIS) from 
which chlorophyll indices were calculated. Most of the chlorophyll indices outperformed 
single wavelengths in predicting Cab content at canopy level, with best results obtained by 
the Maccioni index ([R780 – R710] / [R780 – R680]). We demonstrate the performance of this 
index with respect to structural information on three distinct coniferous forest types (young, 
early mature and old-growth stands). The modeling results suggest that the spectral variation 
due to variation in canopy chlorophyll content is best captured for stands with medium dense 
canopies. However, the strength of the up-scaled Cab signal weakens with increasing crown 
NPV scattering elements, especially when crown cover exceeds 30%. LAI exerts the least 
perturbations. We conclude that the spectral influence of woody elements is an important 
variable that should be considered in radiative transfer approaches when retrieving foliar 
pigment estimates in heterogeneous stands, particularly if the stands are partly defoliated or 
long-lived. 

 
Keywords: chlorophyll content, non-photosynthetic vegetation, old-growth forest, radiative 
transfer, PROSPECT, FLIGHT, chlorophyll indices  

 
 



Canopy-level Cab retrieval 

 41

3.1. Introduction 

The foliar content of the main photosynthetic pigments chlorophyll a and b (Cab) is widely 
regarded as a bio-indicator of the plant’s actual health status, such as its stress condition 
(Lichtenthaler et al., 1996; Zarco-Tejeda et al., 2002; Gitelson et al., 2003; Sampson et al., 
2003), and of vegetation gross primary productivity (Gitelson et al., 2006). Various leaf and 
canopy experiments have indicated that imaging spectroscopy is a powerful method for 
assessing variation in the chlorophyll content of leaves (e.g. Zarco-Tejada et al., 2000; Ustin 
et al., 2004; Kokaly et al., 2009). However, when the observational scale moves from leaf to 
canopy level, the relationship between reflected solar radiation and leaf chemistry tends to 
weaken (e.g. Trotter et al., 2002; Nichol et al., 2002; Ustin et al., 2009). The scattering and 
absorption properties caused by the foliar chemistry are then confounded by background 
reflectance and other dominating scatterers such as the foliage configuration and distribution 
of woody elements (e.g. Asner, 1998; Blackburn & Steele, 1999). Pigment indices that have 
originally been designed at leaf level (Ustin et al., 2009) are particularly likely to suffer from 
these additional heterogeneity factors (Barton and North, 2001; Suárez et al., 2008; Verrelst et 
al., 2008b).  

At canopy level, a common approach for dealing with subpixel heterogeneity is to 
decompose a pixel into fractions of green photosynthetic vegetation (PV), non-photosynthetic 
vegetation and litter (NPV), and bare soil (Roberts et al., 1993). PV is characterized by strong 
absorbance peaks in the blue and red regions of the spectrum, predominantly due to the 
presence of Cab, while NPV is characterized by a gradual reflectance increase in the visible 
region of the spectrum. Although decomposition techniques (e.g. spectral unmixing) facilitate 
the study of ecosystem dynamics (e.g. Asner et al., 2003; Harris et al., 2003), they do not fully 
elucidate the complexity of the interaction of scattering elements with solar radiant energy.  

An alternative approach is to estimate the foliar chemistry from optical remote sensing data 
by using inverted radiative transfer (RT) models. Canopy RT models describe the transfer and 
interaction of solar radiation inside the canopy on the basis of physical laws and thus provide 
a cause–effect relationship between scattering elements, their biochemical constituents, 
structure, and top-of-canopy (TOC) reflectance. Various studies have investigated the 
interaction of solar radiation with canopy biochemical variables through the use of coupled 
radiative transfer models (Demarez & Gastellu-Etchegorry, 2000; Zarco-Tejada et al., 2001; 
Zhang et al., 2008; Jacquemoud et al., 2009). These and other studies recognized that 
improved parameter retrieval from remote sensing data requires appropriate strategies for 
modeling the surface bidirectional reflectance distribution function (BRDF) that take account 
of canopy structure (crown shape, forest stand density, canopy heterogeneity), and 
background (e.g. Dawson et al., 1999; Sandmeier & Deering, 1999; Rautiainen et al., 2004; 
Schaepman, 2007). Though much work has been done on radiative transfer modeling, the 
relative importance of woody elements (NPV) in deriving canopy chlorophyll content has not 
been adequately evaluated. Only recently has the influence of the 3D structure of trunks and 
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branches on the reflectance in a young coniferous canopy been explicitly modeled and tested 
(Malenovský et al., 2008). But that study was done on a young production forest ( < 30 years 
old), and in such forests the woody elements are only part of the living standing trees and are 
concentrated in the lower part of the canopy. In contrast, old-growth forests contain many 
woody components in the form of lying and standing deadwood (coarse woody debris: CWD) 
which is distributed within the canopy layer and on the forest floor, and can account for 18–
40% of the total woody biomass (Siitonen, 2001). Not surprisingly, therefore, in these older 
forests, woody elements play a significant role in determining canopy reflectance (Asner, 
1998), as they represent an important photon absorbing and scattering component. At the 
subpixel scale, forest aging processes will lead to more NPV scattering at the expense of PV 
scattering. As well as changing its canopy composition, an aging forest also becomes 
structurally more heterogeneous vertically and horizontally (Franklin et al., 2002), so 
therefore structural attributes will be important drivers of the canopy spectral response 
(Nilson & Peterson, 1994; Song & Woodcock, 2002). 

Quantitative, physical-based RT modeling of 3D canopy architecture reveals the cause–
effect relationship between the biochemical composition of the canopy and satellite 
observations. Old-growth forests present a challenge for the RT modeler, because those 
ecosystems have the most heterogeneous mix of green foliage and woody elements. A recent 
comprehensive overview of RT approaches used to model various stand ages over time 
(Schaepman et al., 2009) indicates that only a few RT-based studies have investigated old-
growth forests, e.g. by studying the spectral trajectory of forest succession (Song & 
Woodcock, 2002; Song et al., 2007). Song and colleagues input canopy structural variables 
and leaf optical properties into a geometric-optical RT model and simulated the canopy 
spectral changes related to forest succession. Nevertheless, the model had difficulty 
accommodating the structural changes related to the materials comprising the canopy, such as 
the accumulation of woody elements during succession. Given that foliage elements and 
woody elements vary vertically and horizontally over time, we decided to investigate the 
influence of these structural changes on canopy reflectance in detail.  

Monte Carlo (MC) ray-tracing models are very flexible and are capable of obtaining 
accurate canopy representations, yet they have the drawback of requiring a long processing 
time for simulation (Myneni et al., 1989; Widlowski et al., 2007). An appealing advantage of 
such models is that the interaction between radiation and the vegetation canopy is tracked 
almost on a photon-by-photon basis, making this kind of RT very realistic (c.f., Disney et al., 
2000). For this reason, we opted to use the MC ray-tracing model FLIGHT (Forest LIGHT 
interaction model) (North, 1996) to simulate the influence of the structural dynamics 
occurring during forest development on TOC reflectance.  

This paper reports on the influence of canopy compositional and structural effects when 
inferring chlorophyll content from modeled reflectance data. We created a reflectance data set 
for varying forest properties by coupling FLIGHT with a leaf-level RT model (PROSPECT) 
(Jacquemoud & Baret, 1990). Our hypothesis was that knowledge of the trends in simulated 
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spectral reflectance and derived vegetation indices for estimating chlorophyll content over a 
wide range of simulated stands with near-realistic canopy structural configurations will 
improve our understanding of leaf-to-canopy scaling. The objectives of the study were 
therefore twofold: 1) to evaluate the general performance of single wavelengths and 
chlorophyll-sensitive indices in predicting foliar chlorophyll content given woody and 
heterogeneous forest canopies, and 2) to evaluate in more detail the stand-specific influence 
of NPV and structural variables on the estimation of chlorophyll content by using the best 
performing index.  

 

3.2. Methodology 

3.2.1. Canopy radiative transfer model 

As noted above, to study the perturbing effects of woody elements (NPV) on the estimation of 
Cab content we coupled a leaf RT model (PROSPECT) with a 3D canopy model (FLIGHT), 
hereafter called PROFLIGHT. PROSPECT idealizes the leaf as a stack of elementary plates 
composed of absorbing and diffusing constituents. The version of the model we used 
(Jacquemoud et al., 2000) is parameterized by chlorophyll content, dry matter content, leaf 
water content, and effective number of leaf layers. PROSPECT has been widely used in 
broadleaves for numerical inversion to estimate chlorophyll content. However, it has also 
been re-calibrated and used to simulate the optical properties of coniferous needles (e.g. 
Zarco-Tejada et al., 2004; Malenovský et al., 2006).  

FLIGHT computes the TOC bidirectional reflectance factor (BRF) (Schaepman-Strub et al., 
2006) by explicitly representing complex canopy structures, including crown overlapping and 
multiple scattering of solar radiant fluxes within the scene (North, 1996; Gerard & North, 
1997). It traces the individual photons from their solar radiation source, through all relevant 
collisions, until the ray either is absorbed or exits the canopy. As photons enter a crown, they 
are scattered in accordance with probability density functions. Tree crowns are idealized by 
volumetric primitives of defined shapes with associated shadowing effects. Crown positions 
are estimated from a statistical distribution. In the individual crown envelopes, the foliage is 
approximated by statistical foliage properties using the optical properties of both leaf (PV) 
and woody elements (NPV). The NPV scattering elements are treated as opaque foliage 
elements, thus they scatter or absorb incident radiation only. PV scattering elements 
additionally transmit incident radiation. The lower bound of the canopy is a soil medium with 
an anisotropic scattering behavior (Hapke, 1981). The horizontal exchange of rays with 
neighboring areas is accounted for by cyclic boundary conditions, i.e. rays exiting laterally 
from the bounding box are rebound from the opposite plane at the same trajectory angle, to 
extend scattering to an infinitely extended forest. Subsequently, each generated scene canopy 

BRF is the result of a unique stand configuration, solar illumination direction (θs, s), surface 

reflection direction (θr, r), and spectral wavelength. 
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3.2.2. Model parameterization  

The models used were parameterized with field data from an old-growth coniferous forest in 
the Swiss National Park, Switzerland (10°13′48″E/ 46°39′45″N) (Schaepman et al., 2004). 
This is one of the few areas in Western Europe not to have been influenced by humans during 
most of the 20th century: its forest has not been managed since the park was established in 
1914. Since then, the forest has undergone a long process of change in stand structure and 
stand development. The forest, characterized by its old (165–200 years) pine stands (P. 
montana and P. cembra), is classified as a woodland association of Erico-Pinetum mugo 
(Zoller, 1995). Because of the high altitude (1900 m asl) and cold Alpine climate, 
decomposition proceeds slowly and therefore substantial quantities of large CWD can remain 
in the forest for many years. The forest floor is covered by CWD, Ericaceae and Sesleria 
shrub species. The overstory canopy is characterized by open and discontinuous stands, 
resulting in a relatively low crown cover (CC, between 50–80%), a low leaf area index (LAI, 
between 1.5–4.5) (Kötz et al., 2004), and a large proportion of woody elements (e.g. trunks, 
branches, CWD): one study found that 3% of the aboveground standing biomass in the park is 
comprised of foliage (7 Mg ha-1) and 97% (250 Mg ha-1) of wood (Risch et al., 2003). Over 
20% of the trees in the park are standing dead trees killed by root-rot fungi; they are usually 
concentrated in infected patches (Dobbertin & Brang, 2001).  

In addition to the old-growth mixed pine stand in the Swiss National Park, to illustrate the 
ranges and trends for chlorophyll content estimation, two other forest types differing in age 
and canopy structure characteristics were included in this study: a young Norway spruce 
(Picea abies /L./ Karst.) plantation in the Czech Republic, described in Malenovský et al. 
(2008), and a beetle-infested early mature Lodgepole pine (Pinus contorta Dougl. ex. Loud 
var. latifolia Engl.) stand in British Columbia, Canada (e.g. described in White et al., 2005). 
For a description of these stands and their indicative structural values, see Table 3.1.  
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Table 3.1: Three coniferous forests at distinct development phases: description and derived structural model 
parameters NPV = 100 − PV.  

Name Location Description Age LAI CC [%] NPV [%] 
Young 
Norway 
spruce 
stand 
 

Moravian–Silesian 
Beskydy 
Mountains (Czech 
Republic)  
49°50'N/ 18°54'E 

Monoculture plantation 
forest. Foliage is 
concentrated in the dense, 
uniform overstory. 

30 7−9 80−90 < 5 

Old-
growth 
Pine stand 
 

Swiss National 
Park (Switzerland) 
46°39'N/ 10°13'E 
 

Mixture of P. montana and 
P. cembras stands (see 
section study site).  

165−200 1.5−4.5 50−80 10−40 

Early 
mature 
Lodgepole 
pine 
stand 

Central interior of 
British Columbia 
(Canada) approx. 
124°18'N/ 53°39' E 

Dominant Sub-Boreal 
Spruce (SBS) 
biogeoclimatic zone. 
Occasional mountain pine 
beetle (Dendroctonus 
ponderosae) attacks. Rates 
of spread and attack 
intensity increased 
dramatically recently 
(White et al., 2005). 

61−80 3−5† 60−80 5−50‡ 

 †: Coarse-resolution LAI maps (Chen et al., 2002)  
 ‡: Assessed 

 
3.2.3. PROFLIGHT simulations 
The detectability of variation in leaf chlorophyll content from spectral reflectance 
measurements depends on the species type (Belanger et al., 1995), the needle age (in the case 
of evergreen conifers: Jach & Ceulemans, 2000), the environmental stress load (Carter & 
Knapp, 2001), and the irradiation conditions within the canopy (Zhang et al., 2008). Changes 
in leaf chlorophyll content result in variation in leaf reflectance and transmittance spectra, 
which contribute to the canopy reflectance. In our approach, we simulated leaf-level Cab-
related spectral variation and then input the resulting spectral variation into the canopy model 
in order to simulate canopy-level reflectance variations. The aim was to assess the 
contribution of canopy variables that potentially affect the invoked reflectance variations.  

The variation in optical properties (reflectance, transmittance and absorption) of needle 
leaves (PV) related to chlorophyll content was simulated with PROSPECT. The chlorophyll 
content chosen ranged from 15 to 95 µg/cm2 in increments of 10 µg/cm2; such ranges are 
typical both in young and in mature needle leaf forest stands (Malenovský et al., 2006). The 
remaining PROSPECT variables – leaf mesophyll structure (N parameter), dry matter (Cd) 
and water content (Cw) – were derived from field measurements taken during the Fire Spread 
and Mitigation (SPREAD) campaign at the same site in the Swiss National Park as described 
in Kötz et al. (2004). They were subsequently aggregated to obtain values generic for the 
Swiss National Park study site (Table 3.2). During the above-mentioned campaign, the 
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spectral reflectance characteristics of understory, forest floor, and woody parts were measured 
with an ASD field spectroradiometer. The field spectra of understory vegetation, bark of 
branches, and bark of trunks were averaged (35 vegetated understory spectra, 15 bark spectra) 
to cover the spectral properties of the NPV and background components (Figure 3.1) needed 
for the radiative transfer parameterization. The floor of an old-growth forest typically 
comprises a complex layer of shrubs, herbaceous species, CWD, litter, and other ecosystem 
elements. In our study, “background” refers to the combined understory and forest floor, and 
its optical properties can essentially be conceptualized as a complex of PV and NPV elements. 
Patches of bare soil occur very rarely within the forest.  

 
Table 3.2: Within-crown structural variation used in the simulations and field observations of stand variables 
relevant for FLIGHT parameterization (a NPV = 100 − PV, b 0.5 until LAI = 5, then increments of 1.0).  

Variable Unit Field observations 
Range of simulated variation 

Min. Max. Step 
Needle parameters (PROSPECT)      
Water content g/cm2 0.044    
Dry matter g/cm2 0.036    
Mesophyll structure (N) unitless 3.80    
Chlorophyll content µg/cm2  15 95 10 
      
Within-crown structure      
Crown NPVa  % 30 0 80 10 
LAI − 2.5 1 10 0.5b 
Crown cover (CC) % 60 20 80 10 
Leaf angle distribution  Spherical  
    
Stand structure    
Tree height m 11.93 ± 2.9  
Crown radius m 0.88  
Trunk height m 7.0  
Trunk diameter m 0.179 (on ground)  
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Figure 3.1: Averaged reflectance and transmittance of a PROSPECT-simulated needle, and reflectance of bark 
and background representing the spectral properties of PV, NPV, and background. The gray band represents the 
SD related to the Cab range of the needle. 

 
Having introduced spectral variation at needle level, the analysis was shifted to canopy 

level, by inserting this spectral variation into FLIGHT. It is important to establish the 
relationship between confounding factors (e.g. structure, woody elements) and chlorophyll 
content for any given canopy structure or composition that may occur during forest aging. 
Key structural components that vary throughout stand development are stand LAI, canopy 
cover (CC), and the proportions of NPV and PV within the crown. In FLIGHT, LAI is 
defined as the one-sided total foliage area per unit covered scene area (North, 1996). This LAI 
represents the plant area index (PAI), i.e., including woody elements. Canopy (i.e. crown) 
cover is defined as the area of vertically projected tree crowns per total scene area. The optical 
properties of leaf/woody scattering elements in FLIGHT are randomly distributed within a 
tree crown. Hence, the model uses a parameter that describes the proportions of crown NPV 
and PV scattering elements, whereby NPV[%] = 100 – PV[%]. We used stand architecture 
data (e.g., trunk height, tree height, trunk radius, crown radius and leaf size) from the 
SPREAD campaign to parameterize FLIGHT. The major characteristics are summarized in 
Table 3.2. The simulated trees were horizontally distributed on a flat terrain according to a 
Poisson distribution and had crowns of irregular conical shape and cylindrical trunks. Within 
the individual crowns a spherical leaf angle distribution of the NPV and PV scattering 
elements was assumed.  

BRFs were simulated in 18 spectral bands corresponding to the band settings of the 
Compact High Resolution Imaging Spectrometer (CHRIS) sensor in Mode 3 (land). CHRIS, 
on board European Space Agency’s experimental satellite PROBA (Project for On-board 
Autonomy), is capable of providing combined spectral and directional sampling of selected 
terrestrial targets at high spatial resolution (~17 m) (Barnsley et al., 2004). One of 
CHRIS/PROBA’s targeted test sites is the Swiss National Park. In the “land” mode, CHRIS 
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spectral bands are optimized to monitor vegetation cover. All spectral data were convolved to 
these spectral bands, using the CHRIS spectral bandpasses (Table 3.3). The solar zenith and 
azimuth angles were set to those during the Swiss National Park overpass on June 27, 2004 

(θs: 24.0°, s: 162.8°, see Verrelst et al., 2008b, for details), the view zenith angle was set at 
nadir (note that in principle, CHRIS/PROBA is able to observe at 5 nominal view zenith 
angles (0°, ±36°, ±55°)).  

 
Table 3.3: Center wavelength (CHRISmid) and full-width-half-maximum (FWHM) for the CHRIS mode 3 
“Land” band setting. 

CHRISmid (nm) 442 490 530 551 570 631 661 672 697 703 709 742 748 

FWHM (nm) 9 9 9 10 8 9 11 11 6 6 6 7 7 

 

781 872 895 905 1019 

15 18 10 10 33 

 

3.2.4. Sensitivity analysis 

To ensure that we studied the relationships between reflectance spectra and chlorophyll 
content without influence from factors other than the variables of interest, the optical 
characteristics of the overstory canopy were simulated without the presence of an atmosphere. 
In addition to the canopy variables, the composition of the forest floor also affects the 
accuracy of chlorophyll content assessments (Zarco-Tejada et al., 2004; Zhang et al., 2008). 
Therefore, a background layer was included to mimic the optical properties of the understory 
at the Swiss National Park test site. A total of 7938 forest scene simulations (9 Cab × 14 LAI 
× 7 CC × 9 NPV) with PROFLIGHT provided the spectral sampling for the subsequent 
analysis of the contribution of woody elements and needle Cab content to the spectral signal 
at stand level. Once the initialization had been done, one million rays penetrated each 
experimental canopy. FLIGHT calculates directional reflectance by accumulating photons in 
predefined solid view angles. The theoretical accuracy of canopy reflectance approximated a 
relative standard error of 1.9% for the settings (1 million photons, 10 zenith and 36 azimuth 
angles), which is considered an appropriate level of accuracy (Kötz et al., 2004). 

The idea underlying this modeling exercise is that the simulated stands might provide 
insights helpful for evaluating the suitability of imaging spectroscopy-based indicators for 
estimating chlorophyll content. The specific band configurations of CHRIS allow a number of 
chlorophyll sensitive indices to be calculated, as summarized in Table 3.4. Chlorophyll 
indices are assumed to outperform single wavelengths in predicting foliar chlorophyll content. 
However, their performance has not been systematically assessed in relation to woody 
canopies. To test which of the four studied input parameters (Cab, LAI, CC, and NPV) 
determines most of the variation in the forest scene simulations, we used analysis of variance 
(ANOVA) (Snedecor & Cochran, 1980) to decompose the total variance into terms related to 
the individual factors. The ANOVA partitions the sum of squares of the simulations into a 



Canopy-level Cab retrieval 

 49

sum of squares related to the overall mean, a sum of squares related to treatment effects, and a 
residual sum of squares. Interactions among factors were found to be not important. In the 
ANOVA, the ratio of the mean square of an input parameter resulting from different levels of 
the input factor to the residual mean square, called the F statistic, can be tested for its 
significance (given by the critical level). If one band (or index) yields smaller critical levels 
than another one, then the former one has larger power. To test whether a specific band (or 
index) is sensitive for Cab, the F statistic for Cab was used. To test the sensitivity for Cab 
relative to the other factors (LAI, CC, and NPV) an F statistic was calculated by taking the 
ratio of the mean square related to Cab to the mean square related to one of the other factors 
and then testing its significance. The best spectral band (or index) for chlorophyll content 
estimation is the one that has the largest F value when the variance for chlorophyll effect is 
tested against the residual variance including all other confounding factors pooled. In addition, 
we calculated the F values for testing the Cab effect against LAI, CC and NPV effects, 
respectively. 

 

Table 3.4: Overview of selected vegetation indices. R denotes reflectance. The wavelengths in the formula 
column represent the original proposed VI wavelengths, while the wavelengths in the columns headed formula 
CHRISmid represent the center of the CHRIS bands that best approached the wavelengths proposed originally. 

Index Formula Formula CHRISmid  Reference 

Datt_98 R672 / R550 R672 / R551 Datt (1998) 

Datt_99 (R850 – R710) / (R850 – R680) (R872 – R709) / (R872 – R672) Datt (1999) 

GM_94a R750 / R700 R748 / R703 Gitelson & Merzlyak (1994) 

GM_94b R750 / R550 R748 / R551 Gitelson & Merzlyak (1994) 

Gitel_03a (R695-705)
-1 – (R750-800)

-1 (R697-703)
-1 – (R781)

-1 Gitelson et al. (2003) 

Gitel_03b R750-800 / (R695-705) – 1 R781 / (R697-703) – 1 Gitelson et al. (2003) 

Gitel_03c 
(R750-800 – R430-445) / (R695-705 – R430-

470) –1 
(R781 - R442) / (R697-703 – R442) – 1 

Gitelson et al. (2003) 

gNDVI (R780 – R550) / (R780 + R550) (R781 – R551) / (R710 + R551) Smith et al. (1995) 

Macc_01 (R780 – R710)/ (R780 – R680) (R781 – R709) / (R781 – R672) Maccioni et al. (2001) 

McM_94 R700 / R670 R703 / R672 McMurtey lii et al. (1994) 

mNDVI705 (R750 – R705) / (R750 + R705 – 2R445) (R748 – R703) / (R748 + R703 – 2R442) Sims & Gamon (2002) 

mSRI705 (R750 – R445) / (R705 + R445) (R748 – R442) / (R703 + R442) Sims & Gamon (2002) 

NDVI705 (R750 – R705)/ (R750 + R705) (R748 – R703) / (R748 + R703) Gitelson & Merzlyak (1994) 

SIPI (R800 – R455) / (R800 – R680) (R781 – R442) / (R781 – R672) Peñuelas et al. (1995) 

TCARI/OSAVI 
3[(R700 – R670) – 0.2(R700 – R550) 
(R700 / R670)] / [(1 + 0.16)(R800 –
 R670) / ((R800 + R670 + 0.16))] 

3[(R703 – R672) – 0.2(R703 – R551) 
(R703 / R672)] / [(1+0.16)(R781 –
 R672) / ((R781 + R672 + 0.16))] 

Haboudane et al. (2002) 

 
The next step in the analysis was to study the chlorophyll effect on the best evaluated index 

in more detail for each combination of selected confounding canopy variables (LAI, CC, and 
NPV). From the set of PROFLIGHT-generated reflectance spectra, the derivative ( y /  x) 
of the relationship between Cab content (x variable) and vegetation index (y variable) was 
calculated over every Cab interval for every combination of confounding variables as a 
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measure of local sensitivity (Cacuci, 2003). The average slope was then calculated as the 
derivative averaged over all intervals for a stand-specific situation: 


 



Cabn

iCab x

y

n
xy

1

1
/ ,                                (3.1) 

where Cabn  is the number of Cab intervals. Assuming that a steeper Cab-related slope 

( xy  / ) for a spectral band or vegetation index as measured by a space-borne optical sensor 

enables a more accurate detection and thus more accurate mapping of leaf chlorophyll content, 
then the slope ( xy  / ) can be regarded as a stand-specific indicator of chlorophyll content 

detectability. For the best-performing index, confounding canopy variables (LAI, CC, and 
NPV) were paired up in different combinations: for each of the three possible combinations, 
the third variable was fixed according to the parameterization of the core test site in the Swiss 
National Park (Table 3.2). Plotting the slopes for each of these paired combinations yielded 
three templates of plausible canopies that might occur during forest aging. In these conceptual 
templates, each grid represents a unique, structurally-dependent forest type. The last step of 
the sensitivity analysis was to establish a link with the modeling results and structural 
information (LAI, CC, and NPV) derived from three distinct forest canopies.  

  

3.3. Results  

3.3.1. Chlorophyll-related spectral variation  

Prior to analyzing the effects of the confounding canopy characteristics on the chlorophyll-
related spectral response, the effects of scaling the needle optical properties to the canopy 
level were investigated. At needle level, PROSPECT reflectance and transmittance were 
simulated for a range of needle leaves with varying Cab contents. Their mean needle spectral 
signature and standard deviation (SD) are also displayed in Figure 3.1.  

At canopy level, the solar radiant fluxes interact with the canopy foliage, the measured 
woody elements and the background layer. This was simulated by FLIGHT at wavelengths 
specific to the band settings of CHRIS. The average BRF and SD for each CHRIS band were 
calculated for the canopy configurations of the Swiss National Park test site (LAI: 2.5, 
CC: 60%, NPV: 30%) (Figure 3.2). The SD at canopy level is much smaller than the SD at 
leaf level because of the background contribution, stand configuration, and the contribution of 
NPV.  
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Figure 3.2: Average BRF with Cab-related SD (interpolated gray band) at canopy level as simulated by FLIGHT 
(Swiss National Park structural configurations: LAI: 2.5; CC: 60%; NPV: 30%, and Swiss National Park 
background). 

 

The next step involved evaluating the sensitivity of specific CHRIS wavelengths for 
chlorophyll content at canopy level using the F-test. Table 3.5 gives an overview of the 
wavelengths, sorted according to the F values. The column headed Cab was used for the 
sorting: it presents the F value for testing the variance caused by chlorophyll content against 
the total variance of the confounding factors tested. A large value indicates that the 
confounding factors tested had a small influence on the total variation within the simulations. 
The column headed Cab/NPV depicts the F value for testing the variance caused by 
chlorophyll content against the F value caused by the NPV proportion. A large value indicates 
that the Cab effect is stronger than the NPV effect. Similarly, Cab/LAI and Cab/CC relate the 
chlorophyll variation to the variations caused by LAI and CC, respectively. It can be seen that 
the tested wavelength most sensitive to variation due to chlorophyll content relative to the 
confounding canopy variables is R490, followed by R442. The F values also show that at longer 
wavelengths the canopy structure variables exert more influence (smaller ratios). This is 
particularly noticeable for LAI. At canopy level, shorter wavelengths perform better than 
longer wavelengths because of the combined effects of low background and NPV reflectance 
(Figure 3.1) plus the relatively weak influence of canopy structure variables (LAI and CC). 
However, the use of shorter wavelengths for assessing chlorophyll content is usually not 
advocated for optical remote sensing data, because of the confounding atmospheric effects 
(Lillesand et al., 2004). Therefore, the third best performing wavelength, R631, seems to be 
more suitable for satellite-based Cab retrieval approaches.  
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Table 3.5: ANOVA F values for single wavelengths found when testing Cab and Cab against NPV, LAI and CC, 
respectively.  

Wavelength F8,7938 Cab F8,8 Cab/NPV F8,13 Cab/LAI F8,6 Cab/CC 

R490 1234.6*** 23.6*** 8.5*** 2.8 

R442 1169.8*** 39.7*** 7.2** 2.5 

R631 932.8*** 12.5*** 6.5** 1.7 

R570 812.7*** 2.7 7.7*** 2.3 

R530 812.4*** 2.3 9.1*** 2.7 

R661 744.9*** 270.1*** 4.9** 1.1 

R551 712.2*** 1.9 7.7*** 2.3 

R697 673.4*** 7.3** 4.7** 1.1 

R672 613.1*** 555.9*** 4.1* 0.8 

R703 526.8*** 2.6 4.0* 1.0 

R709 377.0*** 1.3 3.0* 0.8 

R742 12.2*** 0.0 0.1 0.0 

R748 2.2* 0.0 0.0 0.0 

*p < 0.05, **p < 0.01, ***p < 0.001. 
 

3.3.2. Simulated chlorophyll indices at canopy level 

The performance of chlorophyll indices at canopy level was evaluated similarly to the single 
wavelengths, using the F test. Table 3.6 gives an overview of the indices, sorted according to 
the F values found when testing the Cab effect. Of the indices tested, SIPI (Peñuelas et al., 
1995), R672 / R550 (“Datt_98”; Datt, 1998) and R700 / R670 (“McM_94”; McMurtey lii et al., 
1994) performed considerably worse than the single wavelengths (except for the reflectances 
at 742 and 748 nm where there was hardly any sensitivity to chlorophyll content). Their low 
sensitivity to chlorophyll content combined with a strong influence from NPV and CC 
reduces the applicability of the above-mentioned indices at canopy level. By contrast, all the 
other indices outperformed single wavelengths in maximizing sensitivity to chlorophyll 
content while minimizing undesired canopy effects. The [R780 – R710] / [R780 – R680] index 
developed by Maccioni et al. (2001) (“Macc_01”) produced the best results, followed by 
gNDVI (Smith et al., 1995), and R750 / R700 (“GM_94b”; Gitelson & Merzlyak, 1994). The 
reason the Maccioni index yielded the best results is because it is very sensitive to variation in 
chlorophyll content but is simultaneously poorly sensitive to CC, LAI, and, to a lesser extent, 
NPV. The superior performance of the Maccioni index corroborates the findings of Xue and 
Yang (2009). From a list of 40 chlorophyll indices, they concluded that this Maccioni index 
performed second best; only the normalized derivate difference ratio calibrated by le Maire et 
al. (2004) yielded a better relationship with leaf chlorophyll content. Overall, our results at 
canopy level show that, depending on the index, either CC or NPV mostly weaken the 
relationships with chlorophyll content. LAI influences the relationship with chlorophyll 
content the least.  
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Table 3.6: ANOVA F values for chlorophyll indices found when testing Cab and Cab against NPV, LAI and 
CC, respectively.  

Index F8,7938 Cab F8,8 Cab/NPV F8,13 Cab/LAI F8,6 Cab/CC 

Macc_01 4998.0*** 29.0*** 789.9*** 358.9*** 

gNDVI 4106.7*** 584.8*** 2237.0*** 14.4** 

GM_94b 4017.3*** 44.1*** 1795.0*** 19.7*** 

Datt_99 2772.5*** 6.2** 662.5*** 88.2*** 

Gitel_03c 2551.8*** 10.7*** 367.6*** 17.7** 

mNDVI705 2137.1*** 5.6** 319.6*** 9.1* 

NDVI705 1864.2*** 3.7* 449.8*** 24.6*** 

GM_94a 1494.4*** 3.1 366.1*** 16.2** 

Gitel_03b 1486.6*** 3.1 370.7*** 17.9** 

TCARI/OSAVI 1464.8*** 3.0 52.1*** 10.3** 

mSRI705 1291.8*** 2.2 515.7*** 111.0*** 

Gitel_03a 1189.5*** 167.8*** 9.6*** 1.8 

SIPI 160.9*** 0.2 63.2*** 0.5 

Datt_98 69.1*** 0.1 71.1*** 0.2 

McM_94 44.5*** 0.1 79.6*** 0.4 

*p < 0.05, ** p < 0.01, ***p < 0.001. 

 

3.3.3. Stand-specific relationships between Maccioni index and Cab content  

Further analysis of the stand-specific relationships between Cab and the best performing 
index, the Maccioni index (Figure 3.3), revealed that variation in LAI has little influence on 
the relationship between Cab content and Maccioni index. Figure 3.3a shows that all LAI 
values changed at a similar rate along the Cab range (for CC: 60%, NPV: 30%). Only the 
relationship for an LAI of 1 indicates a somewhat less steep curve. Note that the quasi-linear 
relationships between the index and Cab content are due to the excellent performance of the 
index: the curves flattened off more at higher Cab content when they were plotted against 
single wavelengths (not shown here). By contrast, variation in CC has a greater influence on 
the relationship between the Cab content and Maccioni index (Figure 3.3b; for LAI: 2.5, NPV: 
30%). The steepest curve occurs at a CC of 50%, meaning that for a relatively open crown 
cover, the canopy-leaving Cab-related spectral variation can be most accurately estimated 
from the chlorophyll index. Conversely, low CC values (e.g., < 30%) cause the spectrally 
distinct background to suppress the canopy-leaving Cab-related spectral variation as 
measured by the chlorophyll index. The variation in NPV is shown in Figure 3.3c (for 
LAI: 2.5, CC: 60%). This figure reveals that the slope declines with increasing contribution 
from woody elements. For instance, the angle of slope when 80% of the scattering elements 
consist of woody elements (and the other 20% of green foliage) is half the angle of slope for a 
completely green canopy (NPV of 0%), emphasizing the importance of woody elements as a 
perturbing factor. Overall, these modeling results suggest that two factors primarily determine 
the sensitivity of the Maccioni index to variation in Cab content: the composition of canopy-
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scattering properties of foliage and woody elements, as expressed by NPV and PV, and the 
contribution of a spectrally distinct background. 

 

 
Figure 3.3: Relationships between Cab content (µg/cm2) and the Maccioni index for a range of a: LAI, b: CC, 
and c: NPV; with fixed variables according to Swiss National Park: LAI: 2.5; CC: 60%; NPV: 30%, 
respectively).
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3.3.4. Detectability of chlorophyll content: three forest canopy examples 

Whereas in the former section the analysis was based solely on simulated data, here the slope 
results ( xy  / ) for the Maccioni index are compared with structural information (LAI, CC, 

and NPV) derived from three selected examples of forest canopies. These are: 1) a young 
Norway spruce plantation stand in the Czech Republic, 2) an old-growth mixed pine stand in 
the Swiss National Park, and 3), an early mature Lodgepole pine stand in British Columbia, 
Canada (Table 3.1). Figures 3.4a, b and c present the 2D templates of Figure 3.3 by varying 
two confounding variables at a time instead of just one as in Figure 3.3. The same conclusions 
can be drawn as for Figure 3.3. Structural information derived from the three forest canopies 
are shown in figures 3.4a, b and c too. Interpretation of the xy  / figures suggests that in 

terms of CC and LAI each of the three coniferous stands has nearly optimal conditions for 
retrieving canopy chlorophyll content. They all have a CC above 50%, which implies a 

xy  /  of at least 75% of the maximum xy  /  (exemplified for an NPV of 0%). The 

modeling results suggest that a homogeneous, dense, young spruce stand like the example 
from the Czech Beskydy Mountains somewhat limits the detection of the Cab-related spectral 
variation (Figure 3.4d). This stand has a high LAI (about 8) and CC (on average 80%) 
(Homolová et al., 2007), which approaches a maximum xy  / in terms of LAI, but the Cab-

related spectral variation is somewhat suppressed by the dense canopy and strong within-
canopy mutual shading effects (Malenovský et al., 2008). The other two stands have a lower 
CC, which implies there is more opportunity for the Cab-related spectral variation to 
propagate outwards from the canopy, assuming no other factors perturb the Cab-index 
relationships.  

Significant change in xy  /  occurs, however, along the crown NPV gradient. In a dense 

young spruce stand, the woody surface is negligible in the upper canopy, which implies that 
the canopy reflectance signal is modulated mainly by the variation in foliar Cab. In contrast, 
the old-growth forest in the Swiss National Park (Figure 3.4e) represents an assembly of 
CWD, dead or partly defoliated trees, and trees with irregularly spaced branches with a lower 
LAI, where NPV cover may reach up to 40% at the CHRIS pixel resolution. The 

xy  / figures generated suggest that a woody contribution of this magnitude at the Swiss 

National Park test site may suppress the canopy-leaving Cab-related spectral variation by 
27% compared to a full green canopy (NPV of 0%). Note that the Swiss National Park stand 
is more open, which implies that in reality the understory (essentially an NPV and PV mixture) 
contributes to the radiant flux as well.  

Finally, the stand in British Columbia (Figure 3.4f), which is infested with bark beetles, 
has the largest proportion of woody material. The stand shows mixtures of green trees, red 
attack trees (the crowns turn red as a result of the lack of nutrients and water after pest 
infestation) and gray-attack trees (dead, gray tree skeletons; this occurs one year after red 
attack). Consequently, the spatial distribution of NPV scattering elements varies considerably. 
Such strong spatial variation in NPV and PV elements (figures 3.4b, 3.4c) implies that the 
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relationship between an index and the needle pigment contents of the remaining foliage is 
pixel-specific, which makes it difficult to accurately estimate chlorophyll content with a 
spectral index. Our modeling results suggest that for a forest stand composed of 50% NPV, an 
LAI of 4, and a CC of 70%, by comparison with a full green canopy (NPV of 0%), only 70% 
of the Cab variation will remain in a CHRIS pixel (size ~17 m).  
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Figure 3.4: xy  / of the Maccioni index for three templates (a: CC − LAI; b: LAI − NPV; c: CC − NPV, with 

fixed variables according to Swiss National Park: LAI: 2.5; CC: 60%; NPV: 30%, respectively). Error bars per 
structural variable span the range of values specific for each site The three study sites used: d: ●) young Norway 
spruce stand, e: x) old-growth pine forest and, f: *) early mature beetle-infected lodgepole pine. 
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3.4. Discussion 
The variability of forest canopy reflectance in the visible and red edge regions of the spectrum 
is driven mainly by variation in foliar pigment content, and also by the presence of forest 
background, canopy structure parameters, and woody elements. The importance of the latter 
factors increases with forest aging, particularly when the forest achieves the status of old-
growth forest. The spectral response for development stages of production forests has been 
studied before and is reasonably well understood (e.g. Song & Woodcock, 2002; Roberts et 
al., 2004). Commonly, stand age and height are inversely related to the spectral response, due 
to increasing canopy closure and biomass accumulation. As young trees grow taller, the 
amount of foliage increases and extends over the understory and soil of the forest floor. In 
addition, the shadows cast by trees decrease the overall reflectance signal of the forest stand 
(Nilson & Peterson, 1994; Franklin et al., 2003). Although these earlier studies reported the 
spectral trajectories associated with forest growth development, they did not consider the 
encroachment of dead woody material and its consequences on foliage pigment retrieval. 
Once a forest stand reaches the old-growth state, woody elements also become part of the 
outer canopy, e.g., as dead tree tops and branches. Moreover, the woody elements in old-
growth forests are not only part of living trees but are also distributed on the forest floor and 
in the space between living trees in the form of coarse woody debris (CWD) and also 
contribute to the reflectance signal.  

Using spectral unmixing, Okin et al. (2001) demonstrated that the ability of imaging 
spectroscopy to provide a spectral vegetation signal is limited when the canopy cover is less 
than 30%. Our results support this finding but also suggest that above the same threshold the 
NPV cover (if present) starts to weaken the Cab signal appreciably. Data from the literature 
indicate that in coniferous canopies CC values typically range from 40–100%, LAI values 
range from 1 to above 8 (e.g., Chen et al., 2002), and woody cover rarely exceeds 40% (e.g. 
Radeloff et al., 1999; Fernandes et al., 2004; Jia et al., 2006). Given these figures, from the 
values shown in Figure 3.4 it can be calculated that as long as the proportion of crown NPV 
cover stays below 40% and the CC above 40%, the up-scaled Maccioni index data preserves 
at least 58% of the Cab-related spectral variation by comparison with an optimal xy  /  

(NPV of 0%, CC of 50%). Nevertheless, the contribution of background reflectance should be 
considered as well; its importance in the visible and red edge regions of the spectrum 
essentially depends on the overstory crown cover. In sparse stands (low CC or low LAI), the 
background reflectance of a coniferous forest may either contribute to the variation in Cab-
related reflectance (if the forest floor is photosynthetically active), or act as an additional 
confounding factor (when the forest floor is e.g. litter, bare soil, CWD), or may be a dynamic 
mixture of both (common for old-growth forests).  

In conclusion, our analysis confirms earlier studies (Demarez & Gastellu-Etchgorry, 2000; 
Zhang et al., 2008) that stated that an appropriate knowledge of background reflectance and 
forest structure parameters is important for the successful retrieval of leaf chlorophyll content 
from remote sensing imagery. Although, by comparison with single wavelengths, chlorophyll 
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indices correct for perturbing canopy factors, our results have demonstrated that some 
confounding effects of canopy heterogeneity remain. Specifically, it was found that in 
addition to structural parameters, NPV scattering elements also play an important role in the 
variation of TOC reflectance and derived indices, particularly in damaged and long-lived 
forest stands. Several studies have already attempted to include and parameterize woody 
material in advanced radiative transfer modeling, for instance by measuring the wood 
distribution with Light Detection and Ranging (LiDAR) techniques (e.g., Koetz et al., 2007; 
Côté et al., 2009; Morsdorf et al., 2009). 

Finally, the proposed modeling design presents a simple theoretical sensitivity analysis for 
assessing the success of leaf chlorophyll pigment retrieval at canopy level from remotely 
sensed data at a spatial resolution suitable for the forest stand level. The advantage of using a 
modeling approach is the possibility of covering a wide range of scenarios while avoiding 
uncertainty related to measurement errors. Note that our study did not consider additional 
factors such as atmospheric effects, sun-viewing geometries, and sensor calibration errors, 
and that our findings may be biased by our choice of RT models and model input parameters. 
For example, we did not take account of variation in foliar chemicals other than chlorophyll 
content (e.g. anthocyanin and carotenoid foliar pigments) and variation in optical properties of 
woody parts, e.g. due to species composition or phenology. Since PROSPECT was essentially 
developed for broadleaves, the model may benefit from further improvement such as 
recalibration of the specific absorption coefficients (Malenovský et al., 2006) and refraction 
index (Feret et al., 2008) when used for narrow needle-shaped leaves. The LIBERTY model 
(Dawnson et al., 1998) designed specifically for such leaves may offer an appropriate 
alternative. Since in coniferous trees the woody parts and needles are hierarchically organized 
and highly clumped (Chen & Black, 1992), the random spherical distribution of NPV and PV 
scattering elements as defined in the ray-tracing FLIGHT model also deviates from the real 
forest situation. Aware of all these constraints, we exploited both models to their fullest 
capability, and addressed the role of variables that are regarded as key confounding factors in 
Cab content mapping, e.g., encroachment of woody materials, background contribution, and 
crown-scale clumping (Nichol et al., 2002; Kane et al., 2008; Ustin et al., 2009).  

 

3.5. Conclusions and recommendation 

Space-borne imaging spectrometers (e.g., CHRIS on board the PROBA spacecraft or 
Hyperion on board the Earth Observing-1 (EO-1) spacecraft; Pearlman et al., 2003) open up 
the possibility of monitoring the foliar pigment content of forest stands at scales ranging from 
regional (ecosystem) to global (biome) (Kokaly et al., 2009). A key element for the successful 
quantitative retrieval of foliar pigments from remote sensing data is information on the extent 
that confounding scattering elements contribute to photon–canopy interactions. The 
observation that a highly clumped and partially defoliated canopy of an old-growth forest 
exhibits noticeable mixtures of foliage and woody parts prompted us to investigate the 
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efficacy of estimating chlorophyll content in woody stands. The results obtained from 
PROFLIGHT suggest that if the crown cover is more than 30%, it should be possible to 
reliably estimate the variability of the chlorophyll content in a forest canopy. However, at this 
threshold, also crown NPV scattering elements – if present – start to weaken the Cab signal 
appreciably. Almost all the tested chlorophyll indices outperformed single wavelengths in 
minimizing undesired effects; the one that performed best at canopy scale was the Maccioni 
index ([R780 – R710] / [R780 – R680]), though the influence of NPV and CC remained. LAI only 
marginally influenced the ability of the index to assess Cab-related spectral variation. Our 
findings emphasize the role of woody elements when retrieving chlorophyll information from 
remotely sensed reflectance data of woody ecosystems. It can be concluded that ignoring the 
contribution of canopy woody components may lead to less accurate chlorophyll estimates. 
We recommend that future model refinement should focus not only on the photosynthetically 
active parts of the forest canopy, but also adequately take into account the woody elements as 
part of living and dead trees, as well as of forest understory.  
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Spectrodirectional Minnaert-K retrieval using 
CHRIS/PROBA data 

 
 
 

Abstract 

We studied the spectral information content related to the canopy structure embedded in the 
angular domain of imaging spectrometry data. CHRIS (Compact High Resolution Imaging 
Spectrometer) mounted onboard the PROBA (Project for On-board Autonomy) spacecraft is 
capable of sampling reflected radiation over the visible and near-infrared (NIR) region of the 
solar spectrum with high spatial resolution. The spectral anisotropic signature of an Alpine 
coniferous forest during winter in relation to canopy cover was investigated using the 
Minnaert-k parameter obtained by inverting the Rahman–Pinty–Verstraete (RPV) model 
against CHRIS data. Although earlier studies have demonstrated that Minnaert-k can be used 
to characterize surface heterogeneity at subpixel scale, its spectral dependency has not yet 
been fully assessed. Minnaert-k parameter retrievals across CHRIS bands revealed that a 
switch from bell-shaped to bowl-shaped anisotropic reflectance patterns occurs when 
comparing visible to NIR responses. Specifically, analysis of the underlying dynamics for 
pixels on the valley floor revealed that canopy cover and background brightness control were 
precisely in the spectral domain in which this anisotropy switch occurs. For a bright snow 
cover background, Minnaert-k values correlated best with canopy cover at the end of the red 
edge (e.g., around 735 nm). In this spectral region, pixels with medium canopy cover (40–
70%) typically produced bell-shaped anisotropy patterns, while pixels with sparse (<30%) or 
dense (>80%) canopy covers typically produced bowl-shaped reflectance anisotropy patterns.  
 
Keywords: Minnaert-k, imaging spectroscopy, reflectance anisotropy, forest heterogeneity, 
CHRIS 
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4.1. Introduction 

The reflectance anisotropy of boreal and Alpine forests measured under winter conditions 
depends on the wavelength and the proportions of snow and plant cover that are recorded by a 
sensor (Vikhamer and Solberg, 2003; Nolin, 2004). These proportions depend on illumination 
and viewing angle, topography and structural canopy properties such as tree density, canopy 
geometry, and gap fraction. In the last twenty years, various studies have documented that 
anisotropic reflectance data encapsulate information about canopy structure at subpixel scale 
(e.g., Asner et al., 1998; Diner et al., 1999; Deering et al., 1999; Sandmeier & Deering, 1999). 
Yet, it was only with the development of surface reflectance models (e.g. Verhoef, 1984; 
Verstraete et al., 1990; Li et al., 1992) and the advent of multi-angular Earth observing 
sensors (e.g. Diner et al., 1998; Barnsley et al., 2004) that significant progress was made in 
the retrieval of canopy characteristics from multi-angular reflectance data (e.g., Diner et al., 
2005; Schaepman et al., 2005; Chopping et al., 2003; Gao et al., 2003; Canisius & Chen, 2007; 
Schaepman, 2007).  

Among the surface reflectance models, the Rahman–Pinty–Verstraete (RPV) parametric 
model (Rahman et al., 1993) is particularly suitable for estimating reflectance anisotropy 
because it simulates the bidirectional reflectance distribution function (BRDF) of an arbitrary 
land surface on the basis of three (optionally four) parameters. Of these parameters, the 
Minnaert-k parameter is specifically of interest as it describes most of the angular variation 
related to surface reflectance anisotropy. Pinty et al. (2002) and Widlowski et al. (2001, 2004) 
have theoretically demonstrated that the Minnaert-k parameter contains information on 
subpixel heterogeneity. Specifically, the k parameter has been shown to better identify canopy 
structure and heterogeneity at the subpixel scale than what is feasible on the basis of spectral 
measurements only (Gobron et al., 2000b; Gobron & Lajas, 2002; Pinty et al., 2002; 
Widlowski et al., 2001, 2004). 

Several studies have been performed to map Minnaert-k as a proxy for vegetation structure 
and density at the subpixel scale for various landscapes such as a prairie, woodlands and 
forests (Pinty et al., 2002; Nolin, 2004; Lavergne et al., 2007; Sedano et al., 2008). All these 
studies used Multiangle Imaging SpectroRadiometer (MISR) satellite data, or its airborne 
variant: AirMISR. MISR, on board the NASA EOS Terra platform, is configured with 9 
cameras, each of which observes the Earth in four spectral bands. In the global data 
acquisition mode, eight oblique cameras observe the Earth’s surface at a resolution of 1100 m 
in blue, green, and near-infrared bands and at a resolution of 275 m in the red domain. In 
addition, all four bands of the nadir-observing camera have a spatial resolution of 275 m 
(Diner et al., 1991). Pinty et al. (2002) reported that the availability of sufficient brightness 
contrast between overstory and background in conjunction with a relatively high sun position 
(sun zenith < 60°) is critical for detecting maximal variability in reflectance anisotropy, and 
thus in Minnaert-k. They also demonstrated that the potential to detect canopy structural 
information from multi-angular measurements depends on the sensor’s spatial resolution. 
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Typically, the higher the spatial resolution, the more opportunities exist to detect reflectance 
anisotropy at stand or tree scale. 

In 2001, two years after the launch of Terra, the European Space Agency (ESA) launched 
the experimental satellite sensor CHRIS (Compact High Resolution Imaging Spectrometer) 
onboard the PROBA (Project for On-board Autonomy) spacecraft. The imaging spectrometer 
acquires a series of five angular images of a terrestrial surface at a high spatial resolution 
(~17 m) during the same orbit. Depending on its operating mode, CHRIS is capable of 
sampling the anisotropic behavior of the reflected solar radiation in up to 62 narrow spectral 
bands covering the visible and near-infrared (VNIR) region of the solar spectrum.  

A set of concurrent multi-angular CHRIS images of an old-growth alpine forest stand was 
acquired during winter in order to characterize the structural properties of the observed forest 
using the Minnaert-k parameter. Using the CHRIS observations at high spatial and spectral 
resolution and the spectrally distinct snow vegetation signal it is possible to explore the spatial 
and spectral dynamics of Minnaert-k at the forest stand scale. Though Koetz et al. (2005) have  
also demonstrated that structural parameters can be related to the k parameter at the CHRIS 
subpixel scale, the spectral dependency of these relationships has not yet received full 
attention. We therefore formulated two research objectives: 1) to evaluate the spectral 
dependency of the Minnaert-k parameter retrieved from coniferous stands during winter, and 
2) to interpret the parameter’s underlying wavelength-dependent biophysical meaning. Both 
objectives were intended to elucidate the anisotropic reflectance properties of forested 
surfaces recorded with a high spatial resolution sensor like CHRIS. This improved 
understanding is useful, for example, to serve as a benchmark for interpreting 
spectrodirectional (combined spectral and multi-angular) data and to trigger new methods that 
exploit the angular domain in a more physically-based way.  

 

4.2. Biophysical interpretation of Minnaert-k 

The RPV model provides a phenomenological description of the target's anisotropy, without 
attempting to assign it to specific physical causes or processes. As such, it is an empirical and 
efficient parametric representation of that surface property. The RPV model splits the BRF 
field for a given wavelength (λ) into a scalar amplitude component (ρ0) and an associated 
directional component describing the anisotropy of the surface (Rahman et al., 1993; Pinty et 
al., 2002). The directional component is expressed as the product of three functions, each 
dependent on a single parameter: 1) the modified Minnaert function (k) that controls the 
curvature of the scattering regime, 2) the Henyey-Greenstein function (Θ) that controls the 
degree of forward and backward scattering regimes, and 3) an optional hotspot descriptor 
function (ρc). The algorithms underlying each of the parameters are documented in the above-
mentioned publications. The empirical parameter k of the Minnaert’s function (Minnaert, 
1941) is particularly interesting, since it quantifies the extent to which the angular variations 
in the BRF pattern resemble a “bell-shaped” or “bowl-shaped” pattern. It has been proven that 
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under favorable illumination conditions and large background brightness, the angular pattern 
is largely controlled by the physical properties and geometric arrangements of the plant 
elements (Widlowski et al., 2001; Pinty et al., 2002). This means that the angular signature for 
a single wavelength of a pixel as measured by a multi-angular sensor can be diagnostic for the 
assessment of subpixel structural surface properties, if there is sufficient contrast between the 
darker overstory and brighter background.  

Coniferous forests commonly appear darker in the VIS region than deciduous forests, due 
to the strong internal shadowing caused by clumping effects and the relatively high light 
absorption capacity of needles (Smolander & Stenberg, 2003). In open canopies composed of 
tall trees in conjunction with a bright snow background mean that boreal or alpine winter 
landscapes offer ideal conditions for Minnaert-k analysis. Given a sufficiently low solar zenith 
angle (i.e. < 60°; Koetz et al., 2006) and no snow cover on tree branches, the following 
situations can occur in coniferous stands during winter: 

 Surfaces that are brighter at large oblique viewing angles in forward and backward 
scattering directions lead to a bowl-shaped reflectance anisotropy pattern. Enhanced 
scattering towards larger zenith angles typically occurs in case of closed and 
structurally homogeneous forests or in case of single-layer surfaces, such as bare soil 
or snow cover. Bowl-shaped anisotropy patterns result in k values smaller than 1.  

 Conversely, surfaces that are brighter at nadir viewing angle than at oblique viewing 
angles lead to the inverse pattern: a bell-shaped reflectance anisotropy pattern. In 
open, vertically elongated canopies, the contribution of uncollided radiation to the 
total signal (i.e. the fraction of radiation that has travelled through the gaps of the 
canopy layer and has been scattered by the background only; Pinty et al., 2004), is 
maximized at nadir viewing angle, while at greater zenith angles it is intercepted by 
the tall trees. Bell-shaped anisotropy patterns result in k values larger than 1.  

 Surfaces that exhibit Lambertian reflectance, i.e. the amount of scattered radiation is 
the same in all directions, result in a k value of 1.  

The Minnaert-k value can thus essentially be used as a proxy for canopy heterogeneity 
simply based on canopy closure and fluctuations in the amount of scattering and absorbing 
material at one specific wavelength. It has been shown to be successful for characterizing 
structural heterogeneity of canopies over snow (Nolin, 2004). In this paper we evaluate the 
Minnaert-k parameter in relation to canopy structure in the whole VNIR spectral domain. 
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4.3. Test site 

The chosen test site is located in an Alpine valley, the Ofenpass valley, in the Swiss National 
Park in the Engadine region, south-east Switzerland (10°13′48″E/ 46°39′45″N). The Ofenpass 
represents a dry inner-alpine valley with limited precipitation (900–1100 mm/year) at an 
average altitude of about 1900 m asl. Two subalpine ecosystems – a coniferous old-growth 
forest and a meadow – cover the south-facing slope. The forest is dominated by mountain 
pine (Pinus Montana spp. arborea) and some stone pine (Pinus cembra) tree species. The 
forest can be classified as woodland associations of the Erico-Pinetum mugo type, typified by 
relatively open discontinuous stands. The forests vary in topography, openness, tree clumping, 
leaf area index (LAI) and woodiness (Kötz et al., 2004; Verrelst et al., 2008b). The south-
facing valley floor of the Ofenpass valley was considered to be the core test site. Stand 
variables of the core test site are provided in Table 4.1.  

 
Table 4.1: Stand variables for the core “Ofenpass” test site (south-facing valley floor). Data were collected 
during the SPREAD field campaign (Kötz et al., 2004; Morsdorf et al., 2004).  

Variable Unit Generic field observations 
Stand structure   

Stand age years 165−200 

Tree height m 11.93 ± 2.9 

Crown radius m 0.88 

Crown base m 7.0 

Stand density trees/ha 790±250 (>12 cm DBH) 

   

Within-crown structure   

Crown LAI m2/m2 1.5−4.5 

Crown photosynthetic 
vegetation  

% 60−90 

 

4.4. CHRIS data 

PROBA is an experimental ESA platform that enables CHRIS to capture near-concurrent 
multiple views of a surface in a short period of time. CHRIS uses the satellite’s tilting and 
pointing capabilities in along-track and across-track directions, allowing the acquisition of up 
to five images during a few minutes (Barnsley et al., 2004). CHRIS can be operated in five 
different modes, with different combinations of band configuration (number, center location 
and width) and spatial resolution for specific applications (e.g. aerosols, land or water). 

A set of CHRIS mode 5 “land” images were acquired over the Swiss National Park site on 
March 17, 2007, near noon local time (11:34h local time) under cloud-free conditions. 
Mode 5 is configured in CHRIS’s best spatial resolution (nominally ~17 m) and spectral 
resolution (37 narrow spectral bands with bandwidths of 6–33 nm located between 438 nm 
and 1036 nm). Its specifications are summarized in Table 4.2. The large number of spectral 
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bands enables, among other things, the anisotropic spectral behavior to be examined in the 
transition zone between the visible and near infrared, the “red edge”, as there are eight CHRIS 
bands in the spectral domain ranging from 700–750 nm. Several mono-angular nadir studies 
have shown that measurements based on the red edge position correlated well with 
biophysical variables at canopy scale, such as LAI (e.g. Clevers et al., 2002). However, only 
scant attention has been paid to what goes on in the directional domain of the red edge, i.e. 
how the curvature of the anisotropic reflectance responds to canopy structure. 

The acquisition date was chosen to ensure that a snow carpet was still present while the sun 
position was already acceptably high at noon (sun zenith 50°, azimuth 161°). The solar 
position can be regarded as constant for all five CHRIS fly-by zenith angles, since the time 
elapsed between the first and last recordings during the satellite overpass was less than two 
minutes. In the current along-track pointing configuration, the fly-by zenith angles are 
equivalent to the nominal viewing zenith angles (VZA: 0°, ±36°, ±55°). Due to its narrow 
field of view (FOV), however, CHRIS is only occasionally able to acquire a target at nominal 
view angle. PROBA must be tilted so that the target area falls within the sensor’s FOV 
(Barnsley et al., 2004). This means that the actual observation angles at which the images are 
acquired may deviate from the nominal view angles. For example, the nominal nadir camera 
position happened to be pointed in a forward VZA of +21°.  

 The exact viewing geometries of all five CHRIS view angles and the sun position are 
shown in the polar plot of Figure 4.1. The CHRIS images were captured near the principal 
plane; the forward-pointing +36° view zenith angle happened to be positioned right within the 
solar principal plane. A subset of the near-nadir image of the Ofenpass valley overpass is 
depicted in Figure 4.2. The dark parts in the figure are the forest vegetation; the white patch 
within the dark forest represents a snow-covered meadow. Note that snow quality also 
influences the shape of the reflectance anisotropy patterns (Warren et al., 1998; Painter and 
Dozier, 2004). From snow and weather information provided by the Swiss Federal Institute 
for Snow and Avalanche Research (SLF) we know there was no snowfall that week in the 
Engadine region (14.03.2007–17.03.2007: no snowfall, cloud-free). This was also noted 
during a field visit to the region during the CHRIS/PROBA overflight. Snow on the branches 
of the trees had melted, which means that strictly speaking the “snow-covered forest” had 
snow on the ground, but not on the trees. Following a comparison of CHRIS spectral 
signatures with those the John Hopkins spectral library. (Salisbury et al., 1994) the snow grain 
size diameter was assessed as medium. Hardly any spatial variation in snow grain size was 
noted. 
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Table 4.2: CHRIS specifications for Land Mode 5. 

Sampling Image area View angles Spectral 
bands 

Spectral 
range 

~17 m @ 
556 km 
altitude 

13 x 13 km 
(766 x 748 

pixels) 

5 nominal 
angles @ 
0°, ±36°, 

±55° 

37 bands of 
6−33nm 

width 

438−1036 nm 
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Figure 4.1: Polar plot of illumination geometry (Sun:☼) and CHRIS image acquisition as of March 17, 2007 (●), 
and nadir acquisition geometry as of June 27, 2004 (∆). The nominal −55° view zenith angle missed the test site. 
PP: Principal Plane. 
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N 
 

Figure 4.2: RGB subset of the geometrically and atmospherically corrected CHRIS/PROBA nadir scene acquired 
over the Swiss National Park study site on March 17, 2007. The Ofenpass valley stretches from upper left to 
below right of the image. The square indicates the core test site. The white part within the square is the snow-
covered meadow. The pink color on the mountain tops is saturation effect. R: 631 nm, G: 550 nm, B: 442 nm. 

 
4.5. Methods of data analysis 

The CHRIS scenes acquired at various angles were corrected to account for the topographic 
effect of rugged, mountainous terrain, following the approach developed by (Kneubühler et al., 
2005). A parametric approach for geometric correction of each CHRIS acquisition (up to 5 
viewing angles) was applied; it was based on a 3D physical model (Toutin, 2004). The 
method allowed us to achieve high geometric accuracy with a geolocation uncertainty of 
about half a pixel across and along track when using a digital terrain model (DTM; Swisstopo) 
with 2 m resolution (Schläpfer et al., 2003). Regrettably, as a consequence of the reduced 
spatial footprint, the backward-pointing –55° view zenith angle just missed the test site. The 
remaining four images were atmospherically corrected using a freely available MODTRAN-
based atmospheric correction module (Guanter et al., 2005a) implemented in the Basic ERS & 
Envisat (A)ATSR and Meris (BEAM) Toolbox (http://www.brockmann-consult.de/beam) that 
has been specifically developed for correcting CHRIS images (Guanter et al., 2007). The 
method is designed to automatically derive aerosol loading, columnar water vapor and surface 
reflectance from CHRIS data, as well as to update CHRIS's spectral and radiometric 
calibration parameters when necessary (Guanter et al., 2005a). The preprocessing efforts 
resulted in geometrically corrected images of hemispherical-directional-reflectance-factor 
(HDRF) data (Schaepman-Strub et al., 2006) at a spatial resolution of 18 m. The observations 
at 442 and 489 nm were removed from the analysis, because of significant atmospheric 
scattering in the blue bands of CHRIS (Guanter et al., 2004). Moreover, bands close to the 
atmospheric water vapor absorption band at 940 nm (CHRIS bands at 925, 940 and 955 nm) 
were also omitted from further analysis. For all remaining 32 bands the Minnaert-k parameter 
was calculated. 
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4.5.1. Minnaert-k retrieval  

For each pixel, the Minnaert-k parameter was retrieved by inverting the Rahman–Pinty–

Verstraete (RPV) model by using the RPVinversion-3 software package (Lavergne et al., 
2007). The inversion method is documented in Gobron and Lajas (2002). The package offers 
a number of features, including the complete assessment of the measurement-model mismatch 
covariance matrix and the option of operating adjoint software codes derived from automatic 
differentiation techniques. This allowed us to perform the inversion of the nonlinear RPV 
model under the classical Bayesian approach in a numerically and computationally efficient 
manner, while at the same time generating an unbiased estimation of the Probability Density 
Functions (PDFs) for the parameters retrieved. The package implements the inverse model for 
two versions of the model: the standard version using 3 parameters and an extra version with 
the hot spot parameter in addition. The hotspot parameter is only required to improve the 
representation of the hotspot when illumination and observation geometries close to the 
hotspot are present. In the observed winter scene of CHRIS, this configuration was not of 
importance. The RPVinversion-3 procedure thus resulted in sets of RPV parameters (ρ0, k, 
and Θ) and additional information on the accuracy of the fit expressed by the χ2-value. 
Measured and modeled data were compared using the χ2 test (for a significance level α = 0.05) 
to evaluate the performance and the fit of the model parameters. The smaller the value of χ2, 
the better is the correspondence between the CHRIS HDRF data and RPV-reconstructed 
HDRF data, and thus the model performance.  

 
4.5.2. Reference map 
Simultaneous exploitation of the spectral and directional behavior of vegetation canopies 
allows canopy biophysical and biochemical properties to be assessed on the basis of subtle 
variations in the reflectance signatures, and at the same time provides additional information 
on canopy structure based on subtle variations in the angular signatures. Regarding the 
angular signatures, it is of interest to identify the structural parameter that has most influence 
on the reflectance anisotropy, so that the resulting map can be used as reference for evaluating 
the Minnaert-k parameter. Widlowski et al. (2001) and Pinty et al. (2002) have already 
reported the importance of the background contribution. Kayitakire and Defourny (2004) 
concluded that in forested landscapes, the horizontal arrangement of the trees and the stand 
density influence the anisotropy of the canopy reflectance more than tree height and diameter. 
Koetz et al. (2007) used LiDAR data to try to establish a relationship between the Minnaert-k 
parameter and forest structure, but that approach does not provide information about the 
background brightness. It therefore seems more logical to use an independent spectrally 
derived forest cover map to assess the relationship of the Minnaert-k parameter. Since 
illuminated snow and coniferous tree crowns are spectrally highly distinct (Vikhamar and 
Solberg, 2003), a canopy cover map was generated from the near-nadir CHRIS image by 
applying linear spectral unmixing (LSU). LSU is a technique commonly applied to derive 
canopy cover maps, including from high resolution spatial data (Sabol et al., 2002; Chen et al., 
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2004). Canopy cover is defined as the percentage (from 0–100%) of a grid cell that is covered 
by plant canopy when imaged from above. LSU analysis was developed to decompose image 
pixels into their pure constituents (Settle & Drake, 1993; Adams et al., 1995), which under 
winter conditions means vegetation and snow cover. LSU assumes that the reflectance at pixel 
scale can be described by a spectral mixture model in which a mixed spectrum is represented 
as a linear combination of spectral endmembers (Eq. 4.1): 

 

isnowivegetationii RRR  ,snow,vegetation ff                               (4.1) 

under constraint    fvegetation + fsnow = 1  and  f > 0,                              (4.2)
   
where fvegetation and fsnow are the fractions of vegetation and snow in the pixel studied, Ri the 
reflectance of a pixel in band i, Ri, vegetation (Ri, snow) the reflectance of the vegetation (snow) 

endmember in band i, and i  the residual error associated with band i. The unmixing was 

forced to be fully constrained (Eq. 4.2). This guaranteed a physical interpretation of the results, 
since the fractions sum to 1 and all the fractions are positive (Zurita-Milla et al., 2007). The fit 
of the model can be assessed by the root mean square error (RMSE):  

 

RMSE=
i

i

b b 1

2
,                              (4.3) 

where i is the number of bands used in the spectral unmixing. The full spectral domain 
(excluding the bands we had removed) was used to unmix the near-nadir image into these two 
endmembers. The endmembers are depicted in Figure 4.3. The snow endmember was 
extracted from 16 fully snow-covered central meadow pixels of the near-nadir CHRIS data. 
Hardly any spectral variation was noted. The vegetation endmember was extracted from 94 
dense, fully vegetated forest cover pixels of the core test site, using summer near-nadir 
CHRIS data (June 27, 2004; see Verrelst et al., 2008b for more information) to avoid 
contamination from snow cover underneath the canopy layer. As during summer the forest is 
characterized by a vegetated understory (rejuvenates, shrubs), more spectral variation was 
noted. Hence the averaged spectral variation resembles a generic, photosynthetically active 
vegetation signature. The CHRIS near-nadir viewing geometry of the summer acquisition 
precisely matched the CHRIS near-nadir viewing geometry of the winter acquisition 
(Figure 4.1). We know of no events (e.g. storms) that may have significantly altered the forest 
structure in the last few years. While recognizing the limitations of applying LSU at high 
spatial resolution data due to multiple scattering from the targets (Borel & Gerstl, 1994), the 
advantage lies in the technique’s fast calculation and compatibility. The unmixing quantified 
the subpixel spectral contributions of overstory canopy cover and underlying snow cover 
proportions on the basis of the spectral dimension of mono-angular, near-nadir CHRIS 
measurements, thereby minimizing uncertainties related to geolocation and spatial resampling. 
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The unmixing approach for the forest site was tested pixelwise on its uncertainty as expressed 
by the RMSE. As there were only two endmembers, the RMSE values were consistently low 
(around 0.016). The results were compared with ground reference data collected for four plots 
(20 x 20 m) according to the VALERI protocol during the Fire Spread and Mitigation 
(SPREAD) campaign (Kötz et al. 2004; Morsdorf et al., 2004). Consistent results were 
obtained, with a slight overestimation of canopy cover of about 8% when compared with the 
ground reference data.  
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Figure 4.3: Snow and forest vegetation endmembers extracted from near-nadir CHRIS images (average and 
standard deviation). The small spikes in the snow endmember are artifacts of the atmospheric correction (pers. 
comm. L. Guanter, 2009). 

 
4.6. Results and discussion 
4.6.1. Spectral maps of the Minnaert-k parameter 

Minnaert-k maps were generated on a pixel-by-pixel basis across all the used CHRIS 
wavelengths. The wavelengths ranged from the green (530 nm) to the NIR (1019 nm). Six of 
these maps are shown in Figure 4.4. The accuracy of the retrieval for each pixel was 
calculated using the χ2 test. Despite the limited number of angular observations, the RPV 
model was able to fit the CHRIS angular signatures for the Ofenpass valley with high 
accuracy for most of the pixels. The best χ2 results were for the forest vegetation at the valley 
floor. Misfits at the 5% significance level typically occurred along the forest edges, riverbeds 
and along steep slopes, and in some bands over snow-covered regions. In particular, the 
sudden change in volumetric structure on the forest–meadow interface led to unexpected 
shapes of anisotropy. All pixels with a bad fit were filtered out in further analysis. 
Considering the Minnaert-k retrievals, systematic and pronounced patterns emerged in both 
the spatial and spectral dimensions. The excessive blue coloring at the shorter wavelengths 
indicates an enhanced near-nadir scattering, while excessive red coloring at the longer 
wavelengths indicates a bowl-shaped anisotropy. The series of Minnaert-k maps show that 
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anisotropy patterns shift from predominantly bell-shaped patterns (k > 1.0; in blue color tones) 
at the shorter wavelengths towards predominantly bowl-shaped patterns (k < 1.0; in red color 
tones) at the longer wavelengths. These maps also suggest that the largest variability of bell 
and bowl shapes is located around the red edge region. For instance, in the 770 nm map, 
patches of bell-shaped and bowl-shaped anisotropy patterns emerged that seem to be related 
to subpixel surface cover. The homogeneous non-forested pixels (meadow) exhibit 
pronounced bowl-shaped reflectance patterns, while there is a fair amount of variability in 
Minnaert-k parameter over the forest vegetation, suggesting a relationship with forest 
structure at subpixel scale. 
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Figure 4.4: Minnaert-k maps for various CHRIS wavelengths. The white pixels are those in which the reflectance 
anisotropy of the CHRIS-HDRF data and the RPV-reconstructed HDRF data was significantly different.  

 
A more systematic overview of the Minnaert-k dynamics along the spectral range of 

CHRIS is provided in Figure 4.5. The figure presents the spectral dependency of the k values 
averaged for the study site in conjunction with their standard deviations: it can be seen that 
these values decreased progressively towards longer wavelengths. This trend underlines the 
strong spectral dependency of the Minnaert-k parameter. In the visible region, bell-shaped 
reflectance anisotropy patterns dominate (k > 1.0); the bright background controls the 
reflectance of the entire scene at smaller zenith angles (e.g. near-nadir), while at larger zenith 
angles the absorbing properties of the coniferous trees control the reflectance. Conversely, in 
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the NIR spectral region, bowl-shaped reflectance anisotropy patterns dominate (k < 1.0) due 
to enhanced transmission and multiple scattering processes of NIR radiation throughout the 
canopy (Sandmeier & Deering, 1999). As a consequence of these multiple scattering 
processes, the brightness contrast between canopy components and background diminishes, 
particularly further into the NIR. This leads to lower k values that vary within a limited 
numerical range in the NIR, which hampers the separation of different canopy structures, 
although some spatially distinct features remain visible. For instance, the riverbed (centre, 
below) and the edges of the homogeneous snow-covered meadow exhibit a pronounced bell-
shape up to the 886 nm map, while at 997 nm the spatial patterns remain visible but k values 
hardly reach 1. The spatial patterns of contrasting low and high k values can be explained by 
extreme topographic features, i.e. by slope and aspect effects, or by subpixel landscape 
features with extreme spectral contrast, such as roads or riverbeds transecting the area of 
vertically elongated coniferous trees.  
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Figure 4.5: Average Minnaert-k and standard deviation as a function of wavelength. A linear trend line has been 
added. 

 

4.6.2. Biophysical interpretation Minnaert-k maps 

As it became evident that the Minnaert-k parameter is influenced by wavelength, our next step 
was to analyze the parameter’s underlying physical meaning. For this analysis we used 
CHRIS data on the forest on the south-facing valley floor. Although most of the erratic, 
mountainous terrain was excluded from the analysis, subtle variations in topography may still 
lead to target occlusions or larger degrees of anisotropy and thus affect the inversion results. 
Further interpretations of the retrieved model parameters were therefore restricted to forested 
areas on south-facing slopes with a maximum steepness of 7°. In an earlier study, tests on the 
influence of topographic variables using multiple regressions revealed that this approach 
would sufficiently decouple the topographic effects (Verrelst et al., 2008b). We are therefore 
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justified in assuming that remaining surface anisotropy is controlled predominantly by canopy 
structure and density. 

Since the curvature of the angular signature strongly depends on the relative proportion of 
scattering from the overstory and the background, the independently derived canopy cover 
map was used as a base map for the biophysical evaluation. The canopy cover map was 
stratified into seven canopy cover classes, starting with 20% and with subsequent increments 
of 10%. Canopy cover classes lower than 40% are referred to as “sparse”, canopy cover 
classes above 80% are referred to as “dense”, and all the intervening canopy cover classes are 
referred to as “medium dense”. No pixels in the 0–20% canopy cover class were included, as 
most of them occurred along meadow and river edges. The abrupt transition from flat, 
homogeneous land cover types to more volumetric land cover types is known to significantly 
impact the horizontal radiation fluxes (e.g. Widlowski et al., 2006). Hence, only pixels within 
the continuous forest were used for further analysis. As an example, the performance of the 
RPV inversion using the four viewing angles at 631 nm for these canopy cover classes and the 
snow covered meadow is shown in Figure 4.6. This figure shows the relationship between the 
measured CHRIS-HDRF data, the RPV-reconstructed HDRF data, and the canopy cover 
classes and pure snow pixels taken from the snow-covered meadow field. For the majority of 
angular measurements a one-to-one relation was found, which emphasizes the good 
performance of the inversion. The angular measurements that deviated from the one-to-one 
line tended to be the mid-angular measurements (near-nadir and +34° VZA). This is because 
not all pixels showed an unambiguous bell or bowl shape, but instead tended to show an 
irregular curvature, for which the RPV-reconstructed HDRF values optimized a smoother 
curvature in between the irregular values observed.  
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Figure 4.6: Comparison of CHRIS–HDRF and RPV-reconstructed HDRF at 631 nm for various canopy cover 
classes. 

 
Using canopy cover as a spatial mask, the averaged Minnaert-k value was calculated for 

each wavelength and canopy cover class (Figure 4.7). The figure shows a systematic, gridded 
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overview of Minnaert-k values plotted for the wavelengths recorded by CHRIS along the x-
axis and the canopy cover along the y-axis. Each grid cell represents the averaged Minnaert-k 
value for a specific cover class and wavelength. For a few grid cells its associated averaged 
angular signature is illustrated. The column of numbers immediately to the right of the central 
panel shows the number of pixels in each canopy cover class. Note that 94% of the pixels 
have a canopy cover of 60% or more. Only very few pixels with low canopy cover ( < 40%) 
are available, potentially weakening the robustness of the results in this range; nevertheless, 
the dynamics detected are sufficiently comprehensive in this figure.  

Figure 4.7 illustrates that the anisotropic spectral behavior is controlled by the interactions 
between canopy cover and wavelength. The underlying radiative transfer dynamics that 
control the variations of the gridded Minnaert-k results are further explained with the help of 
the example figures illustrated in the four panels of Figure 4.8. These figures display the 
spectral trajectories of the averaged anisotropic reflectance signatures for sparse (i: 20–30%), 
medium dense (ii: 40–50% and iii: 70–80%) and dense (iv: 80–90%) canopy cover classes. As 
can be observed from figures 4.7 and 4.8, canopy cover essentially determines the importance 
of vegetated overstory and snow cover relative to the total top of canopy reflectance, and 
determines the curvature of the angular signature. For example, it controls whether stand 
HDRFs peak at near-nadir zenith angles (e.g. in case of open canopies) or at higher zenith 
angles (e.g. in case of closed canopies). Not only the canopy density but also wavelength 
controls the curvature of the angular signature, and thus the value of the k parameter. This will 
be demonstrated in the next section. 

For almost all canopy cover classes, the signatures at shorter wavelengths are characterized 
by bell-shaped patterns. Only the sparse canopy cover (see Figure 4.8a: 20–30%) gave rise to 
bowl-shaped anisotropy patterns. The absorptive properties of the sparse tree cover did not 
exert sufficient influence to alter the surface-leaving bowl-shaped reflectance field into a bell-
shaped field. Instead, this bowl-shape remained unchanged throughout the spectral domain. 
The uncollided forward scattering of snow cover and – from the red edge onwards – some 
contribution of multiple scattering due to sparse tree cover led solely to enhanced HDRF 
values at greater zenith angles. Because of the low amount of pixels, this class should 
nevertheless be interpreted with caution. 
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Figure 4.7: Averaged Minnaert-k values as a function of canopy cover and wavelength. The number of pixels per 
canopy cover class is given and some examples of the original angular signatures are shown. The RGB snapshots 
for a given canopy cover (white square) are derived from an HRSC (High Resolution Stereo Camera) acquisition 
in summer 2003. (lam= Lambertian) 

 
At denser canopy cover the contribution of uncollided radiation scattered from the bright 

snow background to the total reflectance is greatest at near-nadir viewing angle and decreases 
at larger zenith angles as it becomes obscured by the vertical trees, and therefore a bell-shaped 
reflectance pattern results. Subsequently, when the red edge region is entered, a combination 
of two independent processes at subpixel level affect the top of canopy reflectance anisotropy: 
(i) a systematic decrease of scattered radiation that exits the snow background, due to 
increased absorption by snow grains, and (ii) an increase in multiple scattering processes that 
govern the dispersion processes of radiation exiting throughout the canopy. Both processes 
tend to reduce the bell-shaped pattern: a more absorbing background starts to mimic the 
reflectance pattern of vegetation, and a high scattering of the foliage will enhance the bowl-
shaped pattern. In addition, the degree of canopy openness and background brightness will 
determine where in the spectral domain a bell-shaped pattern will turn into a bowl-shaped 
pattern.  
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These dynamics are clearly illustrated for canopy covers of 40–50% (Figure 4.8b) and 70–
80% (Figure 4.8c). Bell-shaped anisotropy signatures are prominently present in the visible 
spectral region of both cover classes, and even enter the red edge. At a certain wavelength, the 
bright snow reflectance diminishing due to increasing absorption at longer wavelengths is 
however no longer able to provide maximum values at smaller zenith angles. Induced by the 
enhanced multiple scattering processes throughout the canopy, which start to be important 
from the red edge onwards, high reflectance values at larger zenith angles become dominant: 
a transition into a bowl shape takes place. This transition will occur quicker at greater tree 
cover, as then the influence of uncollided radiation from the bright snow background is 
diminished while the multiple scattering effects are further enhanced. At 40–50% canopy 
cover a bell-shape holds until the early NIR (762 nm); thereafter, enhanced scattering at larger 
zenith angles starts to lead to a bowl shape. At denser canopy cover (70–80%), the shift from 
a bell shape into a bowl shape happens more rapidly, i.e. already at the beginning of the red 
edge (at 716 nm).  

Also, it is noteworthy that, despite the influence of a medium dense canopy cover, the 
contributing snow reflectance still exerts a strong influence on the spectral anisotropic 
behavior. This is especially notable for the near-nadir data in the 900 nm region, where 
reflectance values continue to drop. 

At even denser canopy cover (between 80–90%; Figure 4.8d), the tree crowns are so 
densely packed that the remaining uncollided radiation from the snow background is hardly 
able to produce a bell-shaped pattern. Only in the green spectral range does sufficient 
brightness contrast remain between the dark canopy and the bright background. Yet, once the 
red edge has been entered, the predominantly multiple scattering processes throughout the 
canopy directly outperform the influence of single scattering from the snow layer and cause a 
shift to a bowl-shaped pattern.  
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Figure 4.8: Averaged angular HDRF signatures for 4 canopy cover classes (a: 20−30%; b: 40−50%; c: 70−80%; 
d: 80−90%) with a color depending on the Minnaert-k value. Negative View Zenith Angles (VZA) represent the 
backscattering directions, positive VZAs represent forward scattering directions (lam= Lambertian). 

 

4.6.3. Applications of Minnaert-k  

Many studies have reported that the use of multi-angular data improves assessments of land 
cover classes and canopy characteristics such as crown cover, tree height, and LAI 
(Abuelgasim et al., 1996; Bicheron et al., 1997; Braswell et al., 2003; Sandmeier & Deering, 
1999; Heiskanen, 2006; Liesenberg et al., 2006; Vuolo et al., 2008). They have also amply 
demonstrated that multi-angular data provide additional information; however, all these 
studies are based on a series of angular data and statistical approaches without explicitly 
separating the directional information content from the spectral information content. The RPV 
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model is particularly useful for exploring and elucidating the independent contribution of the 
angular domain. It is a simple model that allows fast decomposition of the scattered radiation 
into three parameters, of which the Minnaert-k parameter relies solely on the curvature of the 
reflectance anisotropy at a single wavelength. Our work links the RPV’s Minnaert-k 
parameter with a subpixel structural heterogeneity variable (canopy cover) at the scale of the 
CHRIS subpixel resolution over the full VNIR region including the critical red edge region.  

In the initial work by Pinty et al. (2002) the use of measurements in the red spectral region 
was advocated, on the grounds that this is where the subpixel reflectance contrast between the 
vertical, photosynthetically active coniferous trees and the underlying soil cover is maximized. 
But this assumes summer conditions, where maximum brightness contrast with vegetation is 
given by a bright bare soil. In a winter landscape, the influence of the underlying bright snow 
cover is considerably larger, i.e. significant brightness contrast continues throughout the red 
edge. This greater brightness contrast led to the transition from bell to bowl shapes moving 
throughout the red edge towards the early NIR. Our work used multi-angular CHRIS data to 
bring the findings of earlier theoretical and broadband studies (e.g. Gobron & Lajas, 2002; 
Pinty et al., 2002; Nolin 2004; Widlowski et al., 2001, 2004) into the field of imaging 
spectrometry. Given the local character of the data set, the results might be subject to 
uncertainties related to the atmospheric correction procedure, the generation of the base 
canopy cover map, and the solar zenith angle. Nevertheless, for a set of χ2-filtered pixels on 
the valley floor it has been demonstrated that the bell and bowl shapes of reflectance 
anisotropy as expressed by the Minnaert-k parameter is bounded by physical limitations, both 
by wavelength as well as by canopy cover. For instance, the bell-shaped patterns dominate 
throughout the visible region and narrows down to medium canopy cover densities throughout 
the red edge. Identification of such bell-shaped trajectory for a given overstory canopy and 
background type along the spectral range may lead to the selection of the most appropriate 
wavelength for Minnaert-k mapping.  

As a shift from bell to bowl shape takes place in the red edge and early NIR regions as a 
function of canopy cover, this is the critical region for characterizing forest heterogeneity 
under winter conditions. Inspection of Figure 4.7 reveals that for the given conditions, 
promising results appeared at the end of the red edge (e.g. 735 nm). In this region, blue color 
tones typically indicate the presence of a heterogeneous surface type such as a forest cover 
between 40–70%. Red color tones typically indicate the presence of a structurally 
homogeneous surface, such as either a sparse tree cover up to 40% or a dense tree cover with 
a canopy cover over 70%. Moreover, as well as indicating canopy cover, the Minnaert-k 
parameter may also act as vertical profiling proxy within a canopy: high k values ( >1.0, bell-
shaped) indicate the occurrence not only of gap effects, but also of vertical structures within a 
pixel. For instance, the depth of the bell-shaped curvature for a given canopy cover is 
additionally controlled by tree height; i.e. tall coniferous trees will result in a more 
pronounced bell-shaped curvature compared to low-growing plants (e.g. shrubs), because the 
vertically elongated foliage clumps already obscure the background-leaving radiation at 
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smaller zenith angles. Conversely, low k values ( <1.0, bowl-shaped) characterize pixels in 
which a vertical profile at the subpixel scale is less marked. This notion of vertical profiling 
makes the Minnaert-k parameter more distinctive than a canopy cover map; it provides a 
quantitative indicator of vertical and horizontal heterogeneity at the subpixel scale. Research 
in this direction was initiated by Widlowski et al. (2001, 2004). Using a ray-tracing radiative 
transfer model they attempted to relate the Minnaert-k parameter to tree density and height. 
The relationships found were subsequently tested in a real forest stand using a LiDAR dataset 
(Koetz et al., 2005). Although multiple solutions did occur for a single k value (an example of 
the well-known ill-posed problem), canopies with heterogeneity in either horizontal or 
vertical dimension were successfully discriminated from homogeneous canopies.  

Our results coincide with the work of Kayitakire and Defourny (2004) that reflectance 
anisotropy in the red edge and early NIR region is critical for canopy characterization. These 
authors reported that the angular signatures of winter temperate forest types not under snow 
were significantly different at the red edge and NIR wavelengths of CHRIS. They concluded 
that canopy structure caused these spectral differences, but did not quantify the underlying 
radiative transfer mechanisms. Progress in this direction was recently made by Rautiainen et 
al. (2008) by using a radiative transfer model and CHRIS acquisitions during summer. Their 
modeling results did identify the red edge domain as receiving the largest contribution from 
forest understory, and revealed that the more oblique the view angle, the smaller the direct 
contribution from the understory. Our work provides an explanation of the underlying 
mechanisms, e.g. why a shift in the curvatures of the anisotropy field occurs.  

When the brightness contrast between overstory and background is small (e.g. due to 
understory) variations in angular signatures will nevertheless be more subtle. What will then 
cause the main differences in reflectance anisotropy is the fraction of sensed shadow cast on 
the background (Kayitakire & Defourny, 2004). Regardless of the type of background, these 
studies all suggest that the red edge region has strong potential for linking reflectance 
anisotropy with subpixel surface heterogeneity (e.g. canopy cover, vertical profiling). Further 
research needs to be done on the anisotropic behavior of the red edge spectra in relation to 
biophysical information content. Such research will be of interest for the design of future 
airborne and space-borne multi-angular sensors. 

Despite the good correlations found over flat, forested surfaces, it should be taken into 
account that several additional factors other than canopy closure are important in shaping the 
reflectance anisotropy and hence in determining the k parameter. The following potential 
factors can be identified: (i) influence of solar zenith angle (Pinty et al., 2002); (ii) multiple 
targets contributing to a pixel’s angular signature, i.e. background other than snow cover 
beneath the vegetation canopy (e.g. rock outcrops, understory) or snow on trees; (iii) snow 
quality affecting anisotropy patterns (Warren et al., 1998); (iv) influence of horizontal 
radiation fluxes due to the high spatial resolution of CHRIS (Widlowski et al., 2006); (v) 
reduced co-registration quality at greater zenith angles; and, (vi) topographic effects, which, 
although largely decoupled, may still occur (Koetz et al., 2005; Kneubühler et al., 2008). The 
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topographic effects in particular may complicate the robustness of using the Minnaert-k 
parameter as a bio-indicator, because the presence of topography can lead to enhancement or 
attenuation of reflectance anisotropy patterns (Schaaf et al., 1994).  

To overcome the influence of the horizontal radiation fluxes, an alternative may be to 
coarse-grain the observations from stand to landscape scale, i.e. by using data from coarser 
spatial resolution multi-angular sensors such as MISR (275 m in red). With the use of MISR 
data the influence of horizontal radiation fluxes will be exceeded by the influence of the 
vertical fluxes of the larger surface covered by a pixel (Widlowski et al., 2006). However, 
with MISR data not only variation in canopy cover but also variation in topography and 
additional land cover types (e.g. rocks, roads, rivers) governs reflectance anisotropy at the 
sensor subpixel scale. Then the subtle variations in anisotropy patterns invoked by vegetation 
structure tend to be outperformed by the landscape-scale variations in reflectance anisotropy 
(e.g. due to riverbeds) (Pinty et al., 2002). 

The fact that the red color tones in Figure 4.7 (bowl-shaped anisotropy patterns; k < 1.0) 
either represent an open snow-covered surface or a dense canopy cover poses another 
constraint to the interpretation of k values. To overcome this constraint, an option would be to 
combine the Minnaert-k map with the spectral dimension of the RPV model (e.g. the 
amplitude parameter) so that vegetation spectra can easily be discriminated from the snow 
spectra. Another option is to combine the Minnaert-k map with an independently derived 
canopy cover map. Spectrodirectional CHRIS data are particularly useful for generating both 
kinds of maps, e.g. by applying LSU in the spectral domain and Minnaert-k retrieval in the 
directional domain. Merging both products may yield subpixel information beyond what is 
possible from single-source datasets.  

 

4.7. Conclusions 

So far, there has been no widespread development of applications making use of both the 
angular and spectral domains. This paper links anisotropic reflectance signatures of a forested 
surface as observed from space with forest 3D-heterogeneity at subpixel scale in the spectral 
domain. We used spectrodirectional CHRIS data to elaborate the exploitation of reflectance 
anisotropy and more specifically addressed the spectral dependency of the Minnaert-k 
parameter as measured over a coniferous forest. CHRIS images of a coniferous forest 
acquired during winter were found particularly useful for evaluating the underlying 
biophysical information content embedded in the angular domain. The Minnaert-k parameter 
pixelwise mapped variation in anisotropic reflectance of the forest vegetation across the 
CHRIS bands. For the set of pixels analyzed, a spectrally-driven transition in reflectance 
anisotropy emerged: from predominantly bell-shaped anisotropy patterns in the visible 
spectral region towards predominantly bowl-shaped anisotropy patterns in the NIR spectral 
region. Due to the underlying bright snow cover, the transition from bell to bowl shape for 
heterogeneous canopies with a canopy cover between 30–80% was found somewhere in the 
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red edge region: the exact spectral position of the switch from bell to bowl shape was 
controlled by canopy cover. At 735 nm, medium canopy cover (40–70%) typically led to bell-
shaped anisotropy patterns, while canopy covers that were sparse or dense typically led to 
bowl-shaped reflectance anisotropy patterns. In turn, when the background is less bright than 
snow cover, then the switch from bell to bowl shape is expected to occur earlier in the spectral 
domain due to a reduced brightness contrast. Further research is required to evaluate the 
inherently embedded biophysical information content of reflectance anisotropy in the full 
spectral domain under non-snow conditions, e.g. during summer. In addition, further attempts 
should be made to link subtle variations in canopy reflectance anisotropy with more specific 
structural parameters, such as crown diameter and tree height.  
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Merging the Minnaert-k parameter with spectral unmixing 
to map forest heterogeneity with CHRIS/PROBA data 

 
 
 

Abstract 

CHRIS (Compact High Resolution Imaging Spectrometer) mounted onboard the PROBA 
(Project for On-board Autonomy) spacecraft is capable of sampling reflected radiation at five 
viewing angles over the visible and near-infrared regions of the solar spectrum with high 
spatial resolution. We combined the spectral domain with the angular domain of CHRIS data 
in order to map the surface heterogeneity of an Alpine coniferous forest during winter. In the 
spectral domain, linear spectral unmixing of the nadir image resulted in a canopy cover map. 
In the angular domain, pixelwise inversion of the Rahman–Pinty–Verstraete (RPV) model at a 
single wavelength at the red edge (722 nm) yielded a map of the Minnaert-k parameter that 
provided information on surface heterogeneity at subpixel scale. However, the interpretation 
of the Minnaert-k parameter is not always straightforward, because fully vegetated targets 
typically produce the same type of reflectance anisotropy as non-vegetated targets. Merging 
both maps resulted in a forest cover heterogeneity map, which contains more detailed 
information on canopy heterogeneity at the CHRIS subpixel scale than is possible to realize 
from a single-source data set.  
 
Keywords: hyperspectral, multi-angular, CHRIS, reflectance anisotropy, forest heterogeneity 
mapping 
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5.1. Introduction 

The measured reflected solar radiation of boreal and Alpine forests under winter conditions 
depends on the wavelength and the proportions of snow cover and plant canopy cover 
detected by a sensor (Vikhamar and Solberg, 2003). These proportions depend on 
illumination and viewing angle, topography, and structural canopy properties such as tree 
density, canopy geometry, and gap fraction. Consequently, the reflected radiation can be 
sampled by a space-borne optical sensor either in the spectral domain, i.e. at multiple 
wavelengths, or in the angular domain, i.e. at various viewing angles, or as a combination of 
both. Though the inferring of information on the terrestrial surface from reflectance data 
sampled in the spectral domain has been extensively studied in the last forty years, e.g. 
through image classification (Lu and Weng, 2007; Muñoz-Marí et al., 2007), spectral 
vegetation indices (Glenn et al., 2008; Haboudane et al., 2008), surface reflectance models 
(e.g. Verhoef, 1984; Verstraete et al., 1993), or spectral mixture analysis (e.g. Roberts et al., 
1993), considerably less research has been done on exploiting reflectance data sampled in the 
angular domain for mapping applications (Diner et al., 2005; Schaepman, 2007; Chopping et 
al., 2008). 

With the advent of multi-angular Earth observing sensors (Diner et al., 1999; Barnsley et al., 
2004) and the development of surface reflectance models (e.g. Verhoef, 1984; Verstraete et al., 
1993), physically-based attempts were undertaken to retrieve canopy characteristics from 
multi-angular reflectance data. Among the surface reflectance models, the Rahman–Pinty–
Verstraete (RPV) parametric model (Rahman et al., 1993) is particularly suitable for 
estimating reflectance anisotropy, because it simulates the bidirectional reflectance 
distribution function (BRDF) of an arbitrary land surface on the basis of three parameters. Of 
these parameters, the k parameter is of particular interest as it describes most of the angular 
variation related to surface reflectance anisotropy (Pinty et al., 2002). Pinty et al. (2002) 
theoretically demonstrated that the Minnaert-k parameter contains information on subpixel 
heterogeneity, particularly when a low solar zenith angle is present in combination with a 
bright background. Their work has been corroborated by other studies, e.g. on forest areas 
underlain by a snowpack (Nolin et al., 2004; Koetz et al., 2005; Verrelst et al., 2010b).  

In 2001, the European Space Agency (ESA) launched the experimental satellite sensor 
CHRIS (Compact High Resolution Imaging Spectrometer) onboard the PROBA (Project for 
On-board Autonomy) spacecraft. The imaging spectrometer captures quasi-instantaneously a 
series of five angular images of a terrestrial surface at a high spatial resolution (~17 m) during 
the same orbit. CHRIS is capable of sampling the anisotropic behavior of the reflected solar 
radiation in up to 62 narrow spectral bands over the visible and near-infrared (VNIR) regions 
of the electromagnetic spectrum (400–1050 nm) (Barnsley et al., 2004; Duca & Del Frate, 
2008 ).  

To ascertain the capability of CHRIS for measuring reflectance anisotropy in the VNIR, an 
old-growth alpine forest stand in the Swiss Alps was chosen as a test site (Schaepman et al., 
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2004). It was overflown by CHRIS/PROBA on March 17, 2007. On this day, the snow had 
melted from the tree canopy but the forest floor was still covered by a thick pack of snow, 
which spectrally simplified the image: dark overstory vegetation underlain by a bright snow-
covered background. The concurrent spectrodirectional (combined spectral and multi-angular) 
observations of a spectrally simplified landscape at a high spatial and spectral resolution 
makes it possible to explore the spatial, spectral and angular information content of 
spectrodirectional measurements to the fullest.  

In the spectral domain, a widely applied technique is linear spectral unmixing (Plaza et al., 
2004). It works particularly well in discriminating vegetation from snow cover, thereby 
generating a canopy cover map (Verrelst et al., 2010b). Canopy cover is defined as the 
percentage (from 0–100%) of a grid cell that is covered by a vegetation canopy. Linear 
unmixing techniques, however, are unable to provide information on the vertical distribution 
or 3D distribution of canopy cover, so cannot reveal whether the canopy cover is of tall trees 
or short vegetation.  

In the angular domain, a simple technique for obtaining information on surface reflectance 
anisotropy is retrieval of the Minnaert-k parameter from the RPV model. Although the 
Minnaert-k parameter makes it possible to map variations in subpixel heterogeneity, the 
interpretation of the parameter is limited by various factors, such as the parameter’s 
dependence on solar zenith angle, background brightness, and topography (Pinty et al., 2002; 
Koetz et al., 2005). Further, the practical applicability of the Minnaert-k parameter is not 
always straightforward. Surfaces that behave radiatively like turbid media (typically they are 
homogeneous surfaces, either fully vegetated or non-vegetated surfaces) result in a bowl-
shaped reflectance anisotropy pattern (Pinty et al., 2002), and thus cannot be directly 
discriminated from each other. A possible way to overcome this and to improve forest 
heterogeneity mapping is to merge Minnaert-k information with the information content 
obtained from the spectral domain. The two aims of the study we describe here were therefore 
1) to merge the Minnaert-k map with a spectrally-derived canopy cover map, and 2) to 
ascertain whether the resulting map contains more valuable information related to canopy 
structure at the CHRIS subpixel scale than the single-source maps. 

 

5.2. Biophysical interpretation of Minnaert-k 

The RPV model provides a description of the target's reflectance anisotropy, without 
attempting to assign it to specific physical causes or processes. As such, it is an empirical and 
efficient parametric representation of that surface property (Rahman et al., 1993; Pinty et al., 
2002). The RPV model splits the scattered radiation field for a given wavelength into a scalar 
amplitude component and an associated directional component describing the anisotropy of 
the surface (Rahman et al., 1993; Pinty et al., 2002). The directional component of the 
reflectance function is expressed as the product of three functions: (i) the modified Minnaert 
function k that controls the curvature (e.g. the degree of convexity or concavity), (ii) a 
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parameter that controls the degree of forward and backward scattering regimes, and (iii) an 
optional hotspot descriptor function. The underlying algorithms for each of the parameters are 
documented in (Rahman et al., 1993; Pinty et al., 2002).  

Under favorable conditions of illumination and background brightness, the angular pattern 
is largely controlled by the physical properties and geometrical arrangements of the plant 
elements that constitute the terrestrial surfaces (Pinty et al., 2002). This means that the angular 
signature of a pixel at a single wavelength as measured by a multi-angular sensor can be 
diagnostic for the assessment of subpixel structural surface properties when there is sufficient 
difference in brightness between the overstory and background.  

Coniferous forests commonly appear darker than deciduous forests, due to the strong 
internal shadowing caused by clumping effects and the relatively high light absorption 
capacity of needle foliage (Smolander & Stenberg, 2003). In coniferous stands in winter the 
following situations can occur: a surface that is brighter at large oblique viewing angles in 
forward and backward scattering directions leads to a “bowl-shaped” reflectance anisotropy 
pattern. A bowl-shaped anisotropy pattern results in a k value smaller than 1. This is a 
common situation for more homogeneous surface covers. Conversely, a surface that is 
brighter at nadir viewing angle than at oblique viewing angles leads to the inverse pattern: a 
“bell-shaped” reflectance anisotropy pattern. A bell-shaped anisotropy pattern results in a 
k value larger than 1. This is a common situation for open, vertically elongated canopies with 
a bright background. Finally, a surface that exhibits Lambertian reflectance, i.e. the amount of 
scattered radiation is the same in all directions, results in a k value of 1 (Pinty et al., 2002).  

The Minnaert-k parameter can thus be used as a bio-indicator for canopy heterogeneity 
simply on the basis of canopy closure and fluctuations in the amount of scattering and 
absorbing material at one specific wavelength (Pinty et al., 2002; Nolin, 2004; Verrelst et al., 
2010b). While k values in excess of 1 are generated by targets that exhibit vertical structures 
and 3D effects, k values less than 1 are typically associated with targets that behave 
radiatively like turbid media. As a result, the k parameter is of limited use for discriminating 
homogeneous surface covers (e.g., it may characterize either very sparse or very dense canopy 
covers).  

To overcome this limitation and to improve subpixel heterogeneity mapping, we proposed 
to combine the Minnaert-k parameter to canopy cover derived from the spectral domain. 
Kayitakire and Defourny (2004) concluded that in forested landscapes, the horizontal 
arrangement of the trees and the stand density influence the angular component of the 
reflectance more than tree height and diameter. The contribution of the background brightness 
is another crucial factor in governing the shape of reflectance anisotropy (Pinty et al., 2002). 
It therefore seems logical to derive a canopy cover map and combine that with the Minnaert-k 
map. Since illuminated snow and conifer tree crowns are spectrally highly separable, we used 
linear spectral unmixing (LSU) of the spectral dimension of the nadir CHRIS data for this 
purpose. 
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5.3. Methodology 
5.3.1. Test site and CHRIS data 

An Alpine valley, the Ofenpass valley, located in the Swiss National Park, South East 
Switzerland (10°13′48″E/ 46°39′45″N), was chosen as test site. The valley is characterized by 
a coniferous old-growth forest and patches of Alpine meadow. The forest can be classified as 
woodland associations of the Erico-Pinetum mugo type typified by relatively open and 
discontinuous stands. The forests vary in topography, openness, tree clumping, leaf area index 
(LAI) and woodiness. The south-facing valley floor of the Ofenpass valley was considered to 
be the core test site (Figure 5.1). 

N 
 

Figure 5.1: Subset of the geometrically and atmospherically corrected CHRIS nadir scene acquired over the 
Swiss National Park study site on March 17, 2007. The Ofenpass valley stretches from top left to bottom right of 
the image. The whitish parts are snow-covered meadow fields or mountaintops. The square marks the core test 
site. 

 

A series of CHRIS mode 5 “land” images was acquired over the Swiss National Park on 
March 17, 2007, near noon local time (11:34h local time; sun zenith: 50°, azimuth: 161°) 
under cloud-free conditions. Mode 5 is configured in CHRIS’s best spatial resolution 
(nominally ~17 m) and spectral resolution (37 narrow bands with bandwidths of 6–33 nm 
located between 438 nm and 1036 nm). The acquisition date was chosen to ensure that a 
carpet of snow was still present while the sun position was already acceptably high at noon 
for the purpose of Minnaert-k retrievals. The solar position can be regarded as constant for all 
five CHRIS Fly-by Zenith Angles (FZA), since the images are instantly recorded during the 
satellite overpass. In the current along-track pointing configuration, the FZA is equivalent to 
the nominal viewing angles (0°, ±36°, ±55°). Due to its narrow field of view (FOV), however, 
CHRIS is only occasionally able to acquire a target at nominal viewing angle. PROBA must 
be tilted so that the target area falls within the sensor FOV. This means that the actual 
observation angles at which the images are acquired may deviate from the nominal viewing 
angles. For example, the nominal nadir camera position appeared to be pointing in a forward 
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view zenith angle of +21°. A subset of the near-nadir image of the Ofenpass valley overpass 
is depicted in Figure 5.1. The dark areas in the figure are the forest vegetation; the white patch 
within the dark forest represents a snow-covered meadow. Snow on the branches of the trees 
had melted, so in this case, “snow-covered forest” refers to snow covering the ground but not 
the trees.  

Unfortunately the backward-pointing –55° view zenith angle just missed the test site. The 
angular CHRIS scenes of the remaining four images were geometrically corrected following 
an approach for rugged, mountainous terrain (Kneubühler et al., 2005) and were subsequently 
atmospherically corrected using a freely available MODTRAN-based procedure implemented 
in the BEAM toolbox (http://www.brockmann-consult.de/beam) that has been specifically 
developed for correcting CHRIS images (Guanter et al., 2005a). The end-to-end module 
simultaneously derives a set of calibration coefficients and an estimation of water vapor 
content and aerosol optical thickness from the data themselves. The preprocessing efforts 
resulted in geometrically corrected images of hemispherical-directional-reflectance-factor 
(HDRF, see Schaepman-Strub et al., 2006 for terminology used) data at a spatial resolution of 
18 m. We did not include the bands in the blue part of the spectrum (442 and 489 nm) in our 
analysis, because of significant atmospheric scattering in the blue bands of CHRIS (Guanter 
et al., 2004). The bands close to the atmospheric water vapor absorption band at 940 nm 
(CHRIS bands at 925, 940 and 955 nm) were also omitted from further analysis.  

 

5.3.2. Spectral and angular information 

In the spectral domain, the reflectance of a pixel can be described by a spectral mixture model 
in which a mixed spectrum is represented as a linear combination of pure vegetation and snow 
spectra (Eq. 5.1 & 5.2): 

 

isnowivegetationii RRR  ,snow,vegetation ff                                (5.1) 

under the constraint    fvegetation + fsnow = 1  and  f > 0,                            (5.2)
    
where fvegetation and fsnow are the fractions of vegetation and snow in the pixel studied, Ri the 
reflectance of a pixel in band i, Ri, vegetation (Ri, snow) the reflectance of the vegetation (snow) 
endmember in band i, and i  the residual error associated with band i. The full spectral 

domain (excluding the bands we had removed) was used to decompose the near-nadir image 
into fractions of these two endmembers. Hence the LSU quantified the subpixel spectral 
contributions of canopy and underlying snow solely on the basis of mono-angular, near-nadir 
spectral measurements. The unmixing approach for the forest site was accompanied by 
uncertainty, expressed by the root mean square error (RMSE). Due to the spectrally simplified 
landscape the RMSE values were consistently low (around 0.016). The results of the 
unmixing were compared with ground reference data collected following the VALERI 



Chapter 5 
 

92 

protocol during the Fire Spread and Mitigation (SPREAD) campaign (Kötz et al., 2004; 
Morsdorf et al., 2004). Consistent results were obtained by LSU, though the canopy cover 
was systematically overestimated by about 8% by comparison with the ground reference data. 
The canopy cover map was subsequently stratified into canopy cover classes with increments 
of 10%, starting from 0% (full snow cover).  

In the angular domain, reflectance anisotropy was quantified by means of the Minnaert-k 
parameter. Pixelwise retrieval of the Minnaert-k parameter through RPV model inversion was 
achieved using the RPVinversion-3 software package (Lavergne et al., 2007). The inversion 
method is documented in (Gobron & Lajas, 2002). The inversion method is documented in 
[31]. The package offers a number of features, including the complete assessment of the 
measurement-model mismatch covariance matrix and the option of operating adjoint software 
codes derived from automatic differentiation techniques. This allowed us to perform the 
inversion of the nonlinear RPV model under the classical Bayesian approach in a numerically 
and computationally efficient manner, while at the same time generating an unbiased 
estimation of the probability density functions for the parameters retrieved. The package 
implements the inverse model for two versions of the model, with or without the hotspot 
parameter. The hotspot parameter is only required to improve the representation of the hotspot 
when illumination and observation geometries close to the hotspot are present. In the 
observed winter scene of CHRIS, this configuration was not of importance. The RPV 
inversion-3 package thus resulted in sets of RPV parameters and additional information on the 
accuracy of the fit expressed by the χ2 -statistic. Minnaert-k maps were generated on a pixel-
by-pixel basis across all the used CHRIS wavelengths. Using canopy cover classes as a spatial 
mask, averaged Minnaert-k values were calculated per class across the CHRIS bands. In this 
way the Minnaert-k parameter can be systematically related to wavelength and canopy cover.  

The Minnaert-k maps across the CHRIS bands and the canopy cover map were 
subsequently used to select the wavelength at which the best relationship between both data 
sources can be established. Given that low Minnaert-k values (k < 1) are expected at both very 
sparse and dense canopy covers (homogeneous surface covers), and high values (k > 1) at 
medium dense covers (heterogeneous surface covers), we expected a quadratic trend. It has 
been demonstrated that given a bright background, a switch from bell to bowl shape is most 
likely to occur somewhere in the red edge (Verrelst et al., 2010b). CHRIS in mode 5, with its 
eight bands in the red edge, provides an excellent basis for selecting an appropriate 
wavelength. We based the selection of the wavelength at which the best relationship between 
canopy cover map and Minnaert-k map occurred on the Pearson’s squared correlation 
coefficient of the quadratic-polynomial fit and an F-test to test the significance of the 
relationships. 

The advantage of CHRIS is that its multidimensionality can be exploited to map forest 
cover heterogeneity at the CHRIS subpixel scale. Spectrodirectional CHRIS data are 
particularly useful for generating two kinds of maps: in the angular domain the data allow 
Minnaert-k retrieval to be applied for a given wavelength by inverting the RPV model, 
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whereas in the spectral domain the data allow LSU to be applied for a given viewing angle. 
We then merged both independently-derived maps (LSURGB + Minnaert_kRGB) / 2, to create a 
new data layer. In addition, the original horizontal and vertical color bars associated with the 
canopy cover and Minnaert-k maps were likewise converted to an RGB representation and 
merged to a 2D legend with canopy cover in the x direction and Minnaert-k in the y direction 
(cf., Figure 5.8B). 

 

5.4. Results and discussion 

5.4.1. Linear umixing 

The canopy cover map generated from the nadir spectral domain is displayed in Figure 5.2. Its 
frequency distribution is displayed in Figure 5.3. The white spot on the right represents a 
snow-covered meadow. The histogram shows that only a few pixels with low densities 
( < 40%) were present, usually at the edge of the meadow and as gaps within the forest. The 
histogram also indicates that the canopy cover in most of the pixels is between 60 and 90%, 
which is typical for an Alpine forest stand (see Figure 5.3). About 14% of the pixels represent 
other situations: a snow-covered meadow (middle right in Figure 5.2), riverbeds (striped 
patterns), and gaps within the forest. However, whereas the canopy cover map shows spatial 
variations in proportion of tree cover, the map is unable to indicate the surface heterogeneity 
at subpixel level.  

0 50 100 
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Figure 5.2: Map of canopy cover based on constrained LSU of the nadir CHRIS image of March 17, 2007. 
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Figure 5.3: Histogram of the canopy cover map based on constrained LSU of the nadir CHRIS data. 

 

5.4.2. Minnaert-k retrieval 

Pixelwise inversion of the RPV model generated maps of Minnaert-k values across the 
CHRIS bands. In an earlier paper (Verrelst et al., 2010b) we demonstrated some relationships 
between Minnaert-k, wavelength and canopy cover for the forest stands for a limited number 
of pixels on the valley floor (slope < 7°). These relationships were again tested, but now for 
the whole region (Figure 5.4). This figure shows a systematic, gridded overview of averaged 
Minnaert-k values for the wavelengths recorded by CHRIS along the x-axis and the canopy 
cover classes along the y-axis. This overview enables us to track the specific spectral 
trajectory of the Minnaert-k parameter for each canopy cover class.  
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Fi
gure 5.4: Averaged Minnaert-k values as a function of canopy cover and wavelength. The numbers on the right 
represent the number of pixels for each class (lam= Lambertian).  

 
Although the Minnaert-k parameter is a semi-empirical parameter, Figure 5.4 shows that the 
bell-shaped and bowl-shaped reflectance anisotropies depend on both canopy cover and 
wavelength. For instance, the bell-shaped domain dominates throughout the visible region and 



Spectral–angular merging 
 

 95

narrows down to medium canopy cover densities throughout the red edge and early NIR. 
Since reflectance anisotropy switches from bell shape to bowl shape in the red edge and early 
NIR as a function of canopy cover, it provides the critical spectral region for characterizing 
stand heterogeneity under winter conditions. The white color tones indicate the turning point 
from bell to bowl shape. For an exhaustive description of the underlying wavelength-
dependent mechanisms related to land cover and sun-target-sensor geometry, see (Verrelst et 
al., 2010b). The R2 results of the quadratic regression model between canopy cover and 
Minnaert-k across the CHRIS bands for the complete data set yielded a best correlation at 722 
nm (R2 of 0.43). The relationship between the canopy cover map and the Minnaert-k map at 
722 nm is shown in the scatter plot of Figure 5.5. Although the relationship was significant 
(F2,6433 = 2405, p < 0.0001), the low R2 indicates that canopy cover is not the only variable 
determining reflectance anisotropy. This is particularly the case for pixels with canopy covers 
less than 60%, where no clear pattern can be observed. Most of these pixels with sparse forest 
cover are found at the interface between forest cover and snow-covered meadow or on the 
riverbeds. At these locations, edge effects and the position of the edge in relation to the sun 
may yield varying anisotropy effects. Another explanation for the low R2 is the influence of 
topographic effects. For pixels with > 60% canopy cover the relationship between Minnaert-k 
and canopy cover is more obvious. 

  
Figure 5.5: Scatter plot of canopy cover against Minnaert-k at 722 nm. Trend line: p < 0.0001. 

 
The Minnaert-k map at this wavelength is shown in Figure 5.6. Whitish-blue color tones 

indicate the presence of a heterogeneous surface type such as open to medium dense forest 
stands with a cover density of up to 70%. Reddish-white color tones indicate the presence of a 
structurally homogeneous target such as a dense tree cover or a snow-covered meadow. 
Reddish-white patterns are to be found over the forest stands (e.g. the middle of the figure) 
but also over the snow-covered meadow (to the right). Such ambiguity of bowl-shaped 
patterns makes it hard to interpret this map for forest monitoring applications. Although forest 
cover predominantly exhibited enhanced reflectance patterns in backscattering direction (with 
maximal backscatter at -36º zenith angle, which approaches closest the hot spot) and snow 

R2 = 0.43

0

0.5

1

1.5

2

0 20 40 60 80 100
Canopy cover [%]

M
in

na
er

t-
k 

at
 7

22
 n

m

     
Trend line 



Chapter 5 
 

96 

cover predominantly exhibited enhanced reflectance patterns in the forward scattering 
direction (due to its specular component), both land cover types yielded a bowl-shaped 
reflectance anisotropy pattern (k<1). Therefore, from the generated Minnaert-k map it is 
impossible to discern forest cover from non-forest cover. In addition, at a pixel size of 18 m, 
pixels with sparse forest cover at near-nadir may either lead to low k values (e.g. at the 
meadow) or high k values (e.g. at the riverbed). In the latter locations, reflectance anisotropy 
is strongly influenced by the volumetric contribution of the adjacent pixels, e.g. if adjacent 
pixels represent a dense forest cover then lower reflectance values at larger viewing angles are 
observed due to a partly pixel overlapping in comparison to the near-nadir observation and so 
leading to a bell-shaped curvature (high k values). In case an irregular curvature is observed, 
the RPV inversion-3 package has been optimized to fit a smoother curvature in between the 
irregular values. The provided χ2-statistics provide information how close the fit matches the 
observations of the four CHRIS viewing angles. At 722 nm 7.3% of the pixels led to a 
mismatch at a significance level of 0.05, mainly due to irregular reflectance anisotropy 
curvatures occurring on the meadow and riverbeds.  
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Figure 5.6: Minnaert-k parameter obtained by RPV model inversion at 722 nm (lam= Lambertian). 

 
From Figure 5.6 it is obvious that apart from vegetation structure two spatial factors affect 

reflectance anisotropy at the CHRIS subpixel scale: (i) interfaces between land covers of 
contrasting volumetric compositions (e.g. forest–meadow interface, riverbeds, road 
intersections); and (ii) topography: variation in slope gradient and aspect, and the related 
variation in topographic shadowing. Both factors lead to the enhancement or attenuation of 
reflectance anisotropy patterns. The histogram related to the data in Figure 5.6 has a normal 
distribution (Figure 5.7), with a peak towards Minnaert-k values of 0.8 (small bowl-shaped 
pattern). Compared with the histogram of the canopy cover map (Figure 5.3), the pattern is 
very different: the distribution has a wider spread, underlining that the spectral and angular 
domains are to a great extent independent of each other.  
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Figure 5.7: Histogram of the Minnaert-k map inferred from the RPV model and angular CHRIS data at 722 nm. 

 

5.4.3. Merging 

The merging of the canopy cover map with the Minnaert-k map is displayed in panel A of 
Figure 5.8. In this merged map not only is the snow-covered meadow (whitish color tones) 
clearly separated from the forest cover (greenish color tones), but also subtle color tones 
related to subpixel heterogeneity appear. The biophysical meaning of these color tones is 
explained in the 2D color chart of panel B in Figure 5.8.  

In the 2D color chart all possible color tone combinations of Minnaert-k and canopy cover 
are displayed: canopy cover along the x-axis (generated from the spectral domain), Minnaert-k 
along the y-axis (generated from the angular domain). In the RGB color scheme, the green 
color represents the degree of canopy cover. The red color represents the degree of bowl-
shaped reflectance anisotropy, whereas the blue color represents the degree of bell-shaped 
reflectance anisotropy. A pixel can either exhibit a degree of bowl-shape (red) or of bell-shape 
(blue). Briefly, the four corners of the 2D color legend, representing the extreme situations 
that may theoretically occur, are:  

I. Pale blue color tones: no canopy cover and maximal bell-shaped reflectance 
anisotropy. This is an unusual situation, since subpixel heterogeneity is required to 
obtain a high Minnaert-k value, i.e. there must be some vegetation cover. However, 
some pixels at the meadow–forest interface approximate this situation due to the 
abrupt cessation of the vertically-elongated canopy. For instance, while from the nadir 
viewing angle on a meadow edge no more forest cover is observed, it may happen that 
at a larger view zenith angle some forest cover can still be observed.  

II. Dark bluish–green color tones: maximal canopy cover and maximal bell-shaped 
reflectance anisotropy. This is also an unusual situation, since a full cover behaves 
radiatively like turbid media, i.e. the canopy is so densely packed that no uncollided 
radiation exits the background snow cover to create a bell-shaped pattern. However, as 
soon as gaps appear in the cover (canopy cover < 100%), bell-shaped patterns occur. 



Chapter 5 
 

98 

This situation is observable for the pixels with the bluish-green color tones in 
Figure 5.8 (panels A and C). 

III. Dark reddish–green color tones: maximal canopy cover and maximal bowl-shaped 
anisotropy. This is a typical situation due to the homogeneous character of the dense 
canopy. Patches of dense forest cover are observable in Figure 5.8 (panels A and C).  

IV. Pale reddish color tones: No canopy cover and maximal bowl-shaped anisotropy. This 
typically occurs on non-vegetated surfaces such as the snow-covered meadow.  
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Figure 5.8: A) The RGB result of merging the Minnaert-k map with the canopy cover map. B) 2D color chart 
based on the color bar of the canopy cover map (x-axis) and the color bar of the Minnaert-k map (y-axis) 
(lam=Lambertian). C) Zoom-in of the merged map as presented in panel A. D) The reference image as derived 
from a high resolution stereo camera (HRSC) acquisition in summer 2003 (true color). 

 
As the canopy cover map solely provides fractions but no information about heterogeneity 

and the Minnaert-k map provides information on subpixel surface heterogeneity, the merged 
map provides information on both these attributes. The map shows that most of the pixels are 
situated between canopy covers of 60% and 90% and a Minnaert-k fluctuating between 0.3 
and 1.5. Consequently, the pixels with bluish-green color tones refer to medium to dense 
forest cover with large subpixel heterogeneity (k > 1). See, for instance, region a in panel C of 
Figure 5.8: here more subtle variation in color tones is observable than in the canopy cover 
map of Figure 5.2. The spatial pattern observed is thus not only due to variation in canopy 
cover but also to variation in other parameters impacting reflectance anisotropy, such as tree 
height. Although tree height may be a less influential factor than canopy cover (Kayitakire & 
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Defourny, 2004), note that if the canopy cover consists of low-growing shrubs, then the 
variation in anisotropy would be smaller (Koetz et al., 2005; Widlowski et al., 2004), leading 
to paler bluish color tones. The pixels with dark bluish–green color tones typically represent 
areas with large, dark vertical structures (trees) in conjunction with open targets (i.e. gaps). 
Conversely, the pixels with dark reddish–green color tones (k < 1) refer to dense forest covers 
that behave radiatively like turbid media and thus lack subpixel heterogeneity. That is for 
instance the case for region b in panel C of Figure 5.8. This region shows a canopy cover in 
which the canopy is so dense that it imposes a typical bowl-shaped anisotropy pattern. Tree 
height does not play a role here; the same type of bowl-shaped pattern occurs over 
homogeneous, flat targets (i.e. snow-covered meadow). Also of interest are the pale color 
tones (k ≈ 1). These pixels represent surfaces that exhibit Lambertian reflectance without 
vegetation cover. They are to be found over the snow-covered meadow. Other snow-covered 
meadow pixels showed a typical bowl-shaped anisotropy behavior. 

Our study has demonstrated that CHRIS data can be decomposed into its spectral and 
angular components by using linear unmixing and by deriving the Minnaert-k parameter. Both 
maps are useful for describing forest structure but have their specific advantages and 
limitations due to their single-source nature. Merging them to produce a combined map leads 
to an improved characterization of forest heterogeneity at subpixel scale that can be used for 
monitoring forest development or for parameterizing canopy reflectance models, enabling 
proper retrieval of biophysical (e.g. biomass) or biochemical (e.g. chlorophyll content) 
parameters (Verrelst et al., 2008b; Kooistra et al., 2008).  

When interpreting the merged map it should be noted that solar zenith angle, background 
brightness and the position of the angular sampling in relation to the principal plane also exert 
influence on the spectrodirectional response. In addition, variations in topography and the 
spectral and anisotropy characteristics of land cover features other than snow and vegetation 
cover (e.g. sharp land cover edges, rock outcrops, water bodies) may affect the 
spectrodirectional response and thus the results of the merged map as well. These site-specific 
influences are nevertheless strongly related to pixel size. At a relatively high spatial resolution 
of 18 m and trees that may reach up to 18 m, scattered radiation is influenced not only by 
variation in the horizontal plane (e.g. tree density) but also by variation in the vertical plane 
(e.g. variation in tree height). This implies that the pixel’s reflectance at such a high spatial 
resolution is considerably impacted by radiation fluxes in the horizontal plane (Widlowski et 
al., 2006). This impact is typically observable for pixels located at the forest–meadow 
interfaces where the radiation fluxes shift from a volumetric medium (pixel size 
approximately equal to stand height) to a flat medium (pixel size largely exceeding stand 
height). For further application purposes it might be therefore advisable to validate the 
inversion performance, e.g., by analyzing the fit of the original CHRIS measurements with the 
RPV-reconstructed measurements (Verrelst et al., 2010b; Lavergne et al., 2007). By contrast, 
at coarser pixel size (e.g. MISR at 275 m in red) tree-level anisotropy effects and edge effects 
tend to be smoothed, yielding more accurate fits but less detailed maps (Pinty et al., 2002). 
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Alternatively, the use of LiDAR data may be an option to validate the informative value of 
reflectance anisotropy (e.g. see Koetz et al., 2005); however, note that apart from the 
structural configuration also the spectral influence of background has to be accounted for (e.g. 
see Pisek et al., 2010). 

Regardless of the above-mentioned limitations, because the angular and spectral domain 
originated from the same data source (CHRIS), problems related to co-registration and spatial 
resampling are minimized, and processing can be fast and quasi-automatic. The RPV 
inversion-3 package retrieves Minnaert-k fast and can easily be automated (Lavergne et al., 
2007). Additionally, provided χ2 uncertainty measures can filter out poorly inverted pixels,  
wavelength selection can be resolved on the basis of statistical or physical indicators. The 
automatic identification of endmembers still has to be resolved, but numerous methods are 
available to do this automatically (e.g. Martínez et al., 2006; Zurita-Milla et al., 2008). Once 
this has been addressed, mapping forest heterogeneity can be further automated by combining 
information from the spectral and angular domains. Having the methods available, however, 
more research may be necessary on the robustness of the method. For instance, it remains to 
be investigated how successfully forest cover heterogeneity can be mapped during summer 
conditions when the spectral contrast between canopy and background is reduced due to the 
green-up of the undergrowth.  

 

5.4. Conclusions 

The European Space Agency’s small PROBA satellite carries the only imaging spectrometer 
in space (CHRIS) that provides multi-angular measurements of the reflected solar radiation 
from the Earth’s surface at a high spatial resolution. This paper has demonstrated that 
combining canopy cover information derived from the spectral domain at one single viewing 
angle (nadir) with heterogeneity information derived from the angular domain at one single 
wavelength in the red edge (722 nm) generates spatially explicit information about forest 
cover heterogeneity at the CHRIS subpixel scale. The generated map included information on 
surface heterogeneity that was much more detailed than the information that can be derived 
from single-source optical datasets.  
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6.1. Main results 

 

This research has been motivated by the need to improve our knowledge of the potentials of 
space-borne spectrodirectional (combined multi-angular and spectroscopy) data for forest 
monitoring applications from space. More precisely, the main objective of this thesis is to 
exploit spectrodirectional data for the quantification of biochemical and structural canopy 
properties of forested ecosystems. The thesis has been divided into 5 separate chapters. The 
first chapter is used to establish the environment in which the work is framed. The other four 
chapters (2–5) address different approaches that pursue the use of spectrodirectional data to 
quantify forest canopy parameters. Each of these four chapters concentrates on one of the 
research questions presented in section 1.7, which are answered and synthesized below 
(questions A–D).  

 

A:  To what extent does the anisotropic reflectance of vegetated surfaces as measured by 
CHRIS influence the performance of vegetation indices, and what are the underlying 
mechanisms? 

In chapter 2, the effects of reflectance anisotropy as measured by CHRIS were assessed 
for a set of vegetation indices. Angular effects due to anisotropy of vegetation canopy 
reflectance are typically treated either as superfluous information or as a source of additional 
information, but in either case the magnitude and significance of the angular variability needs 
to be assessed, quantified, and included in the interpretation of the data. The angular response 
for a wide variety of broadband and narrowband vegetation indices was assessed for two 
contrasting structural vegetation types: an Alpine old-growth coniferous forest and a meadow. 
Not only the conventional broadband greenness indices (e.g. SRI, NDVI) but also narrowband 
greenness indices (e.g. NDVI705,) as well as light use efficiency and leaf pigment indices (e.g. 
SIPI, PRI, and ARI) were subject to canopy anisotropy effects. All indices showed larger 
angular response over the forest area than over the meadow area, with largest magnitudes 
obtained by PRI and ARI (Verrelst et al., 2006a; 2006b). 

Two physical-based radiative transfer models, one at leaf-level (PROSPECT) and one at 
canopy-level (FLIGHT), were coupled to quantify and substantiate the findings beyond an 
incidental case study. It is hypothesized that in a relatively open, heterogeneous old-growth 
forest the observed proportions of photosynthetic vegetation (PV) and non-photosynthetic 
vegetation (NPV) are of critical importance shaping the angular response of the studied VIs. 
The model-based quantification of anisotropy effects on VIs showed that angularity of leaf 
pigment indices (e.g. PRI) can be partly explained by the angular-dependent variation in 
observed PV and NPV proportions (Verrelst et al., 2007; 2008b). Further, given the structural 
and compositional heterogeneity of an old-growth forest it is noted that not only viewing 
geometry but also canopy structural variables play a role in accurate assessment of foliar 
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biochemistry. Since canopy structural variables have not been assessed in detail, it led to the 
following question. 

 

B:  Can foliar chlorophyll content be reliably estimated in woody, heterogeneous forest types 
using vegetation indices? 

Chapter 3 builds further on the findings of chapter 2 by assessing the influence of structural 
and compositional variables on the performance of vegetation indices. Questions that emerged 
in the former chapter about the role of structural variables and canopy composition demanded 
a more exhaustive analysis to obtain insight in their mechanisms. Old-growth forests 
challenge the interpretation of EO data due to their structural heterogeneity together with 
significant fractions of standing and fallen dead woody material. For instance, the large 
variability in structural and compositional parameters, which affects significantly the EO 
signal, is perturbing the accurate assessment of foliar chemistry. To assess the role of 
structural variables on the estimation of biochemistry, a sensitivity study was employed 
whereby the detectability of chlorophyll (Cab) content was analyzed on the basis of modeled 
reflectance data. The same coupled radiative transfer model as in chapter two 
(PROSPECT/FLIGHT) was used to generate top-of-canopy bidirectional reflectance data 
wherefrom vegetation indices sensitive to Cab were calculated (Verrelst et al., 2008a). The 
contributions of canopy scattering elements (PV and NPV), leaf area index (LAI) and crown 
cover on the retrieval of Cab content were statistically analyzed. The performance of single 
wavelengths and chlorophyll indices was compared on their capacity of estimating Cab 
content given the wide variation in stand structure. Statistical analysis revealed that most of 
the chlorophyll indices outperform single wavelengths, with best results obtained by the 
Maccioni index ([R780 – R710] / [R780 – R680]). The Maccioni index responded highly sensitive 
to variations in Cab content but relatively insensitive to variations in LAI and to a lesser 
extent to CC and NPV. A stand-specific sensitivity analysis using the Maccioni index 
suggested that variations in Cab content can be best estimated on stands with medium dense 
canopies. However, the relationship weakens with increasing contribution of crown NPV 
scattering elements. It can be concluded that the spectral influence of woody elements plays 
an important role in the estimation of foliar pigments in heterogeneous stands, particularly if 
the stands are partly defoliated or long-lived (Verrelst et al., 2010c).  

Moving further along on the above topic was to investigate if the spectral dependency of 
anisotropy can be used to retrieve information on forest stands. Since in classical inverse 
problems ill-conditioned and ill-posed situations are predominant (and inversion following the 
Hadamard criteria not usable), an intermediate inversion was chosen. This led to the following 
question. 
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C:  How does reflectance anisotropy of a heterogeneous forest behave across the spectral 
VNIR domain as measured by CHRIS? 

Whereas the former chapter shed some light on the underlying contributors to the 
anisotropic properties of on old-growth forest as measured by CHRIS, chapter 4 explores the 
unique information content that is embedded in it. In this chapter the focus shifted to a 
wintertime image. The spectral anisotropic behavior of an Alpine coniferous forest in relation 
to canopy cover was investigated using the Minnaert-k parameter obtained through inversion 
of the parametric Rahman–Pinty–Verstraete (RPV) model. Although earlier studies have 
demonstrated that the Minnaert-k parameter can be related to canopy heterogeneity at the 
subpixel scale, its spectral dependency has not yet been fully assessed (Verrelst et al., 2009b).  

Minnaert-k parameter retrievals across the CHRIS bands revealed that for a forest 
underlain by snow cover a switch from bell-shaped to bowl-shaped anisotropic reflectance 
patterns occurs when moving to NIR wavelengths. Specifically, analysis of the underlying 
dynamics for pixels on the valley floor revealed that canopy cover and background brightness 
controls at which wavelength this switch takes place. While having a bright, snow-covered 
background, Minnaert-k values in the red edge region were best related to canopy cover. In 
this spectral region, pixels with medium canopy cover densities typically led to bell-shaped 
anisotropy patterns, whereas pixels with either sparse or dense canopy covers typically led to 
bowl-shaped reflectance anisotropy patterns. The underlying mechanisms that cause the 
observed anisotropy switch can be found in the increase of multiple scattering and the 
decrease of background reflectance due to increasing absorbance by snow grains at longer 
wavelengths. It results in that the uncollided radiation exiting the snow-covered background 
in near-nadir direction is no longer able to outperform the scattered radiation exiting to off-
nadir directions (Verrelst et al., 2010b). It should nevertheless be noted that the location of the 
anisotropy switch in the spectral domain is dependent on illumination conditions and the 
degree of brightness contrast. Given the same illumination conditions, in less bright 
background situations (e.g. bare soil) the switch from bell to bowl shape is expected to occur 
at lower wavelengths due to the reduced spectral contrast between background and overstory.  

Having uncovered some spectrally-dependent anisotropy mechanisms, ultimately the goal 
is to derive a measure for physical forest heterogeneity information using space-borne 
spectrodirectional observations at the subpixel scale. This let to the final question, namely: 

 

D:  Can spectrodirectional CHRIS data be applied for forest heterogeneity mapping? 

Chapter 5 presents a mapping application based on the uniqueness of multi-angular CHRIS 
data. CHRIS data sampled in the spectral domain were combined with CHRIS data sampled 
in the angular domain with the purpose of mapping the 3D heterogeneity of an Alpine 
coniferous forest during winter. Such a mapping application is of interest for the forest 
manager, e.g. to monitor forest change. In the spectral domain, near-nadir CHRIS data were 
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spectrally unmixed to generate a canopy cover map. However, such a map lacks notion of the 
3D distribution of the cover. In the angular domain, inversion of the RPV model against 
angular CHRIS data led to the Minnaert-k parameter that provided information on surface 
heterogeneity at the subpixel scale. Quadratic regression between canopy cover and Minnaert-
k maps across the CHRIS bands was applied to select the wavelength where both parameters 
are best related. Comparison of correlation coefficients (R2) revealed that best relationship 
occurred in the red edge, at 722 nm (R2 of 0.43). The relatively low R2 nevertheless suggests 
that there is still a considerable portion of unexplained variation present, e.g. due to 
topography and tree height. Another constraint is that the interpretation of the Minnaert-k is 
not always obvious, e.g. fully vegetated pixels typically produce the same anisotropy patterns 
as non-vegetated pixels. Both maps were merged to overcome the map-specific limitations 
(Verrelst et al., 2009a). The merging resulted in a forest cover heterogeneity map that includes 
information on 3D canopy heterogeneity at the CHRIS subpixel scale at a level beyond what 
is possible to realize from single-source optical data sets (Verrelst et al., 2010a). Since both 
maps originated from the same sensor (CHRIS), the merged map can be generated in a quasi-
automatic way. 

 

6.2. General conclusions 

Within the context of exploring space-borne sprectrodirectional data for forest monitoring 
applications, the main contribution of this work is (i) the improved knowledge of terrestrial 
reflectance anisotropy that play a role in the performance of broadband and narrowband 
vegetation indices, (ii) the assessment of canopy reflectance perturbing factors such as LAI, 
canopy cover and woody elements (NPV) when assessing chlorophyll content from reflected 
radiation and derived vegetation indices, (iii) the quantification and interpretation of 
anisotropy patterns across the visible and NIR (VNIR) wavelengths, and (iv) the development 
of an application that quantifies forest cover heterogeneity at the sensor subpixel scale by 
combining the spectral domain with the angular domain. 

Summarizing, based on the studies of this thesis it can be concluded that: 

 Radiative transfer models, both 1D and 3D models, are becoming widely implemented in 
retrieval schemes for forest properties mapping based on spectrodirectional data. Old-
growth forests, however, are quite challenging for the modeler because of its large 
heterogeneity, both in composition and structure.  

 While vegetation indices have proven their use for mapping biochemical properties of 
terrestrial vegetation, uncertainties related to anisotropic effects are for the majority of 
indices still to be resolved. For a set of narrowband and broadband indices their response 
to canopy reflectance anisotropy was quantified using multi-angular CHRIS 
measurements. The light use efficiency index PRI and the pigment index ARI were most 
affected by reflectance anisotropy.  
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 Not only anisotropic effects but also the canopy structure plays a role in perturbing the 
assessments of foliar pigments. Using radiative transfer models it was evaluated that the 
scattering and absorption properties of woody elements and background play the most 
perturbing role when estimating chlorophyll content from space-borne spectrodirectional 
data. The Maccioni index revealed to be the most robust chlorophyll index. 

 The shape of reflectance anisotropy can be quantified and linked to canopy structure with 
the Minnaert-k parameter at one single wavelength. Analysis across the CHRIS spectral 
bands revealed the spectral dependency of the k parameter. Results indicate that for a 
forested ecosystem with a bright underlying snow-covered background a switch from 
bell-shaped (k > 1) to bowl-shaped (k < 1) reflectance anisotropy patterns takes place in 
the red edge to early NIR. Canopy cover plays an important role in determining at which 
wavelength this anisotropy switch takes place.  

 The Minnaert-k parameter (angular domain) can be combined with a canopy cover map 
(spectral domain) to derive information about forest cover heterogeneity at the sensor 
subpixel scale. The multi-angular CHRIS imaging spectrometer is particularly useful for 
such combined spectrodirectional mapping. This creates new opportunities to monitor 
heterogeneous ecosystems such as forests, woodlands and shrublands at a local-to-
regional scale. 

 

6.3. Reflection 

Most importantly, this thesis brought earlier findings of terrestrial reflectance anisotropy into 
the field of imaging spectroscopy. Earlier studies showed with the use of a few broad bands 
(red, NIR) that the anisotropic properties of a canopy can be related to canopy structure. With 
the use of CHRIS data, these findings have been systematically expanded and refined over the 
VNIR part of the spectrum (from 530 to 1019 nm) with a spatial resolution at the tree level. A 
strong spectral dependency of canopy reflectance anisotropy has been demonstrated. Based on 
this thesis a few lessons have been learned: 

 Most of the vegetation indices are too much affected by reflectance anisotropy for robust 
canopy properties estimations when calculated from HDRF data. Multi-angular data 
allow to assess anisotropic effects and eventually to correct for it.  

 The main canopy scatterers at canopy level (PV and NPV) and to lesser extent soil 
scatterers determine the anisotropic reflectance properties of a canopy. A proper 
assessment of the biochemical constituents from canopy PV scatterers (e.g. chlorophyll 
content) is only possible if they can be separated from canopy NPV scatterers and soil 
scatterers. A challenge remains to separate the contribution from a spectrally distinct 
understory (likewise mixture of PV and NPV scatterers) as well.  
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 The occurrence of ill-conditioned and ill-posed situations in model inversion remains 
problematic for realizing operational canopy parameter retrieval. An intermediate 
solution offered by semi-empirical models (e.g. RPV inversion) is an appropriate 
compromise. For spectrodirectional data the RPV model can be used to further limit ill-
conditioned problems of canopy properties retrieval. For instance, if the anisotropy is 
bowl-shaped then a 1D model suffices for the inversion, if the anisotropy is bell-shaped a 
3D model is required.  

 The anisotropic reflectance of a canopy is particularly to be exploited in the red edge 
region, because in this part of the spectrum the curvature of the reflectance anisotropy is 
best related with canopy structure. Yet this anisotropy also depends on background 
brightness and illumination conditions. For operational retrievals of canopy structure it 
implies that information of the surface spectral characteristics is required. Such 
information can be derived from the spectral domain of spectrodirectional data. 

 Topography remains nevertheless a problem in the linkage between reflectance 
anisotropy and structural canopy properties. In mountainous regions, additional efforts 
may be required to decouple reflectance anisotropy invoked by the canopy from the 
reflectance anisotropy invoked by topography (e.g. by using a 3D model). Alternatively, 
adding a data layer with DEM-based reliability flags may be an option.  

From all the above, it can be concluded that multi-angular spectroscopy can capture a data 
richness that cannot be reached by any mono-angular optical sensor. Spectrodirectional data 
has the unique capability to simultaneously retrieve structural canopy properties 
(predominantly based on information from the angular domain), and canopy biochemical 
properties (predominantly based on information from the spectral domain). Moreover, both 
domains can complement each other. In this way, information from the angular domain can 
facilitate narrowing down ill-conditioned situations when retrieving biochemistry, while 
information from the spectral domain can complement the retrieval of structural properties 
from the angular domain. This grounds the argument that spectrodirectional data can pursue 
critical value-adding mapping applications for forest monitoring; e.g., as has been shown with 
the developed forest cover heterogeneity map (chapter 5). Therefore, up-to-date availability of 
combined spectrodirectional mapping products increases opportunities for adequate 
monitoring of forest development and forest cover change (e.g. due to storms, fires, forest 
logging, deforestation, pest infestations, environmental changes). Coupling these mapping 
products with existing monitoring programs (e.g. GOFC, GEOSS) and in situ measurements 
should lead to an improved monitoring service on how our forests respond to a changing 
world and to climate change impacts.  

In preparation to the United Nations Climate Change Conference held in Copenhagen 
(COP15; 7–18 December 2009), in October 2009 the world forestry congress (WFC) 
demanded for urgent action to active forest monitoring and assessment to fully achieve 
forests’ potential in addressing the challenges of climate change (http://www.cfm2009.org/ 
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en/index.asp). Given that forests contribute positively to the global carbon balance, harbor 
two thirds of all land-based biodiversity, and generate critical ecosystem goods and services 
(http://www.fao.org/forestry/en/), an accurate monitoring system is becoming a critical 
necessisity. In this respect, a next step would be to elaborate how multi-angular imaging 
spectroscopy can deliver forest monitoring services in an operational way. 

 

6.4. Outlook 

Although this thesis investigated the possibilities of spectrodirectional CHRIS data for forest 
properties monitoring, it should not be forgotten that CHRIS/PROBA was designed as a 
technology demonstrator. In fact CHRIS was initially intended as a one year mission, but both 
the satellite and the CHRIS instrument continue to function well at the time of writing 
(December 2009), making this sensor very successful. Yet, some signs of detector anomalies 
already started to appear (e.g. striping effects), which indicates that the sensor will not much 
longer be able to provide angular images. This implies that CHRIS/PROBA is incompetent to 
operate as a forest monitoring Earth observer, which, after all, has never been its mission. 
Nevertheless, the recent burst of knowledge on terrestrial reflectance anisotropy and derived 
mapping applications based on CHRIS data (e.g., Kayitakire & Derfourny, 2004; Guanter et 
al., 2005; Rautiainen et al., 2008; Vuolo et al., 2008; Barducci et al., 2009; Galvão et al., 2009; 
Kneubühler et al., 2009; Mõttus et al., 2009 to name a few) emphasizes the need for 
continuity in spectrodirectional data for Earth observation. This thesis contributed to 
expanding this field of knowledge, specifically on the side of exploiting reflectance 
anisotropy of forested targets. Capitalizing on the unique and valuable features of space-borne 
spectrodirectional data, a logical following step would be to implement such a technology into 
an instrument dedicated to forest monitoring, i.e. as an extension of the sentinel fleet. 

Despite the potential of spectrodirectional data for operational use, some points in this 
respect have been left aside in this thesis, while other points require further research. These 
points are of importance for deriving maximum benefits out of spectrodirectional data, as well 
as for the development of novel spectrodirectional-based forest monitoring applications. The 
next sections discuss these points that have been grouped according to the following domains: 

 angular 

 spatial 

 temporal 

 spectral 
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Angular domain 

Currently, CHRIS on board PROBA-1 is the only imaging spectrometer in space that is able 
to re-orient itself in order to acquire multiple looks. PROBA-1 is able to be tilted in the 
across-track direction so that the target area is viewed. While this opens opportunities for 
anisotropy-based applications, knowledge of the geometry of the viewing cameras is 
mandatory for proper interpretation. PROBA-1 is configured with five nominal viewing 
angles, which samples only a fraction of the reflected radiation. Whether the viewing 
geometry of the five angular sampling points is optimized to characterize the dominant 
anisotropic pattern of a terrestrial target remains nevertheless questionable. For instance, it 
may well happen that when sampling a terrestrial target with five viewing angles along the 
principal plane a pronounced bell-shaped curvature occurs, but when sampling the same target 
away from the principal plane, the curvature may rather look like a bowl-shaped pattern. For 
future multi-angular imaging spectroscopy missions it is therefore advisable to configure the 
angular sampling as close as possible within the principal plane, to keep consistency and to 
measure the maximal variation in reflectance anisotropy.  

Sun-synchronicity of the instrument’s orbital path is required to approach principal plane 
sampling. Experience from CHRIS/PROBA indicates that sun-synchronicity alone, however, 
is not enough to reach sampling right within the principal plane. CHRIS/PROBA is not able 
to sample with all viewing angles within the principal plane due to the pointing to specific 
targets along the orbital path. The inability of consistent sampling within the principal plane 
means that maximal variation in reflectance anisotropy is not measured. Theoretical studies 
have argued to invest in platform steerability in order to sample a maximal anisotropy in the 
hot spot and dark spot of the principal plane for optimized vegetation structure mapping (e.g. 
Simic & Chen, 2008; Simic et al., 2009). A future mission with improved steerability may 
enable to sample right within the principal plane, yet it remains questionable whether the gain 
in data richness for operational applications is large enough to overcome the technical 
constraints that go along with it.  

Increasing the number of viewing angles is another option to clarify the shape of the 
anisotropic pattern. For instance, MISR has 9 viewing angles, reaching forward and backward 
zenith angles up to 70.5°. An observed problem with the use of nine viewing cameras is 
nevertheless that they may not always lead to an unambiguous angular signature. Often 
angular measurements lead to an angular signature that may considerably deviate from a 
smooth bell or bowl shape, i.e. due to the geometry of the angular sampling and/or the 
scattering regime of the observed target (e.g. see Nolin, 2004). This makes it hard for a semi-
empirical parametric model (such as RPV) to invert angular data into a small number of 
parameters (such as Minnaert-k). Consequently, in order to realize a robust inversion it may 
be more adequate to rely on a smaller number of viewing angles (i.e. 5 to 7) along or close to 
the principal plane that produces a rather simplified but meaningful angular signature.  
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Regardless of the number of viewing angles, space-borne multi-angular EO instruments are 
however unable to measure the total amount of terrestrial reflected radiation. Linking angular 
measurements with a physically-based RT model may clarify the full hemispherical cover of 
the reflected radiation, which is of interest e.g. for robust canopy parameter or albedo 
retrievals (e.g. bihemispherical reflectance (BHR) or directional-hemispherical reflectance 
(DHR) products) (Chen et al., 2008).  

 

Spatial domain 

Although in this thesis emphasis was laid on linking reflectance anisotropy with canopy 
heterogeneity at the CHRIS subpixel scale by means of the Minnaert-k parameter, it remains 
questionable whether CHRIS’ relatively high spatial resolution (~17 m) is the best spatial 
resolution for robust quantitative forest heterogeneity mapping.  

In chapter 4 it was argued that with such a high spatial resolution most of the measured 
anisotropic reflectance is related to canopy heterogeneity at the tree level. Nevertheless, this 
resolution may also have its drawbacks, especially in the case of discontinuous forest covers. 
In a forest stand, lateral radiation fluxes considerably contribute to the surface-leaving 
radiation (e.g. Widlowski et al., 2006), thereby creating difficulty in establishing a 
quantitative link between reflectance anisotropy (Minnaert-k) and a structural canopy 
parameter like canopy cover. Linking the Minnaert-k parameter with a canopy parameter at 
such a high spatial resolution, can therefore only work if the adjacent pixels are 
volumetrically continuous (e.g. as is the case in chapter 4).  

In order to reduce the influence of horizontal radiation fluxes, alternatively, the use of a 
coarser pixel size may be advocated, thereby increasing the importance of the vertical 
radiation fluxes relative to the contribution of the horizontal radiation fluxes. The other multi-
angular instrument currently in space, MISR, is nevertheless unable to quantify heterogeneity 
at the tree level. Its spatial resolution is too coarse to measure anisotropic properties of the 
single trees (275 m in red).  

What would be required to achieve operational multi-angular based applications in the 
near-future, is the development of a multi-angular imaging spectrometer with a spatial 
resolution that is on one hand fine enough to measure stand-related variations in reflectance 
anisotropy, but on the other hand coarse enough to overcome the influence of horizontal 
radiation fluxes. In this respect, it was recently theoretically assessed that a pixel size of 30 m2 
may be an appropriate threshold, thereby significantly reducing the impact of the horizontal 
fluxes from the adjacent pixels (Widlowski et al., 2008). This pixel size seems suitable for 
operationally delivering forest heterogeneity products, as it is still able to capture anisotropic 
properties at the tree level.  

Further, along with the topic of pixel size, the topic of spatial extent is important. Pointing 
to a limited number of specific targets, as is currently the case for CHRIS, does not fulfil the 
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requirement to cover all the forests across the globe. An operational multi-angular instrument 
requires being equipped with a flexible and fast pointability, a large data storage capacity, and 
a rapid data transfer. 

 

Temporal domain 

While in this thesis the possibility of mapping and monitoring forest properties based on 
multi-angular imaging spectroscopy has been investigated, the development of multi-angular 
based applications dedicated to seasonal forest monitoring has been left aside. It is now 
increasingly understood that multi-angular sensors possess a unique potential to improve 
detection of forest canopy heterogeneity (e.g. Verrelst et al., 2010b) and understory vegetation 
(e.g. Canisius & Chen, 2007; Pocewicz et al., 2007; Hilker et al., 2009). Consequently, 
exploiting the seasonal reflectance anisotropy of a forest stand can pursue new ways of space-
based forest monitoring applications, particularly with respect to the mapping of seasonal 
changes of canopy and understory structure and composition.  

Among others, an appealing topic for further research is studying the seasonal dynamics of 
the Minnaert-k parameter. Verrelst et al. (2009a) documented that for open Alpine forests 
during winter a bell-shaped anisotropy pattern dominates throughout the visible and red edge 
parts of the spectrum. In this spectral region, the pronounced brightness contrast between the 
elongated crowns and the underlying bright snow pack leads to a maximized background-
leaving uncollided radiation flux into nadir direction. Into the direction of more oblique 
angles a large portion of the background-leaving radiation is intercepted by the elongated 
crowns, thereby forming a bell-shaped reflectance anisotropy pattern (k > 1).  

When a boreal or Alpine forest subsequently evolves from winter to spring and summer, 
the underlying snow pack melts and a photosynhetically active understory vegetation cover 
emerges: the background transforms into a more absorptive (darker) medium. The 
pronounced brightness contrast with the overstory will reduce, and – in case of a densely 
vegetated understory – eventually disappear. The anisotropic properties of the forest will 
therefore change over time: due to the snow melting the bell-shaped reflectance anisotropy 
pattern (k > 1) will shift into a bowl-shaped anisotropy pattern (k < 1). Such a seasonal 
Minnaert-k trend can be useful for seasonal forest monitoring applications. For instance, the 
availability of repetitive data streams of the Minnaert-k parameter over boreal or Alpine 
forests would not only be able to deliver information related to the forest cover heterogeneity 
(Verrelst et al., 2010c) but may also be related to the seasonal melting of the underlying snow 
pack.  

Conversely, in non-snow covered forested regions the seasonal reflectance anisotropy 
trajectory from winter to summer will be determined by the growth and greening of overstory 
and understory vegetation. Because of the smaller spectral contrast between canopy and 
background, the seasonal variations in canopy reflectance anisotropy will be more subtle. It is 
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left to be studied how these subtle variations can be correctly understood with respect to 
structural canopy properties.  

 

Spectral domain 

Currently, CHRIS on board PROBA-1 and the Hyperion on Earth Observing-1 (EO-1) 
developed by NASA (Ungar et al., 2003) are the only truly imaging spectrometers operative 
in space. Nevertheless, contrary to Hyperion, CHRIS particularly lacks bands in the SWIR. 
Due to the limited range of CHRIS’ spectral coverage it misses opportunities related to land 
and forest mapping applications, such as inferring canopy water content (Clevers et al., 2008) 
or snow cover features (e.g. grain size, water content; Li et al., 2001; Mishra et al., 2009). 
Furthermore, research on the anisotropic properties of canopy cover in the SWIR part of the 
spectrum as measured from space is non-existent at the moment. 

In the race of developing new space-borne imaging spectrometers empowered with more 
and finer spectral bands, new initiatives are underway that cover both VNIR and SWIR at a 
relatively high spatial resolution (30 m), e.g. EnMAP (Environmental Mapping 
and Analysis Program) (Stuffler et al., 2009) and PRISMA (PRecursore IperSpettrale della 
Missione Applicativa) (Labate et al., 2009). These emerging technologies will soon outdate 
the spectral performance of the CHRIS instrument; however when another multi-angular 
imaging spectrometer will be launched is left to be awaited.  

Given the above points are sufficiently understood, it is without doubt that data from multi-
angular imaging spectrometers, with sufficient bands in the main pigment absorption regions 
and red edge and an angular sampling approaching the principal plane, encapsulate an 
unprecedented information richness related to canopy structure and biochemistry. This thesis 
opens avenues for future work, namely for the development of a standardized protocol for 
quantitatively monitoring forest changes based on space-borne spectrodirectional data, which 
eventually could become part of national and international forest inventory and monitoring 
services. In this respect the development of a new imaging spectrometer with the possibility 
to routinely acquire multiple angular images of terrestrial targets across the globe is strongly 
encouraged.  
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Summary 

With the upcoming global warming forests are under threat. To forecast climate change 
impacts and adaptations, there is need for developing improved forest monitoring services, 
which are able to record, quantify and map bio-indicators of the forests’ health status across 
the globe. In this context, Earth observation (EO) can provide a substantial amount of up-to-
date information about the biochemical and structural conditions of our forests at a local-to-
global scale. Among the optical EO instruments in space, one of the most innovative 
instruments is the experimental Compact High Resolution Imaging Spectrometer (CHRIS) on 
board the PROBA-1 (Project for On Board Autonomy) satellite. CHRIS is capable of 
sampling reflected radiation at five viewing angles over the visible and near-infrared (VNIR) 
region of the solar spectrum with a relatively high spatial resolution (~17 m). The as such 
acquired spectrodirectional (combined multi-angular and spectroscopy) data may lead to new 
opportunities for space-based forest monitoring applications, yet the added value of canopy 
reflectance anisotropy measured over the whole VNIR spectral region is largely unknown. 
This is why the use of space-borne spectrodirectional data of a forested target has been 
investigated in this thesis.  

An Alpine old-growth forest was chosen as study site because of its large heterogeneity in 
structure and composition. This heterogeneity in structure can be characterized by variation in 
canopy cover (CC) and leaf area index (LAI). The heterogeneity in composition can be 
characterized by variation in non-photosynthetic vegetation (NPV: e.g. dead standing trees 
and coarse woody debris) and photosynthetic vegetation (PV: e.g. foliage). Such a large 
heterogeneity exerts influence on reflectance anisotropy in the VNIR and therefore challenges 
the interpretation of spectrodirectional data. While reflectance anisotropy has traditionally 
been considered as a source of noise, in turn, when having an improved understanding of its 
functioning, it may actually become usable for mapping the canopy heterogeneity. The main 
objective of this thesis is therefore to analyze the link between canopy variables and 
spectrodirectional data with the purpose of (i) evaluating the use of spectrodirectional data, 
and (ii) developing a mapping application that enables to monitor forest heterogeneity at the 
subpixel scale. 

Chapter 1 outlines the radiative transfer processes and models that are of importance for 
mapping quantitative forest properties, links the models in relation to forest growth 
development, sketches the potentials of multi-angular imaging spectrometry for forest 
monitoring, and after that, lists the research objectives of this PhD thesis.  

Chapter 2 addresses the phenomena of canopy reflectance anisotropy in the VNIR by 
means of vegetation indices. For a set of broadband and narrowband vegetation indices the 
angular reflectance anisotropy of an old-growth forest and an Alpine meadow as measured by 
CHRIS was statistically evaluated. Not only the conventional broadband greenness indices 
but also narrowband greenness indices as well as light use efficiency and leaf pigment indices 
(e.g. Photochemical Reflectance Index: PRI) were subject to canopy anisotropy effects. The 
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forest produced more pronounced reflectance anisotropy than the meadow due to its 
heterogeneous canopy structure. A model-based quantification of the underlying forest 
canopy variables showed that angularity of PRI can be partly explained by the angular-
dependent variation in observed PV and NPV proportions. 

Chapter 3 builds further on the findings of chapter 2 by assessing the influence of 
structural and compositional variables on the performance of vegetation indices. Therefore, a 
sensitivity study was employed in which the detectability of chlorophyll (Cab) content at the 
canopy level was analyzed on the basis of modeled reflectance data. Statistical analysis 
revealed that most of the chlorophyll indices outperform single wavelengths in assessing Cab 
content, with best results obtained by the Maccioni index ([R780 – R710] / [R780 – R680]). The 
Maccioni index was highly sensitive to variations in Cab content but relatively insensitive to 
variations in LAI, CC and NPV. The modeling results provided a theoretical framework for 
evaluating how reliable Cab content can be assessed under various canopy conditions. This 
evaluation was applied for three distinct coniferous forest types (young, early mature and old-
growth stands). It is concluded that the presence of woody elements considerably perturb the 
relationships between a vegetation index and foliar biochemistry. 

Having identified some mechanisms that govern reflectance anisotropy in the VNIR, 
chapter 4 investigated the mappable information content that can be exploited from space-
borne measured reflectance anisotropy. More precisely, the anisotropic reflectance of an 
Alpine old-growth forest was quantified and analyzed across the VNIR using the so-called 
Minnaert-k parameter. This parameter describes the curvature of reflectance anisotropy and is 
obtained through inversion of the parametric Rahman–Pinty–Verstraete (RPV) model. Results 
indicated that for a forested ecosystem with a bright underlying snow cover a switch from 
bell-shaped (k > 1) to bowl-shaped (k < 1) reflectance anisotropy patterns takes place in the 
red edge and early NIR part of the spectrum. It was found that CC plays an important role in 
determining at which wavelength this switch takes place. The strong spectral dependency of 
reflectance anisotropy dynamics, with in particular the usable information content in the red 
edge, encourages the use of multi-angular spectrometers for forestry applications.  

Chapter 5 implemented the newly acquired knowledge of reflectance anisotropy dynamics 
into a mapping application. The uniqueness of CHRIS was exploited to the fullest: 
information on canopy properties was independently derived from both the angular and 
spectral domains. In the angular domain a map of the Minnaert-k parameter was generated 
while in the spectral domain a CC map was generated. It was evaluated that both maps are 
complementary in the red edge (722 nm). Both maps provided information on canopy 
structure but also have there single-source limitations. Merging Minnaert-k with CC produced 
a unique new data layer that provides information on the horizontal and vertical heterogeneity 
of the forest canopy at the sensor subpixel scale.  

Chapter 6 contains the final conclusions and gives recommendations for further research. 
The overall conclusion is that space-borne spectrodirectional data are able to simultaneously 
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derive information on forest foliar biochemistry (from the spectral domain) and on forest 
cover heterogeneity (from the angular domain). This creates new opportunities to monitor 
heterogeneous ecosystems such as forests, woodlands and shrublands at a local-to-regional 
scale. The results presented in this thesis should therefore encourage further research in this 
field as a means to develop future spectrodirectional EO instruments and to apply derived 
mapping products into forest monitoring schemes across the globe.  
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Samenvatting 

Met de opkomende opwarming van de aarde staan bossen onder druk. Om de gevolgen van 
klimaatsverandering en de aanpassingen van bosecosystemen te kunnen voorspellen is er 
behoefte aan de ontwikkeling van verbeterde waarnemingssystemen. Deze 
waarnemingssystemen dienen in staat te zijn om door middel van bio-indicatoren de 
gezondheidsstatus van bossen over de hele wereld te kwantificeren, karteren en te monitoren. 
In deze context is aardobservatie uitermate geschikt om up-to-date informatie over de 
biochemische en structurele toestand van onze bossen te bezorgen op een schaal die varieert 
van lokaal to mondiaal niveau. Eén van de meest innovatieve optische instrumenten aanwezig 
in de ruimte is de experimentele Compact High Resolution Imaging Spectrometer (CHRIS) 
aan boord van de PROBA-1 (Project for On Board Autonomy) satelliet. CHRIS is in staat om 
vanuit vijf kijkhoeken gereflecteerde straling te meten over het zichtbare en nabij-infrarood 
(VNIR) gebied van het elektromagnetisch spectrum bij een relatief hoge ruimtelijke resolutie 
(~17 m). De zodanig vanuit de ruimte verkregen spectrodirectionele gegevens (multi-kijkhoek 
en spectroscopie gecombineerd) kan tot nieuwe toepassingen leiden die geschikt zijn voor het 
monitoren van bossen. Echter, de toegevoegde waarde van reflectie-anisotropie, die gemeten 
is over het gehele VNIR spectrale gebied, is nog grotendeels onbekend. Dit brengt ons tot de 
kern van dit proefschrift dat als doelstelling heeft om de mogelijke toepassingen van 
spectrodirectionele reflectiegegevens van een bebost gebied te onderzoeken. 

Een Alpien, oud naaldbos is gekozen als studiegebied vanwege de sterke heterogeniteit in 
structuur en samenstelling. Deze heterogeniteit in structuur wordt gekenmerkt door variatie in 
de bedekkingsgraad (CC) en bladoppervlakte-index (LAI). De heterogeniteit in samenstelling 
wordt gekenmerkt door variatie in niet-fotosynthetische vegetatie (NPV: bijv. dode, staande 
bomen en houtige elementen) en fotosynthetische vegetatie (PV: bijv. gebladerte). Zo’n grote 
heterogeniteit heeft zijn weerslag op de reflectie-anisotropie in het VNIR en kan dus de 
interpretatie van spectrodirectionele gegevens bemoeilijken. Terwijl enerzijds reflectie-
anisotropie van oudsher beschouwd wordt als een bron van verstoring, betekent het anderzijds 
dat een betere kennis van de werking van reflectie-anisotropie deze informatie daadwerkelijk 
bruikbaar zou kunnen worden voor het karteren van bosheterogeniteit. Het belangrijkste doel 
van dit proefschrift is dan ook om de relaties tussen bosvariabelen en spectrodirectionele 
gegevens te analyseren, met het oog op: (i) het evalueren van het gebruik van 
spectrodirectionele gegevens voor bostoepassingen, en (ii) het ontwikkelen van een 
karteringstoepassing die het mogelijk maakt om bosheterogeniteit te kwantificeren op een 
subpixel schaalniveau. Het proefschrift is opgedeeld in zes hoofdstukken. 

Hoofdstuk 1 beschrijft de processen van stralingsoverdracht en de reflectiemodellen die 
van belang zijn voor het in kaart brengen van kwantitatieve boseigenschappen, en relateert de 
modellen aan de ontwikkeling van bosgroei. Vervolgens schetst het de mogelijkheden van 
multi-kijkhoek beeldvormende spectrometers voor het monitoren van bossen en uiteindelijk 
somt het de onderzoeksdoelstellingen van dit proefschrift op. 
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Hoofdstuk 2 gaat in op het verschijnsel van reflectie-anisotropie van een Alpien landschap 
dat door CHRIS vanuit de ruimte onder verschillende kijkhoeken waargenomen is over het 
VNIR spectrale gebied. Reflectie-anisotropie is gekwantificeerd door middel van vegetatie 
indices. Voor een reeks van vegetatie indices, gebaseerd op brede en op smalle banden, is de 
reflectie-anisotropie van zowel een oud naaldbos als een Alpiene weide statistisch 
geëvalueerd. Niet alleen conventionele indices, maar ook indices gericht op licht-efficiëntie 
en bladpigmenten (bijvoorbeeld Photochemical Reflectance Index: PRI) tonen anisotropie 
effecten. De waargenomen reflectie-anisotropie is meer uitgesproken over bossen dan over 
weiden als gevolg van de grote heterogeniteit in de structuur van de vegetatie. Uit een 
modelleringsexperiment dat de onderliggende structurele variabelen van de bosbedekking 
kwantificeert blijkt dat de anisotropie van de gemeten PRI gedeeltelijk verklaard kan worden 
door de kijkhoek-afhankelijke variatie in waargenomen PV en NPV proporties. 

Hoofdstuk 3 gaat dieper in op de bevindingen van hoofdstuk 2. De invloed van structuur- 
en compositie-variabelen op de prestaties van vegetatie indices is in dit hoofdstuk 
geanalyseerd. Door middel van gemodelleerde reflectiegegevens is een gevoeligheidsanalyse 
van de structurele variabelen op de waarneembaarheid van chlorofielgehalte (Cab) uitgevoerd 
op bosniveau. Uit statistische analyse blijkt dat de meeste chlorofiel-indices beter presteren 
dan een enkele golflengte bij het bepalen van Cab-gehalte, met de beste resultaten voor de 
Maccioni index ([R780 – R710] / [R780 – R680]). De Maccioni index is zeer gevoelig voor 
schommelingen in Cab-gehalte, maar relatief ongevoelig voor variaties in LAI, CC en NPV. 
Deze modelleringsresultaten vormen een theoretisch kader voor de evaluatie van hoe 
betrouwbaar het Cab-gehalte bepaald kan worden onder verschillende omstandigheden van 
bosbedekking. Dit is geëvalueerd voor drie verschillende soorten naaldbossen (een jong, een 
volgroeid en een oud bosbestand). De conclusie luidt dat de aanwezigheid van houtige 
elementen de relaties tussen een vegetatie index en de blad-biochemie aanzienlijk kan 
verstoren. 

Na een aantal reflectie-anisotropie mechanismen in het VNIR geïdentificeerd te hebben, is 
in hoofdstuk 4 onderzocht hoe de vanuit de ruimte gemeten reflectie-anisotropie vertaald kan 
worden in nuttige informatie. Hiervoor is de reflectie-anisotropie van een Alpien oud bos 
gekwantificeerd en geanalyseerd over het VNIR met behulp van de zogenaamde Minnaert-k 
parameter. Deze parameter beschrijft de kromming van reflectie-anisotropie en wordt 
verkregen door inversie van het parametrische Rahman-Pinty-Verstraete (RPV) model. 
Resultaten tonen aan dat voor een bebost ecosysteem met een onderliggend sneeuwtapijt in 
het ‘red edge’ en het begin van het NIR deel van het electromagnetisch spectrum een omslag 
van klokvormige (k> 1) tot komvormige (k< 1) reflectie-anisotropie patronen plaatsvindt. CC 
blijkt een belangrijke rol te spelen bij het bepalen van de golflengte waarbij deze omslag 
plaatsvindt. De sterke spectrale afhankelijkheid van de dynamiek in reflectie-anisotropie, met 
in het bijzonder de bruikbare informatie-inhoud in de red edge, stimuleert het gebruik van 
multi-kijkhoek spectrometers voor bostoepassingen. 
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Hoofdstuk 5 heeft als doel de nieuw verworven kennis van reflectie-anisotropie uit te 
bouwen tot een karteringsapplicatie. Het unieke van CHRIS is maximaal geëxploiteerd: 
informatie over bosbedekkingseigenschappen is onafhankelijk van elkaar bepaald uit zowel 
het kijkhoek- als het spectrale domein. In het kijkhoek-domein is een kaart van de Minnaert-k 
parameter gegenereerd, terwijl in het spectrale domein een CC-kaart is gegenereerd. Elke 
kaart verstrekt informatie over bosstructuur maar elke heeft zijn specifieke beperkingen. 
Anderzijds zijn beide kaarten complementair bevonden in de red edge (722 nm). Door het 
samenvoegen van Minnaert-k met CC is een unieke nieuwe datalaag gecreëerd die informatie 
over de horizontale en verticale heterogeniteit van het bos bezorgt op het subpixel-
schaalniveau van de sensor. 

Hoofdstuk 6 bevat de uiteindelijke conclusies en geeft aanbevelingen voor verder 
onderzoek. De eindconclusie is dat de vanuit de ruimte waargenomen spectrodirectionele 
gegevens in staat zijn om gelijktijdig informatie te genereren over de biochemie van het 
gebladerte (vanuit het spectrale domein), als ook over de structurele heterogeniteit van het bos 
(vanuit het kijkhoek-domein). Deze kennis creëert nieuwe mogelijkheden om heterogene 
ecosystemen te monitoren, zoals bossen en struiken op een schaal die varieert van lokaal tot 
regionaal niveau. De in dit proefschrift gepresenteerde resultaten stimuleren verder onderzoek 
op het gebied van aardobservatie, met in het bijzonder de ontwikkeling van toekomstige 
spectrodirectionele instrumenten en de toepassing van karteringsproducten die in staat zijn om 
bossen over de hele wereld te monitoren. 



Acknowledgements 

138 
 

Acknowledgements 

Being a regular PhD student at Wageningen University requires writing four papers in four 
years time. These four papers have then to be complied with an introduction and a synthesis, 
and that is basically it. It essentially requires writing one paper per year. It is as simple as that. 
At least in theory. In practice, however, it was not always that simple. I had to cope with 
small delays, motivation dips, poor results and rigorous reviewers. Each year again there were 
moments of stress and uncertainties, and I am fully aware that finishing the PhD would not 
have been possible without the help of many precious people. It is a pleasure that I have now 
the opportunity to thank all of them. 
 

I express my deepest gratitude to my promoter, Prof. Michael Schaepman. You were like a 
father figure to me and kept an eye on that I stayed on track, step-by-step, paper-by-paper, 
year-by-year. You provided me sufficient freedom, patient supervision, important advice, 
many helpful suggestions and occasional mental support in times of need. I always 
appreciated that when we ‘went for a coffee’ our conversations were each time in a positive 
tone and balanced between work and private life.   

 
When I started with the PhD ˗ and basically for the whole first year ˗ I was a novice in the 

field of remote sensing. Regarding this first year I am especially grateful to Ben Koetz, who 
eventually became a remote co-promoter. You immediately showed confidence in me, 
introduced me in radiative transfer modeling, was patient with all my hastily written emails 
and helped a great deal in shaping the first paper. 

   
There were many inspiring people around me at the Centre for Geo-Information (CGI), 

which in my second year inspired me to speed up the work by automating the modeling work. 
I am especially indebted to Raul Zurita and Allard de Wit who encouraged me to move away 
from software packages towards scripting own codes. Raul and Allard introduced me in 
programming languages, which quickly resulted in the maximal use of all available computers 
around for running hundred thousands of simulations.  

 
When maturing a bit in the field during my third year I had the luck that former PhD 

student Zbynĕk Malenovský returned to the CGI for a post-doc. You helped me enormously 
forward, not only thanks to your broad and detailed knowledge, but mostly thanks to your 
persistence and critical attitude. You forced me to double-check simulations, even to start 
over from scratch, to question over findings and above all not to lose touch with the 
complexity of true nature. Although at the very moment I did not always like your comments, 
at the end I benefited from your inspiring enthusiasm and scientific sincerity.  

 
I am extremely grateful to my daily supervisor, Jan Clevers. Your patience, responsibility, 

carefulness and guidance gave me great assistance to finish my thesis in my last year. Your 



Acknowledgements 

 139

commitment, constructive comments and careful corrections were very helpful to me. You 
read my numerous drafts, and ˗ despite all efforts ˗ continued to find typos. You taught me 
how to write a scientific paper that is to the point and in good English. Thanks. 

 
For these four years I mainly worked at CGI, and I have done so with great pleasure. The 

energetic and dynamic working environment at CGI is the product of the interactions of many 
people and all of the following colleagues have contributed in motivating me to write this 
thesis. To start with my roommates: Gerd Weitkamp and Valerie Laurent. For keeping the 
office lively, for the chitchats and for the good times. 

 
Many thanks go to all the staff members of the CGI. Special thanks go to: Harm 

Bartholomeus, who made me enthusiastic about remote sensing and for the IT support. Sytze 
de Bruin, for helping with statistical problems, and Lammert Kooistra, for the many RS-
related discussions. Other precious people that were for many reasons important for me: Ignas 
Heitkönig, Gabriela Schaepman, Arnold Bregt, Karle Sykora, Gertjan Geerling. 

 
It was a pleasure to accomplish this thesis in the inspiring ambiance of the fellow PhD 

students at CGI. These people were always in for a coffee and chitchat, and occasionally even 
for jumping into the ‘wild’ nightlife of Wageningen: Watze, Lucas, Lucía, Lucie, Titia, 
Rogier, Jacob, Yuan, Sander, Pepijn, Maaike, El-Sayed, Roberto, Silvia, Daniel & Daniela.  

 
Within the PhD I received the freedom to visit a few laboratories abroad. I am grateful to 

Prof. Klaus Itten and later Michael Schaepman that I was always welcome at Remote Sensing 
Laboraties (RSL), University of Zurich, Switzerland. At RSL I learned new preprocessing 
techniques and RS software packages. I especially want to thank Mathias Kneubühler who 
was always there for me. I also enjoyed the inspiring environment of the PhD crew: Juerg, 
Joerg, Yves, Felix, Alexander, Daniel, Andreas, Francesco, Edoardo, Petra & Alemu.  

 
I will never forget the trip to sunny Valencia with a mobil home, packed with 5 people and 

furniture for a whole family. I am very grateful to Prof. Jose Moreno who was so kind to offer 
me a working place in his group at the Lab for Earth Observation (LEO). I enjoyed the 
pleasant company of Jordi Garcia Llongo, Gloria Fernandez and especially Luis Guanter, for 
helping me with atmospherically correcting CHRIS images, and Luis Alonso, for the many 
fruitful discussions and introducing us into the Valencian life.  

 
I want to thank my MSc students: Valerie, Jan-Martijn and Erika, for working on CHRIS-

related topics.  
 
I am very grateful to Joy Burrough for proof reading some of the articles. At the very end 

of the writing process you taught me to write proper English (which I continue to do wrong). I 



Acknowledgements 

140 
 

also want to express special gratitude to the anonymous reviewers. Their numerous critical 
comments definitely contributed to improving the thesis.  
 

I want to thank all my friends, former housemates and family that supported me in these 
past years, but above all my parents and relatives, Kris Aerden & Koen Buys and Koen 
Verrelst, thank you for your unconditional patience and support. Also thanks to Armand van 
Damme and da bro and sis: Janus and Even & Bjorn.  

 
I owe my loving thanks to Agata Jakubowska and her beloved kids Misia and Franek. 

Agata was everything to me throughout this PhD period and beyond. Your heartfelt love, 
intellect, sweetness and realism have supported me in countless ways during the entire thesis 
process. Without you I would never have started a PhD, and even if so, I would never have 
been able to finish. You showed me that a PhD is just a job with many pleasant moments. 
You were always there for me and during the years living in separation you were my biggest 
motivation to finish on time. I therefore dedicate this thesis to you. 



Color plates 

 141

Color plates 
 

 

Figure 1.1: Stand age study site compared for year of publication per radiative transfer model used. The open 
symbols represent biophysical retrievals (e.g. fraction cover, LAI), while the closed symbols represent 
biochemical retrievals (e.g. chlorophyll). Symbols are plotted on the averaged age. The grey lines represent the 
full range of stand age of the used study site. (Referenced legend a: Bruniquel-Pinel & Gastellu-Etchegorry, 
1998; b: Gemmell, 1998; c: Gemmell and Varjo, 1999; d: Gastellu-Etchegorry et al., 1999; e: Gemmell, 
1999; f: Brown et al., 2000; g:Demarez & Gastellu-Etchegorry, 2000; h: Kuusk & Nilson, 2000; i: Hu et al., 
2000; j: Gao et al., 2000; k: Huemmrich, 2001; l: Gastellu-Etchegorry & Bruniquel-Pinel, 2001 m: Lacaze & 
Roujean, 2001; n: Gemmell et al., 2001; o: Kimes et al., 2002; p: Gemmell et al., 2002; q: Song et al., 
2002; r: Wang et al., 2003; s: Shabanov et al., 2003; t: Gastellu-Etchegorry et al., 2003; u: Rautiainen et al., 
2004; v: Zarco-Tejeda et al., 2004; w: Peddle et al., 2004; x: Fernandes et al., 2004; y: Meroni et al., 
2004; z, aa: Kötz et al., 2004; ab, ac: Fang et al., 2003; ad: Zhang et al., 2005; ae: Rautiainen & Stenberg, 
2005; af: Rautiainen, 2005; ag: Disney et al., 2006; ah: Schlerf & Atzberger, 2006; ai: Eriksson et al., 
2006; aj: Soudani et al., 2006; ak, al: Cheng et al., 2006; am: Zhang et al., 2006; an Song et al., 2007; ao: Koetz 
et al., 2007; ap: Colombo et al., 2008; aq: Lang et al., 2007; ar: Malenovský et al., 2008; as, at: Kuusk et al., 
2008; au: Huang et al., 2008; av: Suarez et al., 2008; aw: Verrelst et al., 2008b; ax: Quaife et al., 
2008; ay: Moorthy et al., 2008). 
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Figure 3.4: xy  / of the Maccioni index for three templates (a: CC − LAI; b: LAI − NPV; c: CC − NPV, with 

fixed variables according to Swiss National Park: LAI: 2.5; CC: 60%; NPV: 30%, respectively). Error bars per 
structural variable span the range of values specific for each site The three study sites used: d: ●) young Norway 
spruce stand, e: x) old-growth pine forest and, f: *) early mature beetle-infected lodgepole pine. 
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Figure 4.4: Minnaert-k maps for various CHRIS wavelengths. The white pixels are those in which the reflectance 
anisotropy of the CHRIS-HDRF data and the RPV-reconstructed HDRF data was significantly different.  
 
 
 
 
 
 

 
Figure 4.6: Comparison of CHRIS–HDRF and RPV-reconstructed HDRF at 631 nm for various canopy cover 
classes. 
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Figure 4.7: Averaged Minnaert-k values as a function of canopy cover and wavelength. The number of pixels per 
canopy cover class is given and some examples of the original angular signatures are shown. The RGB snapshots 
for a given canopy cover (white square) are derived from an HRSC (High Resolution Stereo Camera) acquisition 
in summer 2003. (lam= Lambertian) 
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Figure 5.2: Map of canopy cover based on constrained LSU of the nadir CHRIS image of March 17, 2007. 
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Figure 4.8: Averaged angular HDRF signatures for 4 canopy cover classes (a: 20−30%; b: 40−50%; c: 70−80%; 
d: 80−90%) with a color depending on the Minnaert-k value. Negative View Zenith Angles (VZA) represent the 
backscattering directions, positive VZAs represent forward scattering directions (lam= Lambertian). 
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Figure 5.6: Minnaert-k parameter obtained by RPV model inversion at 722 nm (lam= Lambertian). 
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 Figure 5.8: A) The RGB result of merging the Minnaert-k map with the canopy cover map. B) 2D color chart 
based on the color bar of the canopy cover map (x-axis) and the color bar of the Minnaert-k map (y-axis) 
(lam=Lambertian). C) Zoom-in of the merged map as presented in panel A. D) The reference image as derived 
from a high resolution stereo camera (HRSC) acquisition in summer 2003 (true color).
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Glossary 

Acronym Meaning 
1D One-dimensional 
2D Two-dimensional 
3D Three-dimensional 
AirMISR Air Multiangle Imaging SpectroRadiometer 
ALI Advanced Land Imager 
ANOVA ANalysis Of VAriance 
AOD Aerosol Optical Depth  
ARI Anthocyanin Reflectance Index 
ARVI Atmospherically Resistant Vegetation Index 
ASD Analytical Spectral Devices 
ATCOR-3 Atmospheric/Topographic CORrection for spaceborne imagery, v.3 
BEAM Basic ERS & Envisat (A)ATSR and Meris Toolbox 
BHR bihemispherical reflectance 
BRDF Bidirectional Reflectance Distribution Function 
BRF Bidirectional Reflectance Factor 
Cab Chlorophyll a+b concentration 
CC Crown Cover 
CHRIS Compact High Resolution Imaging Spectrometer 
COP15 15th United Nations Climate Change Conference 
CWD Coarse Woody Debris 
DART Discrete Anisotropic Radiative Transfer (model) 
DBH Diameter at Breast Height 
DDV Dark Dense Vegetation 
DEM Digital Elevation Model 
DHR Directional-Hemispherical Reflectance 
drat aDvanced Radiometric Ray Tracer (model) 
DTM Digital Terrain Model 
EnMAP hyperspectral sensor for Environmental Mapping and Analysis Program 
ENVI Environment for Visualizing Images 
EO Earth Observation 
EO-1 Earth Observer-1 
EOS Earth Observing System (http://eospso.gsfc.nasa.gov/) 
ESA European Space Agency 
FLIGHT Forest LIGHT interaction model 
FLIM Forest Light Interaction Model 
FOV Field OF View 
FRT Forest Radiative Transfer (model) 
FWHM Full Width at Half Maximum 
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Acronym Meaning 
FZA Fly-by Zenith Angle 
GEMI Global Environmental Monitoring Index 
GeoSAIL Geometrical Scattering by Arbitrarily Inclined Leaves (model) 
GEOSS Global Earth Observation System of Systems 

(http://www.earthobservations.org/) 
GHOST G-function and Hot SpoT (model) 
GMES Global Monitoring for Environment and Security 

(http://www.gmes.info/) 
gNDVI green Normalized Difference Vegetation Index 
GOFC Global Observations of Forest Cover (http://www.fao.org/gtos/gofc-

gold/) 
GORT Geometric-Optical Radiative Transfer (model) 
HDRF Hemispherical-Directional Reflectance Factor  
HRSC High Resolution Stereo Camera 
IDL Interactive Data Language 
LAI Leaf Area Index 
LIBERTY Leaf Incorporating Biochemistry Exhibiting Reflectance and 

Transmittance Yields (model) 
LiDAR Light Detection and Ranging 
LSU Linear Spectral Unmixing 
LUE Light Use Efficiency 
MC Monte Carlo 
MCRM Markov Chain Canopy Reflectance Model 
MERIS Medium Resolution Imaging Spectrometer 
MISR Multiangle Imaging SpectroRadiometer 
mNDVI705 modified Normalized Difference Vegetation Index 705 (narrowband 

index) 
MODIS MOderate Resolution Imaging Spectrometer 
MODTRAN-4 MODerate resolution atmospheric TRANsmission, v.4 
mSRI705 modified Simple Ratio Index 705 (narrowband index) 
NASA National Aeronautics and Space Administration 
NDVI Normalized Difference Vegetation Index 
NDVI705 Normalized Difference Vegetation Index 705 (narrowband index) 
NIR Near Infra-Red (part of the electromagnetic spectrum) 
NPP Net Primary Productivity 
NPV Non-Photosynthetic Vegetation 
OSAVI Optimized Soil-Adjusted Vegetation Index 
PDF Probability Density Function 
PRI Photochemical Reflectance Index 
PRISMA PRecursore IperSpettrale della Missione Applicativa 
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Acronym Meaning 
PROBA-1 PROject for On Board Autonomy-1 (space platform)  
PROFLIGHT PROSPECT & FLIGHT (model coupling) 
PROSPECT leaf optical PROperties SPECTral model 
PV Photosynthetic Vegetation 
RGB Red Green Blue (color composition) 
RGRI Red Green Ratio Index 
RM Repeated Measurements 
RMSE Root Mean Square Error 
RPV Rahman-Pinty-Verstraete (model) 
RT Radiative Transfer 
SAIL Scattering by Arbitrarily Inclined Leaves (model) 
SAIL2 Scattering by Arbitrarily Inclined Leaves (coupled model with the 

PROSPECT model) 
SAILH Scattering by Arbitrarily Inclined Leaves, with implemented Hot spot 

(model) 
SAVI Soil Adjusted Vegetation Index 
SD Standard Deviation 
SEM Standard Error of Mean 
SIPI Structure Insensitive Pigment Index 
SLF Swiss Federal Institute for Snow and Avalanche Research 
SNP Swiss National Park 
SPREAD fire SPREAD and mitigation (campaign) 
SRI Simple Ratio Index 
SWIR Short Wavelength Infra-Red 
TCARI Transformed Chlorophyll Absorption in Reflectance Index 
TOA Top Of Atmosphere 
TOC Top Of Canopy 
VALERI Validation of LAnd European Remote sensing Instruments 
VI Vegetation Index 
VIS VISible (part of the electromagnetic spectrum) 
VNIR Visible and Near Infra-Red (part of the electromagnetic spectrum) 
VZA View Zenith Angle 
WFC World Forestry Congress (http://www.fao.org/forestry/wfc/en/) 
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