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Abstract

Optical Earth observation satellites monitor our planet by acquiring images at different wave-
lengths of the electromagnetic spectrum. ESA’s forthcoming Sentinel-2 Multispectral Instru-
ment foresees to provide continuity to land monitoring services by relying on optical payload
with visible, near infrared and shortwave infrared sensors with high spatial and temporal res-
olution. This unprecedented data availability requires processing techniques, which are repro-
ducible, accurate and fast, when the retrieval of information on plant growth and health status
is envisaged. However, optical sensors are inherently incapable to provide directly vegetation
properties. Space-based estimation of vegetation properties always requires an intermediate
modeling step to transform the measured radiation fluxes reflected from the Earth’s surface into
biophysical variables. This modeling step can be approached with either statistical (parametric
or nonparametric), physical or hybrid retrieval methods.

This Thesis brought together latest retrieval methods presented in the field of vegetation
remote sensing. It is admitted that a systematic assessment of these methods in view of the
forthcoming Sentinel-2 mission will eventually lead to improved monitoring of vegetation prop-
erties. The main objective, therefore, was: ’To analyze, optimize and automate state-of-the-art
vegetation properties mapping methods in preparation of forthcoming Sentinel-2 mission’. The
pursued path was to generate both scientific outputs as well scientific software that automates
the retrieval routines. A GUI software package called ARTMO (Automated Radiative Transfer
Models Operator) has been developed, which consists of a suite of radiative transfer models and
retrieval routines in a modular design. ARTMO has been applied to the estimation of leaf area
index (LAI) and leaf chlorophyll content (LCC) from simulated Sentinel-2 data, but the major-
ity of investigated methods can essentially be applied to derive any detectable surface variable
from any optical airborne or satellite sensor.

In the peer-reviewed Chapters 3 – 6, three different retrieval toolboxes have been presented
that assess and apply the main retrieval domains: i.e. (Ch. 3) parametric regression, (Ch. 4)
physically-based inversion routines, and (Ch. 5) nonparametric regression. The best perform-
ing method has been subsequently applied in a more operational framework (Ch. 6).

Based on the peer-reviewed chapters, this Thesis delivered the following results:

1. A systematic assessment of all possible two-band spectral indices and parametric fitting
functions using HyMap data (439 2490 nm). The most sensitive regions have been identified
for two-band combinations of green (539-570 nm) with longwave SWIR (2421-2453 nm) for
LAI (r2: 0.83) and far-red (692 nm) with NIR (1340 nm) or shortwave SWIR (1661-1686

ix
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nm) for LCC (r2: 0.93).

2. A systematic assessment of multiple cost functions and regularization options in LUT-based
inversion routines using simulated Sentinel-2 data. Introducing noise and opting for the
mean of multiple best solutions in the inversion considerably improved retrievals; relative
errors can be halved as opposed to without these regularization options. Best LCC retrievals
were obtained using a normalized ’L1-estimate’ function with a r2 of 0.73, while best LAI
retrievals were obtained through non-normalized ’least-squares estimator’ (LSE) with a r2

of 0.74.

3. A systematic assessment of a wide range of nonparametric regression algorithms using
amongst others simulated Sentinel-2 data. Overall, nonlinear regression algorithms (NN,
KRR, GPR) outperformed linear algorithms (PCR, PLSR, DT) in terms of accuracy, bias,
and robustness. Most robust results for LAI and LCC retrieval along gradients of train-
ing/validation partitioning and noise variance were obtained by KRR, while GPR delivered
most accurate estimations with a r2 of 0.94–0.99.

4. Locally-trained GPR models with extended training dataset reached the 10% precision re-
quired by end users, with for LCC a with a r2 of 0.95-0.99 and for LAI a with a r2: 0.95–0.96.
The developed GPR models were subsequently applied to simulated Sentinel-2 images over
various sites across the world. For agricultural sites the associated uncertainty maps were on
the same order as the local Barrax test site.

The systematic assessment across the three domains allowed synthesizing the diverse field of
biophysical parameter retrieval. The nonlinear nonparametric approaches (i.e. machine learning
regression algorithms; MLRAs) led to highest accuracies, while LUT-based inversion routines
performed on the whole poorest. The spectral indices approaches led to intermediate results.
Especially the kernel-based MLRAs emerged as powerful algorithms. They typically involve
few and intuitive hyperparameters to be tuned, and can perform flexible input-output nonlinear
mappings. Among the most promising kernel-based MLRAs is Gaussian Processes regression
(GPR). Apart from robust retrievals, this Bayesian regression algorithm also provides insight in
relevant bands during model development and delivers associated uncertainty estimates. These
uncertainties proved to be particularly valuable when transporting the developed model to other
sites and conditions. It was demonstrated that for the majority of processed image uncertainties
were on the same order as on the local Barrax image. Thus, uncertainty estimates can serve as
a convenient quality check when processing images in space and time.

All results were generated with the ARTMO toolbox, which has been made freely avail-
able to the remote sensing community. A broader use of ARTMO is foreseen to underpin: (1)
an improved understanding in the interactions between light and vegetation properties, (2) im-
proved vegetation properties retrieval algorithms serving forthcoming optical missions, (3) new
mapping applications in order to understand better our changing Earth.
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Introduction

Contents
1.1 Remote sensing for monitoring a changing Earth . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Remote sensing for monitoring a changing Earth

The biosphere is one of the main components of the Earth’s system since it regulates exchanges
of energy and mass fluxes at the soil, vegetation and atmosphere level. To know the links
between vegetation and the terrestrial energy, water and carbon cycles, and how these might
change due to eco-physiological responses to elevated CO2 and changes in land use is of vital
importance for the study of the biosphere [IPCC, 2007]. To study these exchanges, several
kinds of models (scale and target) have been developed. A model is usually a small version of
something larger. At global scale, the main models are General Circulation Models, which are
numerical models that represent physical processes in the atmosphere, ocean, cryosphere and
land surface are the most advanced tools currently available for simulating the response of the
global climate system [Donner et al., 2011]. The carbon cycle model is a representation of the
movement of carbon from sources to sinks through chemical and physical transfers [Jungclaus
et al., 2010].

At the terrestrial regional-to-global scale, the main models are Dynamic Global Vegetation
Models or DGVMs, which are virtual computer models that simulate spatio-temporal changes
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2 INTRODUCTION

in potential vegetation types and their associated biogeochemical and hydrological cycles as a
response to changing climate and soil conditions [Malenovský, 2013]. DGVMs use as inputs
time series of climate data, topography and soil characteristics and simulate monthly or daily
dynamics of ecosystem processes. The models generally combine biogeochemistry, biogeogra-
phy, and disturbance sub-models. To simplify complex vegetation ecological societies, DGVMs
are using so-called plant functional types (PFT) providing a direct link to the leaf-level physi-
ological processes. Each PFT is characterized by specific plant functional traits, e.g. leaf area
index (LAI), specific leaf area, potential evapotranspiration, etc. [Malenovský, 2013].

In view of these models, the Global Climate Observing System (GCOS) aims to provide
comprehensive information on the total climate system, involving a multidisciplinary range of
physical, chemical and biological properties, and atmospheric, oceanic, hydrological, cryospheric
and terrestrial processes. Fifty GCOS Essential Climate Variables (ECVs) are required to sup-
port the work of the United Nations Framework Convention on Climate Change (UNFCCC)
and the Intergovernmental Panel on Climate Change (IPCC) [GCOS, 2014]. Table 1.1 shows
the most important ECVs per domain. In this respect, optical remote sensing (RS) provides
powerful methods for the estimation of ECVs [Baret et al., 2013; Hollmann et al., 2013].

TABLE 1.1: The 50 GCOS Essential Climate Variables (ECVs) (2010) are required to support the
work of the UNFCCC and the IPCC. All ECVs are technically and economically feasible for systematic
observation [GCOS, 2014].

Domain GCOS Essential Climate Variables

Atmospheric

Surface:
Air temperature, Wind speed and direction, Water vapour, Pressure, Precipitation,
Surface radiation budget

Upper-air:
Temperature, Wind speed and direction, Water vapour, Cloud properties, Earth
radiation budget (including solar irradiance).

Composi-
tion:

Carbon dioxide, Methane, and other long-lived greenhouse gases, Ozone and
Aerosol, supported by their precursors.

Oceanic
Surface:

Sea-surface temperature, Sea-surface salinity, Sea level, Sea state, Sea ice, Surface
current, Ocean colour, Carbon dioxide partial pressure, Ocean acidity,
Phytoplankton.

Sub-
surface:

Temperature, Salinity, Current, Nutrients, Carbon dioxide partial pressure, Ocean
acidity, Oxygen, Tracers.

Terrestrial

River discharge, Water use, Groundwater, Lakes, Snow cover, Glaciers and ice
caps, Ice sheets, Permafrost, Albedo, Land cover (including vegetation type),
Fraction of absorbed photosynthetically active radiation (FAPAR), Leaf area
index (LAI), Above-ground biomass, Soil carbon, Fire disturbance, Soil moisture.

In support of these terrestrial models, but also in support of monitoring local-to-global veg-
etation dynamics, this Thesis focuses on improved estimation of vegetation properties from op-
tical RS data, and more specifically leaf area index (LAI) and leaf chlorophyll content (LCC).
Although LCC is currently not considered as an ECV due to the lack of a globally applicable
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retrieval algorithm, it is a key variable in vegetation studies [Lichtenthaler, 1987]. Monitor-
ing the distribution and changes of LAI and LCC is important for assessing growth and vigour
of vegetation on the planet [Running and Coughlan, 1988]. The quantification of these es-
sential vegetation properties are fundamentally important in land-atmosphere processes and
parametrization in climate models [Dorigo et al., 2007]. LAI variable represents the amount of
leaf material in ecosystems and controls the links between biosphere and atmosphere through
various processes such as photosynthesis, respiration, transpiration and rain interception [Jon-
ckheere et al., 2004]. LCC provides important information about the physiological status of
plants and photosynthetic activity, therefore is related to the nitrogen content, water stress and
yield forecasting [Gitelson et al., 2005; Schlemmer et al., 2005; Zhang et al., 2008; Peng and
Gitelson, 2012]. Optical RS data are able to quantify LAI and LCC at a per-pixel basis, and the
processing of a complete image provides insight in their spatial patterns over large areas [e.g.,
Delegido et al., 2011; Verrelst et al., 2012a].

Two key criteria need to be fulfilled in order to achieve monitoring of vegetation properties
across the globe: (1) accurate optical RS data processing, and (2) accurate optical RS data
availability. Accurate data processing is mandatory because an optical sensor only measures
the spatially distributed radiation fluxes reflected from the Earth’s surface in the direction of the
sensor. Optical RS measurements are thus inherently incapable to provide directly vegetation
properties. An intermediate step is necessary to transform the RS measurements into estimates
of vegetation properties. Fundamentally, the interpretation of RS data always implies the use
of a model. This model can be physical-based or can be statistically-based, or can be a com-
bination of both. During the history of optical RS a panoply of retrieval methods have been
proposed by the scientific literature from low to high complexity, and new ones continue to be
developed. A diverse variety of them have been brought together in this Thesis.

The second criterion involves accurate data availability. The delivery of accurate optical
RS data that enable timely and global monitoring vegetation properties on a regular basis, at
a high spatial resolution and with high accuracy has always been a major challenge by space
agencies. Various missions dedicated to land monitoring have been launched for the last few
decades, but only recently optical Earth observation is reaching a mature state with dedicated
missions that fulfill these requirements. The European Space Agency (ESA)’s forthcoming
Sentinel-2 mission is particularly tailored to the monitoring vegetation properties mapping, with
operational monitoring capabilities that goes beyond any existing operational mission. A pair of
Sentinel-2 polar-orbiting satellites will provide systematic global acquisitions of high-resolution
multispectral imagery (10-60 m) with a high revisit frequency on a free and open data policy
basis. With the pair of satellites in operation it has a revisit time of five days at the equator
(under cloud-free conditions) and 2–3 days at mid-latitudes [Drusch et al., 2012]. Sentinel-2
images will be used to derive the highly prioritized time series of ECVs such as LAI. Sentinel-2
images will also be used provide various experimental variables, e.g. biochemical variables
such as LCC. In preparation of the Sentinel-2 launch an international Sentinels for Science
(SEN4SCI) Workshop was organized by ESA in March 2011. The output of the workshop
is a list of recommendations that lead to a more comprehensive exploitation of the Sentinel-2
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observational capabilities [Malenovsky et al., 2012]. One of the identified top recommendations
concerned the following:

"The bio-physical/-chemical variables of vegetation such as FAPAR and LAI, vegetation
canopy cover, leaf chlorophyll/water/dry matter content, and other characteristics describ-
ing the canopy structure (e.g., foliage clumping and leaf angle distribution function) should
be retrieved jointly using the physically based inversion routines whenever feasible. An
evolutionary prototyping approach should be included in their operational retrieval."

This Thesis is dedicated to tackle the stated recommendation and turn it into consolidated
guidelines. The undertaken road map was to work on both generating scientific outputs, as
well on developing software to automate the retrieval routines. All essential tools to deliver
a prototype retrieval approach that could be embedded into an operational Sentinel-2 process-
ing scheme have been prepared into a scientific software package called ARTMO (Automated
Radiative Transfer Models Operator). Physically-based approaches but also latest statistically-
based methods have been implemented into the software package and systematically evaluated.
The retrieval methods have been applied to the estimation of LAI and LCC from simulated
Sentinel-2 data, but the majority of investigated methods can essentially be applied to derive
any detectable vegetation biochemical or biophysical variable. The fundamentals of ARTMO
has been laid during J.P. Rivera’s MSc thesis project and has been further developed during the
course of my PhD Thesis. The toolbox is built on a suite of radiative transfer models and im-
age processing modules in a modular graphical user interface (GUI) environment. ARTMO has
been mainly developed and tested for processing (simulated) Sentinel-2 data in a semiautomatic
way, but in principle data from any optical sensor can be processed.
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1.2 Objectives and research questions

This Thesis brings together the latest emerging retrieval methods presented in the field of vege-
tation remote sensing. A synthesis of these methods in view of the performance of forthcoming
Sentinel-2 mission will eventually lead to improved monitoring of vegetation properties. The
main objective, therefore, is: ’To analyze, optimize and automate state-of-the-art vegetation
properties mapping methods in preparation of forthcoming Sentinel-2 mission’. To reach this
objective various specialized retrieval toolboxes have been developed within the ARTMO en-
vironment. These toolboxes enabled the systematic assessment of parametric, nonparametric
and physically-based retrieval methods. Although in principle the toolboxes can be applied to
estimate any surface variables at any location, here they were applied to the estimation of LCC
and LAI over the agricultural site Barrax, Spain. The major challenges are addressed by the
following research questions:

1. What is the performance of all possible two-band vegetation indices to enable optimized
LCC and LAI estimation?

2. What is the performance of physically-based inversion routines given a suite of cost func-
tions and regularization options to enable optimized LCC and LAI estimation?

3. What is the performance of a range of nonparametric regression methods and regulariza-
tion options to enable optimized LCC and LAI estimation?

4. Can the best evaluated retrieval method be applied to other sites and conditions in view
of operational retrieval of LCC and LAI from forthcoming Sentinel-2 data?
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1.3 Thesis outline

This Thesis continues with a general background chapter and then presents four thematic chap-
ters which are based on peer-reviewed papers (Chapters 3-6). Each of the thematic chapters
represent an answer to the research questions presented in section 1.2. Chapter 3 assesses
parametric regression approaches, Chapter 4 assesses physically-based inversion routines and
Chapter 5 assesses nonparametric regression approaches for the benefit of optimized vegeta-
tion properties mapping. Based on the most promising assessed mapping method, Chapter 6
proposes and evaluates a more generally applicable mapping strategy that eventually could be
implemented into an operational Sentinel-2 processing chain.

� CHAPTER 2 presents a general background regarding Earth observation of vegetation,
addresses state-of-the-art retrieval methods (parametric, nonparametric and physically-
based), reviews the diversity of leaf and canopy radiative transfer models and outlines
the ARTMO software framework that enables automating and optimizing these retrieval
methods.

� CHAPTER 3 [Rivera et al., 2014a] presents ARTMO’s ’Spectral Indices’ toolbox. With
this toolbox all possible two-band indices have been assessed to reach optimized LCC and
LAI mapping based on an experimental field dataset and a hyperspectral HyMap imagery
over the agricultural site Barrax (Spain).

� CHAPTER 4 [Rivera et al., 2013a] presents ARTMO’s ’Inversion’ toolbox. In ARTMO
the leaf optical model PROSPECT has been coupled with the canopy reflectance model
SAIL to generate an extensive LUT. The Inversion toolbox was used to assess the role
of cost functions and regularization options. Inversion strategies have been optimized
for LAI and LCC retrieval against the same experimental field dataset using simulated
Sentinel-2 data.

� CHAPTER 5 [Rivera et al., 2013b] presents ARTMO’s ’Machine Learning Regression
Algorithms’ (MLRA) toolbox. With the MLRA toolbox multiple nonparametric regres-
sion algorithms have been assessed to reach optimized LAI and LCC mapping based on
the same experimental field dataset. Apart from simulated Sentinel-2 data, also the per-
formances for hyperspectral CHRIS and HyMap data have been assessed.

� CHAPTER 6 [Verrelst et al., 2013b] presents a mapping application based on the best
evaluated retrieval algorithm and simulated Sentinel-2 images. It moves away from the
local Barrax site and evaluates the mapping performance to other sites and conditions
by making use of associated uncertainty estimates. This chapter demonstrates that new
type of retrieval approaches holds promises for improved operational mapping and thus
refined monitoring of vegetation properties.

� CHAPTER 7 summarizes the accomplished objectives and the main scientific achieve-
ments, discusses the main conclusions, and proposes future research lines.
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2.1 Remote sensing of vegetation

Since the successful launch and deployment of the first experimental satellite, Sputnik, in 1957,
satellites have been used for applications such as surveillance, navigation, communication and
Earth observation. Notable applications of remote sensing include those relating to meteo-
rology, agriculture, mining, geology, mapping, ecological monitoring and disaster monitoring.
Although primarily electro-optical visible sensors have been used, more recently, the applica-
tion of thermal imagers, synthetic aperture radar (SAR), light detection and ranging (LIDAR),
and hyperspectral imagers has gained increasing attention [Teke et al., 2013].

Sensors can be divided into two broad groups: passive and active. Passive sensors measure
ambient levels of existing sources of energy, while active ones provide their own source of
energy. The majority of remote sensing is done with passive sensors, for which the sun is the
main energy source. The sun radiates energy through space via electromagnetic waves. The
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entire region of electromagnetic energy distinguished by wavelength and frequency is called
the electromagnetic spectrum (Figure 2.1).

FIGURE 2.1: Electromagnetic spectrum classification based on wavelength range. Note the logarith-
mic scale.

Interactions between incident radiation and vegetation elements are extremely complex and
are described by three main physical mechanisms: absorption, reflectance and transmission.
The solar reflected radiation in the optical domain is commonly used in vegetation studies, be-
cause most of the diagnostic absorption features of green vegetation are located in this part of the
spectrum. Reflectance of vegetation canopies depends on radiative properties of leaves, other
non-photosynthetic canopy elements, their spatial organization, and soil background. When
inspecting a typical reflectance spectrum of a vegetation canopy in more detail, it can be subdi-
vided into 4 parts: (1) visible (400 – 700 nm), (2) near infrared NIR (800 – 1300 nm) and, (3)
shortwave-infrared SWIR (1300 – 2500 nm), as is demonstrated in Figure 2.2.

The visible part of the reflectance spectrum (400 – 700 nm) of vegetation is controlled by the
pigments in the green leaf chloroplasts that reside in the outer or palisade leaf, the chlorophyll
pigments – chlorophyll-a and chlorophyll-b. Chlorophyll is the major absorber of radiation in
the visible region and its absorption is dominant in the visible red until red-edge wavelengths
(600 – 720 nm); it is called the green pigment and it is common to all photosynthetic cells.
Other leaf pigments also have an important impact on the visible part of the spectrum. The
carotene (yellow to orange-red pigment responsible for the colour of some flowers, fruits and
leaves without chlorophyll) and xantophyll (responsible for the leaf colour in autumn) have
strong absorption in the 350 – 500 nm, blue wavelengths.

The red edge is a region in the red-NIR transition zone of vegetation reflectance spectrum
and marks the boundary between absorption by chlorophyll in the red visible region, and scatter-
ing due to leaf internal structure in the NIR region. This transition zone is in the basis of several
vegetation indices like NDVI which is the normalized difference between the reflectance in the
red visible (700 nm) and the NIR (800 nm) reflectance. Also the red-edge position is used to
estimate the chlorophyll content of leaves or over a canopy.
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The optical properties in the near infrared spectral domain (800 – 1300 nm) are explained
by leaf structure. The spongy mesophyll cells located in the interior or back of the leaves
reflects NIR light, much of which emerges as strong reflection rays. The intensity of NIR
reflectance is commonly greater than most inorganic materials, so vegetation appears bright in
NIR wavelengths.

The shortwave-infrared region (1300 – 2500 nm) contains information about the absorption
of radiation by water, cellulose and lignin and several other biochemical constituents. This
region of the vegetation spectrum allows the identification of vegetation stress due to drought.

FIGURE 2.2: Electromagnetic spectrum classification based on wavelength range.

2.2 Copernicus space programme

While a few dozen of optical Earth observation missions are currently orbiting around the globe,
only a few of them are dedicated to the detection of vegetation reflectance, and even less provide
and process recorded data on an operational basis. To fill up this gap, the European Union has
recently set up a multi-billion-euro Earth observation project named as Copernicus to monitor
the planet.

Copernicus, previously known as GMES (Global Monitoring for Environment and Secu-
rity), is the most ambitious operational Earth Observation programme to date and will provide
global, timely and easily accessible information in application domains such as land, marine,
atmosphere, emergency response, climate change and security. Copernicus consists of a com-
plex set of systems which collect data from multiple sources: Earth observation satellites and
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in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data
and provides users with reliable and up-to-date information through a set of services related to
environmental and security issues [Aschbacher and Milagro-Pérez, 2012]. Copernicus services
are based on the processing of environmental data collected from two main sources: (1) a space
component, which consists of a constellation of satellites known as the Sentinels, coordinated
by European Space Agency (ESA); and, (2) an in situ component, which consist of a multitude
of sensors on the ground, at sea or in the air coordinated by European Environment Agency
(EEA). A list of the Sentinels is given below.

� The Sentinel-1 constellation is a pair of C-band synthetic aperture radar (SAR) imaging
satellites, the first to be launched in April 2014. The SAR sensor will be operated in two
main modes: ’Interferometric Wide Swath’ and ’Wave’, the first having 250 km of swath
width and 5*20 m ground resolution. Sentinel-1 data will support applications covering
ice/ocean observations, land monitoring/management, hydrology, disaster management,
oil spill monitoring, ship detection for maritime security, etc. With two satellites it will be
possible to have interferometric image pairs every 6 days, and a coverage every 1–3 days
of areas like Europe, Canada and main Northern shipping routess [Torres et al., 2012].

� Sentinel-2 is a polar-orbiting, multispectral high-resolution imaging mission for land
monitoring providing, for example, imagery of vegetation, soil and water cover, inland
waterways and coastal areas. Sentinel-2 will also deliver information for emergency ser-
vices [Drusch et al., 2012].

� Sentinel-3 is polar-orbiting, multi-instrument mission to measure variables such as sea-
surface topography, sea- and land-surface temperature, ocean colour and land colour with
high-end accuracy and reliability [Donlon et al., 2012].

� Sentinel-4 is a payload that will be embarked upon a Meteosat Third Generation-Sounder
(MTG-S) satellite in geostationary orbit. Sentinel-4 is dedicated to atmospheric monitor-
ing.

� Sentinel-5 is a payload that will be embarked on a MetOp Second Generation satellite,
also known as Post-EPS. Sentinel-5 is dedicated to atmospheric monitoring.

� Sentinel-5 Precursor is a low Earth orbit polar satellite to provide information and services
on air quality, climate and the ozone layer in the timeframe 2015–2022. The payload of
the mission is the TROPOspheric Monitoring Instrument (TROPOMI) that will measure
key atmospheric constituents including ozone, NO2, SO2, CO, CH4, CH4O and aerosol
properties [Veefkind et al., 2012].

2.2.1 Sentinel-2

The Sentinel-2 mission is dedicated to land surface monitoring and therefore most of inter-
est within this Thesis. The key mission objectives for Sentinel-2 are: To provide systematic
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global acquisitions of high-resolution multi-spectral imagery with a high revisit frequency, to
provide enhanced continuity of multi-spectral imagery provided by the SPOT (Satellite Pour
l’Observation de la Terre) series of satellites, and to provide observations for the next generation
of operational products such as land-cover maps, land change detection maps, and geobiophys-
ical variables [Drusch et al., 2012].

Sentinel-2 is committed to the full and systematic coverage of land surfaces (including ma-
jor islands) from 56◦S (southern Americas) to 83◦N (northern Greenland), providing cloud-
free products every 15–30 days. By comparison, the US Landsat-7 and -8 has 16-day revisits
and Spot 26-day revisits, and neither provides systematic coverage of land. In order to sup-
port operational services for at least 15 years from the launch of the first satellites, a series of
four satellites is planned, with two operating in orbit and a third in ground storage as backup.
Frequent revisits and high mission availability require two Sentinels operating simultaneously,
which dictates a small, cost-effective and low-risk satellite. The orbit is Sun-synchronous at
786 km altitude. The satellite is designed for a 7-year lifetime, with propellant for 12 years of
operations, including deorbiting at the end [Drusch et al., 2012].

Sentinel-2’s Multi-Spectral Instrument (MSI) features 13 spectral bands from the visible
and near-infrared (VNIR) to the short-wave infrared (SWIR), featuring four at 10 m, six at 20
m and three at 60 m resolution (Figure 2.3). The best compromise in terms of user require-
ments and mission performance, cost and schedule risk, it provides enhanced continuity for
Spot and Landsat, with narrower bands for improving identification of features, additional red
channels for assessing vegetation, and dedicated bands for improving atmospheric correction
and detecting cirrus clouds.

FIGURE 2.3: Sentinel-2 spectral features in relation to spatial resolution (after Drusch et al. [2012]).
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2.3 Principles of biophysical parameter retrieval methods

While simulated Sentinel-2 data will be the main data source used in this Thesis, vegetation
properties mapping can in principle be achieved from any optical sensor. The quantification
of surface geobiophysical parameters from optical remote sensing always relies on a model,
either statistically or physically based. This model enables to interpret a spectral observations
and to translate into one or multiple surface variables, e.g. diagnostic properties of vegetation
health. Using statistical terminology, this is a regression problem [Fernandes and Leblanc,
2005]. Over the last decade both fields have greatly expanded and diverged, particularly the
statistical approaches, and increasingly elements of both fields have been combined, leading to
the so-called hybrid approaches. Therefore, there is a need for a more systematic and refined
categorization. In all generality, retrieval methods can be subdivided in either one of these 4
categories:

� Parametric regression methods: Parametric methods assume an explicit relation between
spectral observation and the biophysical parameter. Hence, explicit parametrized expres-
sions are build, typically by relying on some statistical or physical knowledge between
the parameter and the spectral response. Typically a band arithmetic formulation is per-
formed (e.g. a vegetation index) and then related to the variable of interest with a curve
fitting function (e.g. linear regression).

� Nonparametric regression methods: Nonparametric methods construct a regression di-
rectly according to information derived from the data. Hence, contrary to parametric re-
gression methods, no explicit choice has to be made about spectral bands, transformation
and fitting functions.

� Physically-based retrieval methods: Physically-based algorithms follow the physical laws
and establish cause-and-effect relationships. They make inferences about model parame-
ters based on general knowledge, such as radiation transfer models (RTMs).

� Hybrid methods: Hybrid method combine elements of statistical (typically nonparamet-
ric) with physically based methods. They try to exploit the generality of physically-based
methods and the flexibility and computational efficiency of nonparametric nonlinear re-
gression methods. The idea is to learn the inverse mapping with a nonparametric model
that is being trained using simulated data generated by radiative transfer models.

Because hybrid retrieval methods essentially consists of combining any sort of methods
from above categories, they are not further addressed. The following sections will review the
most important parametric and nonparametric statistically-based and then the physically-based
retrieval methods.
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2.3.1 Parametric regression methods

Parametric regression methods build explicit parametrized expressions that relate a few spec-
tral channels with the biophysical parameter of interest. These models assume that the data
has come from a type of probability distribution and makes inferences about the parameters
of the distribution. Generally speaking, parametric models make more assumptions than non-
parametric methods. If those extra assumptions are correct, parametric methods can produce
more accurate and precise estimates. However, if assumptions are incorrect, parametric meth-
ods can be very misleading. For that reason they are often not considered robust. On the other
hand, parametric formulae are often simpler to write down and faster to compute. In some, but
definitely not all cases, their simplicity makes up for their non-robustness, especially if care
is taken to examine diagnostic statistics. The principle basically entails two steps. It first ap-
plies mathematical combinations of spectral channels and then correlates it with the biophysical
variable dataset. The correlation occurs through either a linear or nonlinear (e.g. exponential,
power, polynomial) fitting function. Many spectral algorithms have been proposed to enhance
subtle spectral features and to reduce undesired effects caused by variations in soil reflectance,
sun and view geometry, atmospheric composition, and other leaf or canopy properties. These
spectral algorithms can be basically categorized into two type of approaches: (1) discrete band
formulations and (2) quasi-continuous spectral band formulations. The first category refers to
the broad of family of vegetation indices. Vegetation indices are amongst the oldest techniques
to interpret spectral data and found their origin in broadband sensors where only from a lim-
ited set of band can be chosen from. These are typical two-, three- or four-band formulations
according to simple arithmetic expressions. While proven useful in many applications, none of
these indices take full advantage of the available spectral information. This under-exploitation
is especially prominent when applying to hyperspectral data. It led to the development of para-
metric techniques that are specialized in exploiting the quasi-continuous signal. Instead of
calculating formulas on the basis of a few discrete bands, these techniques aim to extract in-
formation from the shape of specific spectral regions and then correlate it with a biophysical
parameter. Widely used examples of quasi-continuous spectral band formulations include: (1)
red-edge position calculations, (2) derivative-based indices, (3) integral-based indices, and (4)
continuum removal.

2.3.2 Nonparametric regression methods

In contrast to parametric regression methods, nonparametric regression methods learn the rela-
tionship between the input (spectral information) and output (biophysical variables) by fitting a
flexible model directly from the observed data. The term nonparametric means that no explicit
assumption is made about the relations between the data, e.g. no particular distribution (like the
Gaussian) is assumed. Nonparametric methods can be categorized into linear or nonlinear meth-
ods, depending on the nature of the transformation. Nonparametric regression models have the
potential to generate adaptive, robust relationships and, once trained, they are fast to apply. Be-
cause full spectra can be directly introduced into nonparametric regressors, these approaches are
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increasingly applied to multi- and hyperspectral data. Typically, they are able to cope with the
strong nonlinearity of the functional dependence between the biophysical variable and the ob-
served reflected radiance. They are therefore powerful candidates for operational applications.
There exists a growing taxonomy of nonparametric regression approaches. While limiting to
the most important ones, they can be categorized into either linear or nonlinear nonparametric
models.

Linear nonparametric models

Linear nonparametric regression model became quite popular into remote sensing applications
for the last decade because of their good performance and simplicity. However, it may not
be the best choice when dealing with complex datasets exhibiting nonlinear feature relations,
such as it is often the case in multi- and hyperspectral images. Canonical linear regression
methods typically rely on the estimation of covariances which can be problematic in the case
of very low rates of examples per input data dimensionality. This is well-known in the remote
sensing field as curse of dimensionality, first described by Hughes [Hughes, 1968]. This is the
reason why usually most linear methods are applied after a dimensionality reduction that tries to
alleviate the collinearity problems1. Examples of linear nonparamtric approaches in vegetation
properties mapping include:

� Principal component regression (PCR) is a regression analysis that uses principal com-
ponent analysis (PCA) when estimating regression coefficients. The motivation behind
using PCA before applying a linear regression is to avoid the problems that may arise in
data that suffer from collinearity, such as in the hyperspectral case. In those cases, stan-
dard linear regression obtains unbiased estimations, but with large variances that made
them far from true values. The solution adopted in PCR is to perform the regression
on the projected data onto the most relevant components (called scores) obtained using
PCA [Jolliffe, 1986; Wold et al., 1987].

� Partial least squares regression (PLSR) deals with the collinearity problem in a different
way than PCR. In PCR, the regression is done on the PCA scores. These projections
are obtained using only the input patterns, not the outputs. By contrast, PLSR builds the
regression model on the projections obtained using Partial Least Squares (PLS) projec-
tions, which finds the directions of maximum input-output cross-covariance. Therefore,
PLSR takes into account both the input patterns and the output variables to estimate in
the projected space, on which the linear regression is carried out [Wold, 1985; Geladi and
Kowalski, 1986].

� Ridge regression (RR). As in PCR and PLSR, ridge regression (RR) is a linear least
squares regression developed to deal with collinearity problems. As stated before, stan-
dard linear regression obtains unbiased estimations, but suffers from large variance. RR

1Collinearity is the existence of near-linear relationships among the independent variables.



2.3 PRINCIPLES OF BIOPHYSICAL PARAMETER RETRIEVAL METHODS 15

deals with this problem allowing a degree of bias in the estimates. It does so by adding
a small positive value, λ, to the diagonal elements of the correlation matrix of the input
data2. It can be shown that RR obtains biased estimations compared to standard linear
regression, but with less variance [Hastie et al., 2009]. The problem with RR is to find an
optimal value for λ. Typically, v-fold approaches are used to obtain a near optimal value.

Nonlinear non-parametric models

In parallel to linear methods, a wide range of nonlinear, nonparametric methods have been
developed. Within this family special attention goes to the family of machine learning regres-
sion algorithms (MLRAs). The main advantages of MLRAs include its capability of solving
non-linear relationships, no assumption about the underlying data distribution, possibility to in-
corporate a priori knowledge, and the ability to combine different types of data into the analysis.
In the following subsections we briefly summarize the most commonly used MLRAs.

� Neural networks:

Neural networks (NN) combine both adaptive and non-adaptive elements. They rely on
the principle of non-linear, distributed, parallel and local processing and adaptation. A
NN is a (potentially fully) connected structure of neurons organized in layers, a neuron
being just a linear regression followed by a nonlinear function, f (·). Neurons of differ-
ent layers are interconnected with the corresponding links (weights). Therefore, in the
limit case of using a NN with only one neuron, the results would be similar (or slightly
better) than those obtained with linear regression. Roughly speaking, an NN is typically
defined by three types of parameters: (1) The interconnection pattern between different
layers of neurons; (2) The learning process for updating the weights of the interconnec-
tions; and (3) The activation function that converts a neuron’s weighted input to its output
activation [Haykin, 1999].

� Decision tree learning:

Decision tree learning uses a decision tree as a predictive model which maps observations
about an item to conclusions about the item’s target value. The model structure is formed
by a set of nodes that are hierarchically connected: in each node a linear decision is made
based on specific input features. Tree models are sometimes referred to as classification
or regression trees, depending on the problem at hand. Very often, a simple tree cannot
cope with strong nonlinear input-output dependencies. In such cases, the combination of
trees can improve the results [Quinlan, 1986].

� Kernel methods

Kernel methods [Shawe-Taylor and Cristianini, 2004] owe their name to the use of kernel
functions, which measures similarities between input data examples. Such similarity re-
produces a linear dot (scalar) product computed in a possibly higher dimensional feature

2RR takes its name because this increase of the diagonal is somehow similar to a ridge.
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space, yet without ever computing the coordinates of the data in that space. This approach
is known as the kernel trick. The use of kernel methods have been widely adopted in geo-
science and remote sensing applications as well [Camps-Valls and Bruzzone, 2009].

– Support vector machines (SVMs) are supervised learning models with associated
learning algorithms that analyze data and recognize patterns, used for classification
and regression analysis. A support vector machine constructs a hyperplane or set of
hyperplanes in a high- or infinite-dimensional space, which can be used for classi-
fication, regression, or other tasks. Intuitively, a good separation is achieved by the
hyperplane that has the largest distance to the nearest training data point of any class
(so-called functional margin), since in general the larger the margin the lower the
generalization error of the classifier. A version of SVM for regression was proposed
in [Vapnik et al., 1997].

– Kernel ridge regression (KRR), also known as least squares support vector machines
(LS-SVM), are a set of related supervised learning methods that analyze data and
recognize patterns, and can be used for classification and regression analysis. In
this version one finds the solution by solving a set of linear equations instead of
a convex quadratic programming (QP) problem for classical SVMs [Suykens and
Vandewalle, 1999].

– Relevance vector machines (RVM) use Bayesian inference to obtain parsimonious
solutions for regression and classification. The RVM has an identical functional
form to the support vector machine, but provides probabilistic classification. Com-
pared to that of SVMs, the Bayesian formulation of the RVM avoids the set of free
parameters of the SVM (that usually require cross-validation-based optimizations).
However RVMs use an expectation maximization learning method and are therefore
at risk of local minima. RVMs provides also more sparse solutions than SVMs [Tip-
ping, 2001].

– Gaussian processes regression is based on Gaussian processes (GPs), which are a
generalization of Gaussian probability distributions over the space of functions. A
Gaussian process is a stochastic process that describes the properties of functions.
As in Gaussian distributions, a GP is also described by its mean (which for GPs is a
function), and its covariance (a kernel function), which represents the expected co-
variance between the value of a function at a given point [Rasmussen and Williams,
2006a].

2.4 Principles of physically-based methods: Reflectance Mod-
eling

Whereas statistical approaches are governed by the available data that has been presented during
the calibration (parametric) or training (nonparametric) phase, instead, physical approaches are
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based on physical laws governing the light-leaf and light-canopy processes of absorption and
scattering. The interaction of solar radiation with the canopy is described by means of radiative
transfer equations [Myneni and Ross, 1991], which is mathematically implemented in leaf and
canopy radiative transfer models (RTMs). In the following sections the main principles of
leaf and canopy RTMs are addressed. Only those RTMs that have been implemented into the
ARTMO toolbox (c.f. section 5.4) are discussed.

2.4.1 Leaf radiative transfer models

Several leaf optical models with different modeling techniques have been developed for both
broadleaf and needleleaf. The basic principles of the most representative leaf models are intro-
duced below.

’Plate’ Models

The plate model developed by Allen et al. [1969] considers a compact plant leaf as a semi-
transparent plate with plane parallel surfaces and initially assumes that the incident light is
partially isotropic. That requirement is equivalent to the assumption that the surfaces are rough.
Figure 2.4 illustrates incident light interacting with a compact plant leaf: it is partly reflected,
partly transmitted and partly absorbed.

FIGURE 2.4: Schematic representation of a monocot (left) and dicotyledon (right) leaf and multiple
reflections produced by a single plate (left), and a set of N = m + n plates (right). Figure after Jacquemoud
and Ustin [2001].

The expression for the total reflectance of the plate, R, can be derived by summing the
amplitudes of successive reflections and refractions. Allen et al. [1970] followed by Breece
and Holmes [1971] rapidly extended the plate model to non-compact leaves by introducing the
generalized plate model which simply consists of stacking elementary plates. This new model
accounts for the development of intercellular spaces in the leaf mesophyll. The leaf is conceptu-
ally subdivided into N uniform compact plates separated by N - 1 air spaces. Such a system has
been solved for reflectance and transmittance many years ago by the Irish mathematician Stokes
(1862) who actually contemplates a set of N = (m + n) plates, and obtains the reflectance R(m
+ n) and the transmittance T(m + n) of this set in terms of the reflectances and transmittances
of the two subsets consisting of m and n plates (Figure 2.4). A well-known leaf reflectance
model is the PROSPECT model, first proposed by Jacquemoud and Baret [1990] and modified
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later Jacquemoud et al. [1995]. Based on PROSPECT, various refinements have been devel-
oped, e.g. FluorMODleaf [Pedrós et al., 2010], that also delivers fluorescence emission, and
Dorsiventral Leaf Model (DLM) [Stuckens et al., 2009], that distinguishes between adaxial and
abaxial optical properties.

2.4.2 Canopy radiative transfer models

Vegetation canopy RTMs have initially been developed for the study of photosynthesis in plant
stands. Stimulated by optical remote sensing technology, these models were developed in order
to obtain a better insight in the interaction between incident radiation and vegetation canopies.
Canopy RTMs can be categorized into four groups [Goel, 1998]:

� Turbid medium models:

The vegetation elements are treated as small absorbing and scattering particles with given
optical properties, distributed randomly in horizontal layers and oriented in given direc-
tions. The canopy is usually assumed to be homogeneous and its architecture is expressed
through leaf area index (LAI) and leaf angle distribution. Quantities such as leaf dimen-
sions, the effective distance between leaves, and the nonrandom distribution of leaves
along the horizontal direction are typically neglected. The models in this category use ei-
ther the Kubelka-Munk theory, such as the widely used SAIL model [Verhoef, 1984], or
the radiative transport theory, or discrete models. The turbid medium models are partic-
ularly successful in representing the reflectance of denser and more horizontally uniform
canopies in which the vegetation elements are smaller in size that the height of the canopy.
A representation of a turbid medium model simulation is given in Figure 2.5

FIGURE 2.5: Representation of a scene generated by a turbid medium model. Figure after RAMI
[2014].

� Geometrical-optical models:

Here the canopy is assumed to consist of a ground surface (of known reflective properties)
with geometrical objects or protrusions of prescribed shapes (cylinder, sphere, upright and
reversed cones, ellipsoid, flat disk etc.) and dimensions and optical properties placed on
the ground in a defined manner (regularly or randomly distributed, row structure of trape-
zoidal, triangular or rectangular cross section). The interception of light and shadowing
by the protrusions, and the reflectance from the ground surface are analyzed to deter-
mine the reflectance from the canopy. In these models [e.g. Li and Strahler, 1992], the
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main assumption is that the geometrical nature of the canopy is the primary factor behind
the anisotropy of bidirectional reflectance. A representation of a scene generated by a
geometrical-optical model simulation is given in Figure 2.6.

FIGURE 2.6: Representation of a scene generated by a geometrical-optical model. Figure after RAMI
[2014].

� Ray tracing models:

In ray tracing models [e.g. Govaerts and Verstraete, 1998; Disney et al., 2006], the ar-
rangement and orientation of vegetation elements are simulated on a computer. Each of
these elements is divided into a finite number of areas. A Monte Carlo procedure, involv-
ing the selection of random numbers, is used to determine if a given beam of light will hit
one of these areas. If it is hit, the direction of scattered radiation is chosen again using a
Monte Carlo procedure. Thus, the interception and scattering of radiation is numerically
followed, almost on a photon-by-photon basis. These models are computationally inten-
sive, but have the advantage of allowing a more realistic simulation of radiation regime in
a canopy. Using these models, one can also investigate the statistical nature of the radia-
tion field, i.e., one can calculate not only the average values but also the higher moments
and even the probability distribution of the reflected fluxes. A representation of a scene
generated by a ray tracing model simulation is given in Figure 2.7.

FIGURE 2.7: Representation of a scene generated by a ray-tracing model. Figure after RAMI [2014].

� Hybrid models:

These models combine elements of both the turbid medium, the geometric-optical or
the ray tracing models. In hybrid RTMs the canopy is approximated by a distribution
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of geometrical-shaped plants except that the multiple scattering is not neglected. The
vegetation elements are treated as absorbing and scattering particles. These models are
needed for canopies which are neither sparse nor dense. Often they are introduced in a ray
tracing environment, e.g. the FLIGHT model [North, 1996]. They are obviously the most
complex of geometrical-optical and turbid medium models. These models can be used
to represent a wider variety of canopies – sparse to dense with both homogeneous and
inhomogeneous tree distributions. However, multiple scattering is not rigorously treated.
Like geometrical-optical models, these models also use only one geometrical shape for
the trees. A representation of a scene generated by a ray tracing model simulation is given
in Figure 2.8.

FIGURE 2.8: Representation of a scene generated by a hybrid model . Figure after RAMI [2014].

2.4.3 Forward running and model inversion

As outlined above, canopy RTMs simulate the reflected radiation for a given observation con-
figuration (e.g. spectral region, sun-target-sensor geometry) and auxiliary variables (e.g. leaf
and canopy characteristics). Generally speaking, a discrete forward model to describe such a
system is of the form:

y=f(X,θ)+n, (2.1)

where y is a set of measurements (such as the expected radiance); X is a matrix containing
a set of controllable measurement conditions (such as different combinations of wavelength,
viewing direction, time, Sun position, and polarization); θ is a vector of state parameters of the
system approximation (i.e. the model input variables); n is an error vector (model and mea-
surement error, noise) [Camps-Valls et al., 2012b]. Conversely, it is also possible to retrieve
the model input variables from remote sensing measurements through model inversion. The in-
version problem implies the design of algorithms that, departing from the radiation acquired by
the sensor (or removed from atmospheric effects, i.e. top-of-canopy reflectance), can calculate
back to estimates of the variables of interest through the RTM calculations, thus ’inverting’ the
RTM. A schematic illustration of the forward and inversion processes is shown in Figure 2.9.
In the inversion process, a priori information about input parameters or the variables of interest
can also be included to improve the performance, such as vegetation properties, geographical
location, acquisition time or statistical properties of the data distribution [Baret and Buis, 2008].
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FIGURE 2.9: Forward running and model inversion in variable retrieval. Figure after Baret and Buis
[2008].

Unfortunately the inversion process is not what Hadamard [1902] defined as a "well-posed
problem". He believed that mathematical models of physical phenomena should have the prop-
erties that: (1) a solution exists, (2) the solution is unique, and (3) the solution’s behavior
changes continuously with the initial conditions. If at least one of the criteria above is not
fulfilled the problem is said to be "ill-posed". The problem of inverting the function f is in gen-
eral undetermined and highly ill-posed: the number of unknowns is generally larger than the
number of independent radiometric information remotely sampled by sensors. In general, esti-
mating biophysical parameters from inversion of RTMs against satellite-derived data constitute
very difficult problems due to the presence of high levels of uncertainty, such as those associ-
ated to sensor calibration, model realism, sun-target-viewing geometry, quality of atmospheric
correction [Baret and Buis, 2008; Camps-Valls et al., 2012b].

Since the RTM inversion is highly ill-posed, the inversion technique is based on finding the
best match between the measured reflectance values and those either simulated by a RTM or
stored within a database made of experimental observations. This bears the consequence that
the performances of the approach will both depend on the minimization algorithm itself, the
so-called "cost function" and on the level of ill-posedness of the inverse problem as a function
of measurement configuration and model and measurement uncertainties. Several minimization
techniques have been introduced to circumvent the ill-posed problem: (1) classical iterative
optimization, (2) simulated annealing, (3) genetic algorithms, (4) look up tables and (5) Monte
Carlo Markov Chains. However, classical iterative optimization techniques and look up tables
(LUT) have been the most widely used. LUT-based inversion will be further optimized in this
Thesis.

Look Up Tables (LUT)

UT-based inversion is conceptually the simplest inversion technique, although its implementa-
tion is not trivial, approach is used to speed up the inversion process. It precomputes the model
reflectance for a large range of combinations of parameter values. In this manner, the most
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computationally expensive aspect can be completed before the inversion is attempted, and the
problem is reduced to searching a LUT for the modeled reflectance set that most resembles the
measured set [Liang, 2007]. This is mostly done through a cost function, typically by minimiz-
ing the summed differences between simulated and measured reflectances for all wavelengths,
but also other cost functions and optimization techniques will be introduced in this Thesis.

2.4.4 Applying RTMS for vegetation properties mapping

The above sections illustrated that different types of RTMs have been developed that range in
complexity and computational speed. These differences play a role in the inversion perfor-
mance, and RTM comparison and evaluation is required. Among the most extensive validation
exercises involve the RAdiation transfer Model Inter-comparison (RAMI) exercises, which took
place in participation with model developers. Four RAMI exercises have been conducted so far;
each time having more advanced models included and more accurately representing real-world
situations [Pinty et al., 2001, 2004; Widlowski et al., 2007, 2011]. Although RAMI provides a
benchmark for model developers, however, currently no services are available that bring these
validated models together on one platform. In fact, many published RT models are not easily
accessible. Conversely, some models have a long history in being freely distributed throughout
the community and became a standard in RS research. The turbid medium canopy reflectance
SAIL model [Verhoef, 1984] is such an example and is currently among the most popular mod-
els in RT-based biophysical parameter mapping exercises [Jacquemoud et al., 2009]. A com-
mon practice in RS research is opting for one of those available models, regardless of evaluating
whether it correctly represent the studied real-world situation. For instance, many studies have
inverted SAIL with the purpose of retrieving forest biophysical properties [e.g., Gond et al.,
1999; Soudani et al., 2006; le Maire et al., 2008; Zhang et al., 2005]. Nevertheless, SAIL does
not simulate 3D structures of trees and associated shadowing. Hence, the risk of oversimplify-
ing the RT processes is introduced when applying a 1D model to forests and so the likelihood of
propagating errors in the inversion process. Given this all, there is a need for a platform where
multiple 1D and 3D models can be freely accessed so that the user can compare and apply these
models for their own purposes.

Along with the absence of a multiple-models platform, another faced inadequacy is that
currently no advanced retrieval toolbox is offered in mapping software packages. This can be
potentially overcomed. While in the scientific literature a diversity of inversion strategies have
been proposed [e.g., Jacquemoud et al., 1995; Chen et al., 1997; Weiss et al., 2000; Combal
et al., 2003; Zarco-Tejada et al., 2003], for the majority of approaches the same sequence of
processing steps is pursued, such as the generation of a LUT and applying cost functions. Fi-
nally, in a recent paper reviewing RT models [Jacquemoud et al., 2009] it was acknowledged
that a Graphical User Interface (GUI) would be very helpful to make users understand the value
of RTMs in obtaining more accurate information about plant biophysical properties. Further-
more, a GUI can easily be extended to embed all necessary tools to automate model inversion
against RS observations, and so eventually compute concurrent maps of biophysical parameters.
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To the benefit of RS-related research, it is therefore desirable to bring RT models and essen-
tial inversion processing steps together in one GUI toolbox. The toolbox should: (1) consist of
a suite of leaf and canopy models, (2) be user friendly, (3) allow easy comparison of different
models, (4) automate retrieval strategies to map vegetation properties, and (5) be freely avail-
able. A scientific GUI toolbox that aims to cover all these points has been developed during this
Thesis project, called ARTMO.

2.5 ARTMO: Software framework for vegetation properties
retrieval

ARTMO (Automated Radiative Transfer Models Operator) is a scientific GUI software package
developed at the Laboratory of Earth Observation (LEO) at the University of Valencia [Verrelst
et al., 2011; Rivera, 2011]. The software structure has been developed according to a three-
tier architecture and two connecting levels in MATLAB and connected with a MySQL server
running underneath. A detailed description of the architecture can be found in [Rivera, 2011].
Since its first version, the ARTMO package consists of three different conceptual blocks: (1)
radiative transfer models (RTMs), (2) Retrieval toolboxes and (3) Tools. Figure 2.10 shows the
RTMs, retrieval algorithms and tools that was implemented in v1.00 [Rivera, 2011].

FIGURE 2.10: ARTMO’s v.1.00 RTMs, inversion module and tools as developed in [Rivera, 2011].

A major weakness of ARTMO v1.00, however, was that its logical tier structure did not
permit the expansion of its modules. Therefore, one of the Thesis’ objectives was to improve the
conceptual development and implementation of ARTMO as a "modular software framework" by
redesigning its structure according to a dynamic extendable modular architecture. It eventually
led to the current version 3.03, which is modular and consists of various new modules. By
following a basic logical structure that allows communication between the included modules,
the software package can be customized and extended by any programmer. The conceptual
development of the modular software framework is hereafter presented. A general description of
each module along with Manual and Installation Guides can be consulted at ARTMO’s website:
http://ipl.uv.es/artmo/.
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2.5.1 ARTMO’s software framework

From v3.00 onwards, ARTMO is built out of four different module types: (1) Main, (2) radia-
tive transfer models (RTMs), (3) Retrieval toolboxes, and (4) Tools. The latter three are now
removable modules that are built on top of the Main module. Figure 2.11 shows the general
outline of the modular software framework. Each module provides the programmer with a stan-
dardized set of properties and functions that allow communication between modules. The main
module is responsible for creating the underlying MySQL database and provides the script that
takes care of the communication between the modules and the underlying database. The RTM
module runs the configured radiative transfer models, the Retrieval toolboxes analyze the perfor-
mance of different biophysical parameter retrieval methods, and Tools module provides scripts
for post-processing information generated by the RTM module. Each module is formed by one
or more ’processing units’, which defines a set of scripts and GUIs that executes a specific task.

FIGURE 2.11: Module’s outline of the ARTMO Framework.

The architecture of all modules has been developed in a structure of three tiers (client, logic
and database) and two connection levels.

The client tier consists of a set of GUIs developed for entering and reading input and out-
put data to each element of the logical layer. This structure is applied to each modules. The
logic tier consists of a set of four basic elements: (1) builder, (2) connector, (3) core and (4)
auxiliary. Each element is formed by one or more scripts; its behavior depends on the module
it belongs. The database tier contains the logical database element. This element is common
to all modules. The database is designed in MySQL. The first level refers to all elements to be
installed locally and consists of the presentation (i.e., all GUIs) and logic tier (i.e. all scripts),
the second level refers to the communication between the logic tier and the MySQL database.
The database can be accessed remotely. Figure 2.12 shows the layout of components and com-
munication between components. The four module types are subsequently described according
to the basic elements.
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FIGURE 2.12: Visual overview of Three-tiered modules in ARTMO framework.

Main module:

� Builder: Stores default information of the general settings and the different main GUI
menus of the ARMO Framework.

� Core: Is responsible for checking and storing each processing unit configuration data in
order to allow the communication among all modules.

� Connector: creates the database and contains a set of auxiliary scripts that allows the
communication between all modules of logical tier and database.

RTM module:

� Builder: Stores all the input and output setup parameters of RTM and the configuration of
tables created by the connector element; also creates sub-menus in each menu of the main
GUI. Table 2.1 lists ARTMO’s implemented RTMs. In this module each implemented
RTM is a processing unit.

� Core: Runs the main script of the configured RTM.

� Connector: Defines the MySQL storage syntaxes of input and output data to each RTM.
For instance, Figure 2.13 illustrates a relational database structure for PROSPECT-4.
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TABLE 2.1: RTMS implemented into ARTMO

Model scale Reference language

Prospect-4 leaf Feret et al. [2008] Matlab
Prospect-5 leaf Feret et al. [2008] Matlab
FluorMODleaf leaf Pedrós et al. [2010] Compile file
DLM leaf Stuckens et al. [2009] Matlab
4SAIL canopy Verhoef et al. [2007] Matlab
FluorSAIL canopy Zarco-Tejada et al. [2006] Compile file
FLIGHT canopy North [1996] Compile file
SLC combined (soil/leaf/canopy) Verhoef and Bach [2007] Mex file (Matlab)
SCOPE combined (soil/leaf/canopy) Van Der Tol et al. [2009] Matlab

FIGURE 2.13: Table’s structure to RTM generic implemented.

Retrieval module:

� Builder: Provides basic information to the main module of the retrieval models imple-
mented, creates sub-menus in each menu of the main GUI and stores the settings to run
the retrieval model.

� Core: Runs the main script of the retrieval model and the different programed scripts in
an auxiliary element. Table 2.2 shows retrieval algorithms implemented.

� Connector: Defines the MySQL storage syntaxes of input settings of retrieval models and
the output statistics analyzed and allows the communication between the core element and
the database. Chapters 3 to 5 explain all developed retrieval toolboxes in more detail.
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TABLE 2.2: ARTMO’s retrieval toolboxes.

Spectral Indices LookUp-Table (LUT)
Machine learning
regression

Generic spectral index
formulations with up to 10
different bands.

63 cost functions according
to Leonenko et al. [2013]

13 Machine learning
regression algorithms
according to Camps-Valls
et al. [2013]

Tools module:

� Builder: Provides basic information to the main module, creates access in ARTMO’s
main GUI window.

� Core: Processes the stored information by the processing units of the RTM module in the
database.

� Connector: Takes care of the communication. The table’s syntaxes required by each
processing unit is managed by the connector.

In v3.03 the following tools are fully operational:

1. Graphics tool: The Graphics tool allows the simulated spectra to be viewed and exported.

2. Sensor tool: The Sensor tool enables configuring the band settings of a specific sensor.
Once configured, an RTM can then generate outputs according to the bands settings of a
chosen sensor.

Finally, it is expected that the development of modular and dynamic tools will contribute to
the understanding of the interactions between solar light and vegetation elements. ARTMO’s
modular framework provides a platform that not only allows researchers, developers and users
of RTM to develop new methods or optimize retrieval strategies, but also presents an intuitive
toolbox that supports the use and inter-comparison of various RTMs as well possibilities of
executing mapping strategies for local-to-regional applications, ranging from precision farming
to environmental monitoring issues.
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3.1 Abstract

Regression models based on spectral indices are typically empirical formulae enabling the map-
ping of biophysical parameters derived from Earth Observation (EO) data. Due to its empirical
nature, it remains nevertheless uncertain to what extent a selected regression model is the most
appropriate one, until all band combinations and curve fitting functions are assessed. This pa-
per describes the application of a Spectral Index (SI) assessment toolbox in the Automated
Radiative Transfer Models Operator (ARTMO) package. ARTMO enables semi-automatic re-
trieval and mapping of biophysical parameters from optical remote sensing observations. The
SI toolbox enables the assessment of biophysical parameter retrieval accuracy of established
as well as new and generic SIs. For instance, based on the SI formulation used, all possible
band combinations of formulations with up to ten bands can be defined and evaluated. Several
options are available in the SI assessment: calibration/validation data partitioning, the addition
of noise and the definition of curve fitting models. To illustrate its functioning, all two-band
combinations according to simple ratio (SR) and normalized difference (ND) formulations as
well as various fitting functions (linear, exponential, power, logarithmic, polynomial) have been
assessed. HyMap imaging spectrometer (430-2490 nm) data obtained during the SPARC cam-
paign in Barrax, Spain, have been used to extract leaf area index (LAI) and leaf chlorophyll
content (LCC) estimates. For both SR and ND formulations the most sensitive regions have
been identified for two-band combinations of green (539-570 nm) with longwave SWIR (2421-
2453 nm) for LAI (r2: 0.83) and far-red (692 nm) with NIR (1340 nm) or shortwave SWIR
(1661-1686 nm) for LCC (r2: 0.93). Polynomial, logarithmic and linear fitting functions led
to similar best correlations, though spatial differences emerged when applying the functions to
HyMap imagery. We suggest that a systematic SI assessment is a strong requirement in the
quality assurance approach for accurate biophysical parameter retrieval.
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3.2 Introduction

Quantitative and spatially-explicit retrieval of vegetation biophysical parameters is a require-
ment in a variety of ecological and agricultural applications. Earth observing (EO) satellites,
endowed with a high temporal resolution, enable the retrieval and hence monitoring of plant
biophysical parameters [Moulin et al., 1998; Báez-González et al., 2002; Dorigo et al., 2007].
With the forthcoming super-spectral Copernicus’ Sentinel-2 [Drusch et al., 2012] and Sentinel-
3 missions [Donlon et al., 2012] as well as the planned EnMAP [Stuffler et al., 2007], HyspIRI
Roberts et al. [2012] and PRISMA [Labate et al., 2009] imaging spectrometer missions, an
unprecedented data stream becomes available. This data influx requires processing techniques,
which are reproducible, accurate and fast, when the retrieval of information on plant growth
and health status is envisaged. Typically, the retrieval of biophysical parameters using EO data
implies the use of a model [Myneni et al., 1995a], which can be either statistical or physical in
nature. A statistical regression model enables the linkage of EO data with biophysical param-
eters of interest [Gobron et al., 2000] by making use of (in situ) calibration data. On the other
hand, physically-based approaches allow the retrieval of the biophysical parameters by inver-
sion of a radiative transfer model (RTM) against EO data [Houborg and Boegh, 2008; Rivera
et al., 2013a].

Although inversion of a RTM is generally applicable for a wide range of land cover types
and sensor configurations [Verrelst et al., 2014b], the approach is often computationally de-
manding. It usually requires quite some auxiliary information to enable the parameterization
of the physical model and the description of the boundary conditions for which the model is
valid [Chen and Cihlar, 1996; Myneni, 1997]. This information may not always be available.
Moreover, by introducing input parameter uncertainties, the likelihood increases that model in-
version may lead to multiple instead of singular solutions in the soil–vegetation–atmosphere
matrices (unified theorem of Hadamard well-posedness). In that case, extra steps are required
to overcome the ill-posed problem [Combal et al., 2003].

Conversely, statistical models are more easily implementable for parameter retrieval and
mapping applications. The basic principle is to correlate mathematical combinations of mea-
sured reflectances for different wavelength ranges or broad spectral bands with biophysical
vegetation parameters of interest (e.g., leaf area index (LAI), leaf chlorophyll content (LCC),
fractional vegetation cover) using a fitting function. This procedure can be considered as an em-
pirical spectral index (SI) modelling approach. Over the past four decades, a large number of
SI models has been developed for the retrieval of biophysical parameters [Myneni et al., 1995b;
Broge and Mortensen, 2002; Haboudane et al., 2004]. The majority of these SIs and their re-
lationship with biophysical parameters of interest has been developed based on experimental
work [Thenkabail et al., 2002; Ustin et al., 2004; Hatfield et al., 2008].

While being successful for many application cases, the empirical approach suffers from
drawbacks as well. Typically, a limited portability to different measurement conditions or sensor
characteristics can be noted [Baret and Guyot, 1991]. Moreover, the approach is sensitive to
perturbing factors such as atmospheric conditions, canopy characteristics and differences in
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viewing or solar position geometry [Verrelst et al., 2008, 2010]. In an attempt to generate more
generic relationships, RTM-based dataset simulations have been used to assess for the most
sensitive SIs [Ceccato et al., 2002; Zarco-Tejada et al., 2001; Haboudane et al., 2004; le Maire
et al., 2004; Zarco-Tejada et al., 2005; le Maire et al., 2008]. A spectral index can quite often
be used as an estimator for a biophysical parameter using a fitting function through the data;
usually by simple linear regression, but also exponential, power, logarithmic and polynomial
fitting functions, among others, are commonly applied [Baret and Guyot, 1991; Delegido et al.,
2011; Mariotto et al., 2013]. In statistics, this approach can be categorized as a parametric
regression modeling approach. This type of model is determined by the introduction of various
properties to obtain formulations linking spectral reflectance with the biophysical parameter of
interest. In fact, properties that determine the SI regression function can be defined at three
levels:

� Band selection: Typically, most SIs are mathematical formulations consisting of two or
three sensor spectral bands (B). How then, do we evaluate with a high enough scrutiny,
whether the most sensitive spectral bands – with respect to biophysical parameter retrieval
– have been selected? This question is especially relevant in view of the high number of
bands associated with imaging spectrometry [Thenkabail et al., 2011].

� SI formulation: Typically, the normalized difference (ND) formulation is applied, i.e.,
(B2-B1)/(B2+B1). But again, how do we assess, whether the applied ND formulation is
the most accurate one with respect to biophysical parameter retrieval? Even given high
spectral resolution multi- or hyperspectral reflectance data, there is no reason to assume
that a two-band SI formulation leads to the most accurate empirical relationship [Verrelst
et al., 2012b].

� Fitting function: A regression model is typically reduced to a linear fitting exercise, di-
rectly or indirectly by prior transformation to linearity. Also here, the question is, whether
the regression function selected is the most accurate one? Typically, saturation effects are
common for dense canopies [Chen and Cihlar, 1996; Myneni, 1997].

Accordingly, it is uncertain, whether an established SI – many have been published in the
remote sensing literature – will lead to the most accurate biophysical parameter retrieval, par-
ticularly when applied to hyperspectral EO data. To ensure that the most sensitive SI regression
model is selected for a specific application, a systematic as well as consistent assessment of an
exhaustive set of possible band combinations, SI formulations and curve fitting procedures may
be required prior to the selection of an SI model for the retrieval of biophysical parameters from
(hyperspectral) EO imagery.

Evidently, this is not a trivial task. In view of forthcoming imaging spectrometers, and
to obtain an optimized SI model for biophysical parameter retrieval, the assessment of a large
number of band combinations is required. To this end, the requirement for a graphical user inter-
face (GUI) toolbox, assisting EO users in the tedious job of evaluating large sets of SI models,
is not a luxury. This observation brings us to the following objectives: (1) To develop an ’SI
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assessment toolbox’ for the semi-automatic retrieval of biophysical parameters; (2) To enable
a robust assessment procedure to estimate the impact of different index formulations, spectral
band settings and curve fitting functions with respect to their capability of biophysical param-
eter retrieval; and (3) To apply the most accurate SI regression model, to extract biophysical
parameters from EO imagery.

Since spectral indices and their associated regression models can either be developed based
on experimental or simulated data, both options should be present in an SI assessment mod-
ule. To this end, the SI toolbox has been developed within the ARTMO (Automated Radiative
Transfer Models Operator) modeling environment. The experimental dataset used for testing
has been acquired from ESA′s SPARC campaign (Barrax, Spain).

In the following sections, the most recent version of the ARTMO modeling environment
will be briefly described. Subsequently, an introduction to the most important components of
the SI assessment toolbox will follow. The dataset used is described and finally, an assessment
of selected SIs will be presented. A discussion section is devoted to newly developed spectral
indices and a conclusion section finalizes this paper.

3.3 ARTMO software package

ARTMO, developed and running in Matlab (2011a or higher), offers multiple leaf and canopy
radiative transfer models (RTMs) accessible in a GUI environment. Dedicated retrieval meth-
ods, required for the semi-automatic retrieval of biophysical parameters, are provided. Exam-
ples of ARTMO run options are:

� Selection of various forward and invertible leaf and canopy RTMs of a low to high com-
plexity (PROSPECT-4, PROSPECT-5, 4SAIL, FLIGHT);

� The choice to specify or select spectral band settings specifically for various existing
air- and space-borne sensors or user defined settings, typically for recently developed or
future sensor systems;

� The option to simulate large datasets of top-of-canopy (TOC) reflectance spectra for sen-
sors sensitive in the optical range (400 to 2500 nm). Look-up tables (LUT) can be gener-
ated, which are stored in a relational SQL database management system (MySQL, version
5.5 or higher; local installment required);

� Finally, various retrieval scenarios can be selected and run using EO reflectance datasets.

Figure 5.1 illustrates the ARTMO v3 GUI main window and a systematic overview of the mod-
ules. In the GUIs main window, a new project can be defined, a sensor chosen and comments
added. All processing modules are accessible by drop-down menus from the top bar. Al-
ready in the first version of ARTMO, LUT-based inversion applications were available [Verrelst
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et al., 012c; Rivera et al., 2013a]. ARTMO v3 is formally presented in this paper. The soft-
ware package, as well its manuals, installation guides and tutorials, are freely downloadable at:
http://ipl.uv.es/artmo/. Its most important novelties are briefly listed below:

� ARTMO v3 is designed modularly. Its modular architecture offers the possibility for easy
addition (or removal) of components, such as RTM models and post-processing modules.

� The MySQL database is organized in such a way that it supports the modular architecture
of ARTMO v3. This avoids redundancy and increases the processing speed. For instance,
all spectral datasets are stored as binary objects.

� New retrieval toolboxes are incorporated. They are based on parametric and non-parametric
regression as well as physically-based inversion using a LUT. This has led to the develop-
ment of a: (1) ’Spectral Indices assessment toolbox’; (2) ’Machine Learning Regression
Algorithm toolbox’ Rivera et al. [2013b]; and, (3) ’LUT-based inversion toolbox’ [Rivera
et al., 2013a].

FIGURE 3.1: Screenshot of ARTMO’s main window and schematic overview of its drop-down menu.

3.3.1 ARTMO Spectral Indices (SI) toolbox

This paper introduces a ’Spectral Indices assessment toolbox’. Its general architecture is out-
lined in Figure 3.2. The toolbox enables the loading and applying of existing or user-defined
spectral indices. In short, the toolbox encompasses the following utilities. For each new index,
a spectral region for each waveband is specified. Every single band of a sensor that falls within
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the specified spectral region will then be included in the retrieval capacity assessment. Different
types of curve fitting functions have been implemented (e.g., linear, power, exponential, loga-
rithmic, polynomial functions), while new functions can easily be added by the user. Input data
originating from RTM runs can be used or user-defined input data can be imported (a plain text
file), typically a dataset acquired during a field or flight campaign (i.e., biophysical parameters
and associated surface reflectance). Input data can then be partitioned for calibration and vali-
dation of the SI–biophysical parameter relationships. Options are available to merge or partition
different input datasets; e.g. calibration on the basis of RTM data and validation on the basis of
user acquired field data. A land cover map in ENVI format (Exelis Inc.) can be loaded, which
allows that for each land cover class distinct SI optimization strategies can be defined (e.g.,
vegetation indices for vegetated surfaces, water indices for water bodies, etc.). When validation
data are available, a large diversity of spectral band combinations as well as regression func-
tions, can be assessed using the validation dataset and statistical analysis results (c.f., section
II-D). The most accurate strategy can then be selected, loaded and applied to retrieve biophysi-
cal parameters from EO imagery (in ENVI format). Important steps in the outlined procedures
are presented in the following sections, they are: (1) ’Add spectral index’; (2) ’SI settings’; (3)
’Calibration/validation assessment’; and, (4) ’Retrieval’.

FIGURE 3.2: Screenshot of the ARTMO v3 ’Spectral Indices assessment toolbox’ and schematic
overview of its drop-down menu.

3.3.2 Add spectral index

The ’Add spectral index’ window Figure (3.3) in the ’Tools’ menu allows for adding a new index
to a list with pre-defined SIs. Spectral indices can be created manually using the GUI or they
may be imported. SIs are organized in ’SI Groups’, according to their similarity in definition,
e.g., broadband, narrowband or according to their sensitivity with respect to certain absorption
features, e.g. by pigments or water. For instance, the ’Broadband Greenness’ SI group consists
of the conventional simple ratio (SR: B2/B1) and ND (B2-B1/B2+B1) formulations. A new SI
group can also be created, in which multiple SI formulations can be incorporated according
to specific input requirements; name, acronym and SI equation definition. When this step is
completed, the transfer equation will be assessed for its validity and spectral bands are identi-
fied. For each spectral band, a default wavelength or a minimum and maximum of a wavelength
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range must be specified. During the subsequent assessment step, all bands within the prespeci-
fied spectral region will be automatically evaluated. When kept undefined, every single band of
a given sensor will be evaluated according to the specified SI formulation.

FIGURE 3.3: GUI section used to add a new SI formulation.

3.3.3 SI settings

In order to activate the possibility of defining SI settings, input data are required. Insertion
of input data is performed with the ’Input’ window. Input data can either consist of a RTM
simulated dataset or it can be a field campaign dataset in combination with an EO dataset ac-
quired during the field campaign. The ’Input’ GUI helps to perform the data selection steps
and checks, if data input is correct (GUI not shown for sake of brevity; consult SI toolbox
manual at http://ipl.uv.es/artmo/). Subsequently, the SI settings configure the para-
metric SI models according to various specifications, which are given in the ’SI settings’ GUI
(see Figure 3.4). First, if multiple land cover types have been pre-defined (using the GUI’s
’Load Image and Class’ windows), retrieval strategies can be configured specifically for each
land cover class. Second, an SI group must be selected so that its encompassing SIs are sub-
sequently listed. From this list, multiple SIs can be selected for assessment purposes. Third,
several pre-defined curve fitting functions can be selected for assessment. Fourth, the option
to add Gaussian noise is provided, which is useful for the assessment of environmental as well
as instrumental uncertainty estimations. The noise function can be applied both for the param-
eters to be retrieved, as well as on the reflectance spectra used in the assessment. A range of
noise levels can be specified; hence multiple noise scenarios can be assessed with respect to
their impact on retrieval accuracy. Fifth, the calibration/validation (cal/val) data partitioning
can be defined according to proportional assignment of data to either calibration or validation
(i.e. split-sample approach). Both, field and RTM datasets can be combined by assigning a
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proportion of each either to calibration or validation. Multiple cal/val partitions can be applied
in the assessment.

FIGURE 3.4: SI settings window.

3.3.4 Calibration/validation assessment

When input data were correctly imported in ARTMO, cal/val data partitioning has been defined
and the configuration of SI settings has been successful, the SI models can be assessed with
respect to retrieval accuracy. This analysis starts by assigning a name to a new test dataset in
the ’Test SI’ menu. The specified retrieval strategies for the SI formulations and spectral band
ranges are then analyzed one-by-one. The assessment results are saved by default in the MySQL
database. This way, a large number of SIs can be systematically assessed, and results can be
stored and queried. An overview table is then assembled, in which assessment results with the
highest accuracy scores are dynamically presented; e.g. per land cover type, per parameter, and
per cal/val dataset (see Figure 3.5). Assessment is then performed. First, for each SI, all spectral
band combinations are correlated against the calibration dataset (results not shown). Second,
each SI model obtained according to the chosen fitting function is applied to the estimation
of a targeted biophysical parameter. When the dataset has previously been partitioned into a
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calibration and validation set, the assessments are generated twice; one time for the calibration
dataset and a second time for the validation dataset. The obtained SI models are evaluated
with multiple goodness-of-fit measures like the r2, the root mean squared error (RMSE), the
normalized RMSE (NRMSE [%] = RMSE / (value range of parameters as measured in the
field) *100), the mean absolute error (MAE) and the mean error (ME). All measures indicate
the degree of association between predicted and estimated values of the same parameter and give
thus an indication of prediction efficiency. Richter et al. [2012a] recommended the combined set
of r2, RMSE and NRMSE, amongst others, for comprehensively quantification the performance
of vegetation biophysical models. For a single SI model selected, an option has been foreseen
in the GUI, to generate a scatterplot of the retrievals in function of the cal/val measurements
(c.f. section 3.5). Additionally, by selecting a statical measure, a 2D correlation matrix can be
assembled along 2 spectral dimensions, enabling the visualization of the most sensitive 2-band
combinations. Finally, for each retrievable biophysical parameter, an SI model can be selected,
based on its accuracy assessment. The selected SI model, e.g. the best performing one, can
be accessed through the ’Retrieval’ GUI window and may be applied using an EO image for
spatially distributed biophysical parameter mapping.

FIGURE 3.5: SIs calibration/validation assessment table.

3.3.5 Retrieval

The ’Retrieval’ window enables to run an assessed SI model, or to directly configure an SI
model and apply it to map retrieved parameter values (Figure 3.6). The latter option can be
useful when dealing with a pre-defined SI model (e.g. when an SI is applied as published in the
EO literature) or when cal/val datasets are not available. Hence, the user can select a specific
land cover type (if available), a biophysical parameter to be retrieved, an SI group and an SI, a
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regression function and the regression function parameters. The user will be able to select one or
multiple remote sensing images for which the evaluated SI model will be applied. Biophysical
parameter maps are subsequently stored on disc in ENVI format.

FIGURE 3.6: SIs Retrieval window.

3.4 Assessment and mapping applications

As outlined in the previous section, the SI assessment toolbox is applied to assess the perfor-
mance of multiple SI regression models with respect to estimation accuracy. Data used are
presented first, followed by the experimental setup. Goodness-of-fit results for calibrated SI
models are presented subsequently and finally the retrieved spatial maps of biophysical param-
eters are shown.

3.4.1 Used data

A field dataset, encompassing different crop types, growing phases, canopy geometries and soil
conditions has been acquired during the SPectra bARrax Campaign (SPARC). The SPARC-
2003 campaign took place from 12 to 14 July in Barrax, La Mancha, Spain (coordinates 30◦3’N,
28◦6’W, 700 m altitude A.S.L.). Biophysical parameters have been measured within a total of
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108 Elementary Sampling Units (ESUs) for different crop types (garlic, alfalfa, onion, sun-
flower, corn, potato, sugar beet, vineyard and wheat). An ESU refers to a plot, which is sized
compatible with pixel dimensions of about 20m × 20m. Leaf Chlorophyll Content (LCC)
was determined by measuring about 50 leaf samples in each ESU with a calibrated CCM-200
Chlorophyll Content Meter [Gandía et al., 2004]. Green LAI was derived from canopy mea-
surements made with a LiCor LAI-2000 digital analyzer. Each ESU was assigned a LAI value,
obtained as a statistical mean of 24 measurements (8 data readings × 3 replica) with standard
errors ranging from 5 to 10% [Fernández et al., 2005]. Strictly speaking, due to the assumption
of a random distribution of foliage, the impact of clumping has been assessed only partially
using the LiCor and the corresponding software. Hence, effective LAI is given as an output
parameter. For all ESU’s, LAI ranges from 0.4 to 6.2 (m2 single sided leaf surface)/(m2 ground
surface) while LCC ranges from 2 to 51 (µg chlorophyll)/(cm2 leaf area). Regarding LCC, it
should be noted that some clumping in the field data was noted, with many data points between
40-50 and around 20, but no data points between 25-35 µg/cm2. No additional bare soil samples
were added.

During the campaign, airborne hyperspectral HyMap flightlines have been acquired for the
study site, during the month of July 2003. HyMap flew with a configuration of 125 contiguous
spectral bands, spectrally positioned between 430 and 2490 nm. Spectral bandwidth varied
between 11 and 21 nm. The pixel size during overpass was 5 m. The flight-lines were corrected
for radiometric and atmospheric effects according to the procedure that has been implemented in
the BEAM CHRIS-Box [Alonso and Moreno, 2005; Guanter et al., 2005]. Finally, a calibration
dataset was prepared, which refers to the centre pixel of each ESU and corresponding LCC and
LAI values.

3.4.2 Experimental setup

The SI assessment toolbox has been applied to evaluate the retrieval accuracies for different SI
formulations, band settings, and fitting functions using the SPARC calibration dataset. Only
the two-band results for the most common SI formulations are illustrated, being SR and ND
SI combination types. Correlating the possible HyMap two-band SIs according to these com-
bination types and by using five fitting functions (linear, exponential, power, logarithmic and
polynomial of the second degree), the SI assessment toolbox did finally automatically assess
155000 (125x124x5x2) SI regression functions for each biophysical parameter. This typical
assessment run did not take longer than a few minutes on a 32 bit PC (Windows 7 Intel(R)
Core(TM) 2 Quad CPU, 2.4 GHz, 3.00 GB RAM processor).
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3.5 Results & Discussion

3.5.1 Optimized SIs

For each SI type, Table 4.4 provides goodness-of-fit statistics (RMSE, NRMSE and r2) for the
best performing calibrated SI models together with its wavelength specifications and regression
equation, ranked according to r2. The following observations can be made:

� With regard to SI formulations, no strong evidence has been found that the widely used
ND formulation outperforms the less popular SR formulation. Though, it is also recog-
nized that the main argument for using ND types of indices is not the improved correla-
tion performance in comparison to SRs, but rather the (at least to some extent) improved
comparability of different observation times/dates and the possible reduction of effects
of varying illumination intensity (shades etc.), due to the inherent normalization of the
value range [Rouse et al., 1974]. The ND outperformed the SR for both LAI and LCC
only when a second order polynomial is applied as a fitting function. However, when a
conventional linear regression is applied, ND performs similar (LCC) or superior (LAI)
to SR.

� While the polynomial fit outperforms to some extent the linear regression fitting scenario,
the linear fit model is nonetheless quite accurate as well. For instance, the best linear
regression fit outperforms the more sophisticated exponential and power curve fitting ap-
proaches significantly for both, LAI and LCC.

� For the majority of the most accurate regression functions, about the same spectral band
locations were assessed as being optimal for biophysical parameter retrieval. For LAI,
two-band formulations are optimal at 570, 555, 539 and 707 nm with the second band at
2453 or 2421 nm. For LCC two-band locations at 692 nm and 632 nm with the second
band at 1661-1698 nm or 1200-1340 nm performed best.

It is noteworthy that, for a majority of the most accurate SI models sensitive with respect to
LCC, the wavelength location of 692 nm is ranked as the best performing one. This is consistent
with earlier studies [e.g. Gitelson et al., 2003; Verrelst et al., 2010], demonstrating that the
spectral interval around 700 nm is less prone to saturation than the location at 660 nm (which
coincides with the location of the chlorophyll pigment’s main absorption peak). Therefore, the
far-red at 692 nm ensures a good sensitivity when detecting moderate and high LCC values.

Although Table 4.4 suggests that the optimal fitting functions lead to similar performances in
terms of r2, a closer look may be necessary to assess their impact on the efficiency in mapping
applications. Figure 3.7 provides scatterplots of the best performing SI models; the distinct
behavior of each fitting function can be observed. For instance, exponential and power function
fits can lead to spurious parameter value retrievals at high SI values (or at low SI values in
case of the SR-LCC combination). The most accurate fitting function, i.e. the second order
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TABLE 3.1: Goodness-of-fit measures (RMSE, NRMSE, r2) for the best calibrated SI models per SI
type and their corresponding used bands and fitting function for LAI and LCC retrieval. In this table, the
SI types are sorted according to a decreasing r2. B1: spectral band 1, B2: spectral band 2.

Index type Fitting function B1 (nm) B2 (nm) SI model abs. RMSE NRMSE (%) r2

LAI:
ND polynomial 570 2453 LAI= -1.366ND2 + 6.154ND + 1.976 0.61 12.51 0.83
SR logarithmic 555 2453 LAI= 2.291 log(SR) + 1.924 0.61 12.10 0.83
ND linear 555 2453 LAI= 5.023ND + 1.922 0.61 12.80 0.83
SR polynomial 539 2421 LAI= -0.621SR2 + 3.754SR -0.760 0.63 15.58 0.82
SR linear 539 2421 LAI= 1.751SR + 0.504 0.70 16.32 0.77
SR exponential 2118 2171 LAI= 0.000238e8.783SR 0.72 11.85 0.77
ND exponential 707 2453 LAI= 0.712e2.721ND 0.75 13.13 0.77
ND power 707 2453 LAI= 4.670ND0.548 0.77 19.06 0.77
SR power 539 2421 LAI= 1.951SR1.112 0.82 14.64 0.76
ND logarithmic 462 524 LAI= 3.888 log(ND) + 6.947 0.85 18.23 0.74
LCC:
ND polynomial 692 1686 LCC= -227.499ND2 + 281.410ND - 36.924 4.21 7.75 0.93
SR polynomial 692 1661 LCC= -8.114ND2 + 60.997ND - 61.553 4.30 7.64 0.92
ND logarithmic 692 1340 LCC= 43.578 log(ND) + 63.272 4.70 10.18 0.91
SR linear 692 1340 LCC= 7.455SR + 4.707 4.70 20.24 0.91
ND linear 692 1340 LCC= 90.290ND -14.808 4.21 10.75 0.90
SR logarithmic 692 1200 LCC= 26.447 log(ND) - 2.990 5.53 11.54 0.87
SR exponential 692 1215 LCC= 91.164e−4.235SR 6.00 11.25 0.87
ND power 632 1698 LCC= 127.581ND2.119 28.06 365.5 0.87
ND exponential 632 1257 LCC= 2.110e3.827ND 6.64 12.80 0.84
SR power 707 723 LCC= 7.281SR2.938 8.28 13.19 0.76

polynomial, is probably the most difficult one to interpret. This is illustrated for the LCC-SR
case where the peak of the polynomial fit goes through the LCC data clumping between 40-50
µg/. It implies that a SR above 4 leads to a lower LCC estimate. This type of erratic fits indicates
that polynomial fitting - despite the high r2 and low RMSE - should not be recommended for
biophysical parameter retrieval.

Although dating from the times where the campaigns mostly were limited to the silicon-
based CCD detector range (400 - 1000 nm), the saturation effect is often reported and is consid-
ered as one of the major critical points when using a red-NIR formulation (e.g. NDVI) for LAI
retrieval [Verstraete and Pinty, 1996; Stenberg et al., 2004]. A noteworthy observation is that
here LAI hardly shows saturation for a linear model fit. Presented results suggest that the use
of a band in the SWIR range (2453 nm) causes the saturation effect to be close to negligible.
Hence, such a linear regression should be preferred above using the NIR, because saturation
violates the assumptions of regression residuals around zero in order for the results to be valid
[Draper and Smith, 1998]. Also [Schlerf et al., 2005; Darvishzadeh et al., 2009] found that
vegetation indices (VIs) based on bands in the SWIR range tend to be almost linearly related
to LAI without showing saturation even at high LAI values (LAI=6). However, it should also
be remarked that wavelengths at the end of HyMap sensor’ SWIR range (i.e. beyond 2400 nm)
face a relatively low signal-to-noise ratio (SNR), i.e. below 400 [Cocks et al., 1998]. Results in
this region may therefore be biased by noise influence.
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FIGURE 3.7: Fitting functions (red lines) depicting the regression of LAI [m2/m2] and LCC [µg/cm2]
in function of SR and ND formulations as they could be derived from the calibration dataset using
optimized band combinations.

3.5.2 Correlation matrices

To fully take account of the prediction efficiency of the spectral domain, figure 8 illustrates all
two-band SR and ND combinations according to r2 correlation between measured and estimated
values for the LAI and LCC biophysical parameters for different fitting functions. The correla-
tion matrices for B1 (430-2490 nm) versus B2 (430-2490 nm) clearly distinguish the following
spectral regions: the visible region (450-700 nm), the red-edge region (700-750 nm), the NIR
region (750-1340 nm), the shortwave SWIR region (1470-1800 nm) and the longwave SWIR
region (1970-2453 nm). Based on the 2D correlation plots in figure 8, the spectral regions lead-
ing to the most accurate indices to retrieve LAI and LCC can be unequivocally identified. Based
on tables 1 and 2, the following observations can be made for two-band (B1, B2) SIs:

� SR and ND formulations lead to the same spectral regions exhibiting strong correlations
between the LAI / LCC biophysical parameters and the two-band SIs. For instance, sim-
ilar patterns for B2 in the visible spectral region can be observed. However, the ND
power and logarithmic functions fail as good fitting functions for several band combina-
tions. Specifically, they provide lower regression accuracies for B1 (740-1000 nm) and
B2 (1400-2200 nm).

� Similar patterns with strong and low correlation values are found across the different
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curve fitting functions assessed. This suggests that the major impact on retrieval accu-
racy in EO does not originate from the chosen curve fitting but rather from the spectral
dimension. Though, local differences do occur. These local differences are particularly
pronounced along exponential, power and logarithmic fittings, characterized by quite low
correlation values. Hence, the following sections are limited to the discussion of linear
and polynomial curve fits.

� For LAI, Figure 8 shows that the most important spectral region for retrieval is the 539-
707 nm region for the B1band, whereas B2 is located in the longwave SWIR. Notice the
hourglass shape in the SWIR region. A second spectral region of maximal r2 for B1
is the 1300-1500 nm region as well as the region at 1400-1800 nm. These regions are
spectrally quite broad, meaning that the spectral indices do not require very narrow and
hence precisely positioned spectral bands, at least for the samples that were used in this
study for the generation of the empirical relationships.

� For LCC, Figure 3.8 shows that the most important spectral region for retrieval is the
visible region, particularly the red region until the red edge. B2 is spectrally located in
the shortwave SWIR. Another sensitive zone, having the same B1 (around 692 nm) as in
the first case, has its second band B2 in the NIR range as well as in the longwave SWIR.
Note that these spectral areas are covered by broad spectral bands.
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FIGURE 3.8: 2D r2 correlation matrices calculated from measured vs. estimated values for the
calibration results of the LAI [m2/m2] and LCC [µg/cm2] retrievals according to SR and ND formulations
and for different fitting functions. The color bars on the right of this figure give the values of the plotted
r2 in the different graphs.
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Considering only the linear and polynomial fitting functions, it is of interest that the regions
that were found to be optimal for LAI retrieval in the longwave SWIR region (notice the hour-
glass shape centered around the green; 550-570 nm) for B2 oppositely lead to erroneous LCC
retrievals. This spectral region can hence be applied for LAI retrieval without being influenced
by its sensitivity for LCC. For LCC on the other hand, the most optimal B1 spectral regions
are the NIR and shortwave SWIR in combination with red bands for B2. Hence, a clearcut dis-
tinction can be observed for the sensitive spectrally important regions for the retrieval of LAI
versus LCC. Retrieval confusion between LAI and LCC is thereby avoided. The correlation
matrices additionally suggest that the SWIR region is preferred above the NIR region, ensuring
independent retrievals for LAI and LCC. For instance, the conventional NDVI spectral bands
(i.e., B1 = 680 nm, B2 = 800 nm) do not appear to be the most optimal ones for LAI nor LCC
retrieval.

3.5.3 LAI & LCC mapping

The final step presented in this paper involves LAI and LCC mapping. ARTMO’s SI assessment
toolbox helps the user to select a SI model (e.g. the most accurate one) and to apply it using
EO imagery. The impact of the SI model type on biophysical parameter mapping thus can be
compared. For this purpose, it was opted to map LAI and LCC based on the available HyMap
data for the most accurate SI model only, being a linear, logarithmic and polynomial of the
second order function. Exponential and power functions have not been considered for mapping,
not only because of their considerably less performing calibration results, but also because these
functions do not consistently lead to maps in conformance with ground measurements. To allow
for a comprehensive visual comparison between retrievals and ground samples, LAI maps are
color scaled for values between 0 and 6 m2/m2. Identically, LCC maps are color scaled for
values between 0 and 60 µg/cm2. These maps, as presented in Figure 3.9, lead to the following
observations:

� For LAI, both, the ND polynomial and ND linear regression models, lead to the same
calibration result (RMSE=0.61; r2=0.83) and accordingly to very similar LAI maps. This
example provides confidence that a linear regression is able to deliver adequate LAI maps,
when appropriate spectral bands are selected; i.e., green spectral region (B1: 539-570 nm)
in combination with the longwave SWIR (B2: 1970-2453 nm). Rapid saturation of the
LAI in function of the SI is thereby avoided. The map shows areas with a high LAI quite
clearly (irrigated circular fields). Areas with a low LAI - senescent crops to bare soil
surfaces - elicit a zero value LAI (white color code).

� Conversely, when using SR for LAI mapping, prominent spatial differences appeared
for the linear versus polynomial regression models. Particularly, a linear regression ex-
hibits problematic behavior, since LAI variations for senescent regions significantly devi-
ate from the other LAI mapping results. A logarithmic fit function seems to lead to more
consistent LAI maps. Nevertheless, although the ND type yields considerably poorer
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FIGURE 3.9: LAI [m2/m2] and LCC [µg/cm2] maps based on SR and ND formulations and linear,
polynomial and logarithmic fitting functions. The imagery originates from a HyMap flight line over the
Barrax agricultural area in Spain. The color bars at the right side of this figure give the values of the LAI
and LCC mapped variables.

calibration results, both maps yield similar LAI patterns. The spatial similarity of the
three best performing fitting functions (SR, logarithmic, ND linear and ND polynomial)
provide confidence in the realism of the maps produced.

� With regard to LCC mapping, the spatial similarity between the SR and ND polynomial
fits and the degree of detail is remarkable. However, interpretation becomes difficult for
areas earlier identified as having low LAI values in the LAI map and showing high LCC
values in the LCC map. One interpretation may be that the nature of a polynomial of
second degree fit leads to retrievals of high LCC values at near-zero SI values. Another
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problem might be related to the difficulty of upscaling. For the areas where the canopy
is very sparse, i.e. the LAI is low, it becomes harder to perceive the chlorophyll pig-
ments in the leaves with a moderate spatial resolution of 1-4m, even if the chlorophyll
concentration in the small leaves is relatively high.

� Logarithmic ND fits, along with linear SR and ND fits, elicit the most realistic LCC
patterns; with spatial patterns conform to those of the best LAI maps.

Quite remarkably, the different fitting functions lead to considerable local spatial variation.
This can be problematic, since it suggests that the prediction efficiency results on their own may
be insufficient as an assessment criterion for the quality of the mapping results. An important
aspect to be taken into consideration is that an independent validation dataset likewise gives
limited assessment information of the complete map due to a typically low spatial cover within
a remote sensing image. Hence, the question arises, which maps - as a whole - are quantitatively
most trustworthy? This rather enigmatic problem area reveals one of the main weaknesses of SI
based biophysical parameter mapping e.g., the absence of an uncertainty (or accuracy) metric.
Uncertainty estimates on a pixelwise basis provide an indication of retrieval accuracy and are
nowadays a prerequisite in processing chains. In part, this is why more sophisticated regression
algorithms have been developed, which do provide associated uncertainty estimates, e.g. in the
emerging field of Bayesian approaches such as Gaussian processes regression [Verrelst et al.,
2012b]. Nevertheless, if any generalization can be deduced from the maps presented, for LAI
the ND polynomial (second degree) fit leads to the most consistent results, while for LCC
it is rather the ND logarithmic fit that leads to the most consistent results. Conversely, the
dissimilarity across the SR-developed maps suggests that it is a less successful formulation for
biophysical parameter mapping. The maps provided here suggest that a normalized difference
(ND) formulation can therefore be considered as a more preferable strategy for biophysical
parameters mapping.

3.5.4 Towards a new generation of spectral indices

With ARTMO’s SI assessment toolbox extensive and systematic SI performance assessments
can be conducted, including band combinations, formulations and fitting functions. Its semi-
automatic nature enables the reduction of time and resources for analysis and interpretation. By
analyzing all bands against each other in a correlation matrix, ARTMO helps identifying redun-
dant bands and overcoming the Hughes’ phenomenon or "curse of dimensionality" [Thenkabail
et al., 2011]. The case presented in this paper, shows the analysis of all possible 2-band com-
binations for SR and ND formulation by using four types of curve fittings on hypespectral
data. While the relevance of the visible and red edge spectral regions is widely known for LCC
and LAI estimation, and has since long been documented for vegetation mapping applications
[Filella and Penuelas, 1994; Thenkabail et al., 2002; Delegido et al., 2011; Clevers and Gitelson,
2013; Delegido et al., 2013], the sensitivity in the SWIR is particularly remarkable. Especially
for LAI retrieval, but also for that of LCC, the SWIR region was found to be an optimal region



48 SPECTRAL INDICES BASED RETRIEVAL

for biophysical parameter mapping, each time in combination with the visible region; for LAI,
green (B1) with longwave SWIR (B2), for LCC red (B1) with shortwave SWIR (B2). The green-
SWIR indices do not show an apparent saturation in the value range considered for LAI, so
that the transfer function can be defined with a linear regression model. Similar improvements
have been reported by previous studies [Brown et al., 2000; Lee et al., 2004; Schlerf et al.,
2005; Darvishzadeh et al., 2009; Gonsamo, 2011; Heiskanen et al., 2013]. In the SWIR, leaf
reflectance is mainly controlled by water absorption, although leaf biochemical components
such as proteins, cellulose, and lignin also contribute to a lesser extent to leaf absorption [e.g.
Curran, 1989].

At canopy level, the main drivers of LAI and LCC spatial variation are irrigation regimes at
the Barrax test site, leading to high LCC parcels (when irrigated and due to high water absorp-
tion) in contrast to non-irrigated low LCC parcels, which are senescent during summertime.
Canopy structural differences depending on the crop type are a source of variation related to
both biophysical parameters as well [Verrelst et al., 2012a]. The SWIR is sensitive to variations
in complex and dissimilar growth stages and growing conditions [Thenkabail et al., 2000, 2004].
Moreover, the SWIR spectral region has the advantage of being sensitive to vegetation, while
being less influenced by atmospheric aerosols. This avoids the increase in parameter retrieval
uncertainty associated with the atmospheric correction of remotely sensed reflectances required
to compensate for aerosol scattering impacts on top-of-atmosphere reflectances, specifically
playing a role in the visible part of the solar spectrum [Gonsamo, 2011].

When comparing literature findings, where similar correlation matrices are presented, it is
remarkable that identical band combinations are rarely reported for studies based on the use of
narrowband (hyperspectral) imaging [Gonsamo, 2011; Heiskanen et al., 2013; Mariotto et al.,
2013]. This leads us to suggest that established SI models are more often than not case specific
and thus are likely to perform sub-optimal for local hyperspectral mapping applications. Quite
often, the traditional red-NIR combination is applied. At the same time, suboptimal SI formula-
tions or regression function selections also lead to less optimal biophysical parameter retrievals.
An in-depth analysis is therefore not a luxury. The SI assessment toolbox in ARTMO, as de-
scribed in this paper, offers a systematic, semi-automatic streamlined and complete procedure
for the selection as well an assessment of the most accurate and sensitive SI formulations for
biophysical parameter retrieval based on hyperspectral image datasets. The SI model(s) se-
lected can hence confidently be applied for the mapping of biophysical parameters retrieved
from hyperspectral imagery.

Finally, it is foreseen that the ARTMO SI assessment toolbox will serve future sensitivity
studies. This may lead to a generation of new SIs based on the following research objectives:

� Development and evaluation of generic SIs by using RTMs including viewing and so-
lar geometry. ARTMO includes turbid (e.g., SAIL) as well as explicit 3D RTM’s (e.g.,
FLIGHT). Evidently, the validity of the most optimal models will be assessed using in
situ validation data.
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� New types of index formulations will be developed and tested across the full optical spec-
trum. Only SR and ND indices have been assessed here. Yet, alternative mathematical
formulations are to be tested as well, e.g. the formulations used for soil adjusted vegeta-
tion index (SAVI), enhanced vegetation index (EVI) or more complex ones.

� Although in this paper only two-band formulations have been assessed, the SI toolbox
offers the option for a systematic analysis of a full optical spectrum of band combinations
with SI formulations of up to ten different bands in the range of 400 to 2500 nm. Since
there is no reason to believe that two-band indices lead to the most successful SI models,
this multiple band approach may lead to the development of more accurate and sensitive
spectral indices.

Regardless of the above-mentioned research objectives, essentially, the SI assessment toolbox
provides all necessary tools for quality assurance and quality control (QA/QC), and for a rapid
and comprehensive biophysical parameter mapping. The toolbox is intuitive and can assist sig-
nificantly in precision farming and landscape ecology monitoring applications, thereby allowing
to optimize SIs, even per land cover type.

3.6 Conclusions

A newly developed Spectral Indices (SI) assessment toolbox in the ARTMO modeling envi-
ronment, enables the analysis and assessment of the accuracy of an indefinite number of SI
models. Basically, the toolbox offers a systematic but still empirical approach for the assess-
ment of all possible 2, 3 or 4-band SI formulations. Datasets can be partitioned into calibration
and validation subsets. These datasets may originate from simulations, e.g. as generated by
the optical radiative transfer models in ARTMO, or from field campaigns. Several options have
been included in the SI assessment approach, amongst which: (1) The addition of noise and the
possibility to select fitting functions (e.g., linear, exponential, power or polynomial functions);
(2) the SI toolbox virtually allows for any type of spectral index model to be formulated and
evaluated using up to ten spectral bands; and (3) the possibility to assess and apply SIs per land
cover class.

Using HyMap data calibrated with field measured data, the predictive power of generic nar-
rowband spectral indices in the 430-2490 nm range to quantify LAI and LCC has been assessed.
For LAI retrieval, the B1 in the green (B1: 539, 555, 570 nm) combined with longwave SWIR
(e.g., B2: 2421, 2453 nm) has been evaluated as the most accurate approach (RMSE: 0.61; r2:
0.83). For LCC retrieval, the B1 in the far-red (692 nm) combined with the B2 NIR (e.g., 1340
nm) or shortwave SWIR (e.g., 1661, 1686 nm) has been evaluated as the most accurate ap-
proach (RMSE: 4.21-4.70, r2: 0.91- 0.93). In either case, the identification of the SWIR rather
than the conventional NIR as an important spectral region reinforces our suggestion that the
ARTMO SI assessment toolbox significantly facilitates the development of new and especially
better performing spectral indices for biophysical parameter mapping applications.
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4.1 Abstract

Lookup-table (LUT)-based radiative transfer model inversion is considered a physically-sound
and robust method to retrieve biophysical parameters from Earth observation data but regu-
larization strategies are needed to mitigate the drawback of ill-posedness. We systematically
evaluated various regularization options to improve leaf chlorophyll content (LCC) and leaf
area index (LAI) retrievals over agricultural lands, including the role of 1) cost functions (CFs),
2) added noise, and 3) multiple solutions in LUT-based inversion. Three families of CFs were
compared: information measures, M-estimates and minimum contrast methods. We have only
selected CFs without additional parameters to be tuned, and thus they can be immediately im-
plemented in processing chains. The coupled leaf/canopy model PROSAIL was inverted against
simulated Sentinel-2 imagery at 20 m spatial resolution (8 bands) and validated against field data
from the ESA-led SPARC (Barrax, Spain) campaign. For all 18 considered CFs with noise in-
troduction and opting for the mean of multiple best solutions considerably improved retrievals;
relative errors can be twice reduced as opposed to those without these regularization options.
M-estimates were found most successful, but also data normalization influences the accuracy of
the retrievals. Here, best LCC retrievals were obtained using a normalized ’L1-estimate’ func-
tion with a relative error of 17.6% (r2: 0.73), while best LAI retrievals were obtained through
non-normalized ’least-squares estimator’ (LSE) with a relative error of 15.3% (r2: 0.74).
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4.2 Introduction

Leaf area index (LAI) and leaf chlorophyll content (LCC) are essential land biophysical param-
eters retrievable from optical Earth observation (EO) data [Whittaker and Marks, 1975; Lich-
tenthaler, 1987; Malenovský et al., 2012]. These parameters give insight in the phenological
stage and health status (e.g., development, productivity, stress) of crops and forests [Lichten-
thaler et al., 1996; Sampson et al., 2003]. The quantification of these parameters over large areas
has become an important aspect in agroecological, environmental and climatic studies [Dorigo
et al., 2007]. At the same time, remotely sensed observations are increasingly being applied at a
within-field scale for dedicated agronomical monitoring applications [Gianquinto et al., 2011;
Delegido et al., 2013].

For the last few decades, various space-based LAI and LCC retrieval approaches have been
proposed (see review in [Dorigo et al., 2007]), some of them eventually led to operational
retrieval strategies. Particularly LAI proved to be successful parameter for being operationally
and globally retrieved at resolutions of 250 m to 1 km (e.g. MODIS, CYCLOPES and Geoland2
products) [Myneni et al., 2002; Baret et al., 2007]. Moreover, a lot of efforts are being under-
taken to generate a global LAI product at a 30-m Landsat scale [Ganguly et al., 2012]. However,
operationally retrieved land LCC products are scarce. Until the loss of the ENVISAT spacecraft
LCC maps were routinely delivered at a medium spatial resolution through the MERIS ter-
restrial chlorophyll index [Dash and Curran, 2004] or through a trained neural net [Bacour
et al., 2006]. But routinely generated LCC maps originated from high spatial resolution images
(e.g. ≤ 20 m) are absent until now, although some operational approaches have been proposed
for SPOT data [Houborg and Boegh, 2008; Houborg et al., 2009]. Meanwhile, new genera-
tion of high resolution (i.e. 10-60 m) land monitoring EO missions are being constructed to
be launched such as the forthcoming superspectral Sentinel-2 (S2) mission and hyperspectral
missions such as Enmap [Stuffler et al., 2007], PRISMA [Labate et al., 2009] and HyspIRI
[Roberts et al., 2012]. Such unprecedented richness of high spectral and spatial resolution data
streams makes the availability of robust retrieval methods more important than ever.

To implement a method in an operational processing chain the method should be able to
deliver accurate estimates with easy implementation in practice. Inversion of physically-based
canopy radiative transfer models (RTMs) against actual EO data is generally considered as one
of the most robust approaches to map biophysical parameters over terrestrial surfaces [Dorigo
et al., 2007; Darvishzadeh et al., 2008]. But this approach is not straightforward. Accord-
ing to Hadamarad postulates, mathematical models of physical phenomena are mathematically
invertible if the solution of the inverse problem to be solved exists, is unique and depends con-
tinuously on variables [Knyazikhin et al., 1998a]. Unfortunately this assumption is not met. In
fact, the inversion of canopy RTMs is by nature an ill-posed problem mainly for two reasons
[Durbha et al., 2007]: on the one hand, several combinations of canopy biophysical and leaf
biochemical parameters have a mutually compensating effect on canopy reflectance thus lead-
ing to very similar solutions. On the other hand, model uncertainties and simplifications (e.g.
1D nature of some models) may induce large inaccuracies in the modelled canopy reflectance.
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Several strategies have been proposed to circumvent the drawback of ill-posedness, includ-
ing Lookup-table (LUT)-based inversion strategies [Combal et al., 2003; Darvishzadeh et al.,
2008; Knyazikhin et al., 1998a; Richter et al., 2009; Weiss et al., 2000], hybrid approaches
in which LUTs are generated to feed machine learning approaches [Weiss and Baret, 9991;
Walthall et al., 2004; Fang and Liang, 2005; Bacour et al., 2006; Durbha et al., 2007; Qu et al.,
2008], or LUT-based iterative numerical optimization methods [Jacquemoud et al., 1995]. They
all have their strengths and weaknesses in specific situations. But the main advantage of LUT-
based inversion approaches is that it can be fast because the most computationally expensive
part of the inversion procedure is completed before the inversion itself [Dorigo et al., 2007].

LUT-based inversion in its essential form, i.e. direct comparison of LUT spectra against an
observed spectra through a cost function (CF), also in some cases known as distance, merit func-
tion, metric or divergence measure, is part of the majority of applied inversion approaches. Such
a function yields a value for one or multiple biophysical parameters by minimizing the summed
differences between simulated and measured reflectances for all wavelengths [Knyazikhin
et al., 1998a]. Various regularization strategies have been proposed to further optimize the
robustness of the estimates: 1) the use of prior knowledge about model parameters [Baret and
Buis, 2008; Combal et al., 2002, 2003; Darvishzadeh et al., 2008; Dorigo et al., 2009], 2) the
use of multiple best solutions in the inversion (instead of the single best solution) [Combal
et al., 2002; Koetz et al., 2005; Richter et al., 2009, 2011], 3) adding noise to account for uncer-
tainties attached to measurements and models [Koetz et al., 2005; Richter et al., 2009, 2011],
and, 4) the combination of single variables into synthetic variables such as canopy chlorophyll
content [Weiss et al., 2000; Bacour et al., 2006; Dorigo et al., 2007; Darvishzadeh et al., 2012].
Nevertheless, aforementioned approaches face limitations when implementing them into a more
operational context.

First, in the majority of these studies root mean square error (RMSE) was used as CF
between simulated and measured spectra. However, in case of outliers and nonlinearity, the
residuals are distorted and therefore the key assumption for using RMSE (maximum likelihood
estimation with the Gaussian noise) is violated [Leonenko et al., 2013]. The latter authors sug-
gested that alternative CFs may provide a more robust way to estimate biophysical parameters
since they allow retrievals for cases where errors are not normally distributed and allow dealing
with nonlinear high-parametric problems. Verrelst et al. [2014b] recently demonstrated that al-
ternative CFs, in combination with aforementioned regularization strategies, can considerably
improve biophysical parameters retrievals. Yet only three alternative CFs - out of more than 60
- were extensively evaluated so far, which leaves an urgent need to evaluate the performance of
other promising CFs.

Second, the majority of these studies focus on a specific vegetation type such as croplands,
often identified as a land cover class within an image [Richter et al., 2009, 2011; Atzberger and
Richter, 2012]. However, this approach can turn out problematic when applying LUT-based
inversion over larger areas. While land cover classification schemes help to split the problem
into sub-domains for which prior information is attributed separately [Chen et al., 2002] it
assumes that up-to-date knowledge of land cover types is available at high spatial resolution,
which is usually not the case in an operational context. These limitations imply that alternatives
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have to be sought to enable full-scene LUT-based inversion over heterogeneous areas without
relying on predefined land cover maps.

Henceforth, for the sake of realizing robust LCC and LAI retrievals at high spatial resolu-
tion, the aim of this work is to invest in a retrieval processing chain that combines LUT-based
inversion with different CFs and regularization options. Simulated Sentinel-2 data at 20 m res-
olution will be used for this exercise but in principle the inversion schemes can be applied to
any optical multispectral EO data. This brings us to the following objectives: to evaluate the
role of 1) cost functions, and 2) regularization options in LUT-based inversion strategies, such
as: i) added noise, ii) multiple best solutions and iii) the role of data normalization.

4.3 Methodology

4.3.1 Cost functions

The estimation of biophysical parameters from satellite data is hampered by uncertainties of
very complicated and different nature in every particular study. In many cases it is difficult
to study these errors since they have unknown magnitude and distribution. On this basis, we
opted to evaluate multiple cost functions that have been introduced in Leonenko et al. [2013]
and then search for the optimal ones that minimizes the errors between simulated and real re-
flectances. Different CFs deal with different classes of distributions which allows us to deal
with outliers and non-linearities distort in a better manner than commonly used least squares
estimation (LSE) distance. Therefore it can provide more accurate results for estimated bio-
physical parameter. Note, that LSE corresponds to the maximum likelihood estimation with the
Gaussian noise.

These distances/metrics came from different fields of mathematics, statistics and physics
and they all represent ’closeness’ between two functions but the nature of these functions can
be different. For this reason, these metrics have been divided into three broad families based
on physical properties of functions in consideration: information measures, M-estimates and
minimum contrast method. The detailed description of these families can be found in Leonenko
et al. [2013]. However most of these functions require one or two parameters to be tuned. That
may hamper their use in operational processing chains, therefore in this work we chose to
analyse only those CFs without additional parameters. Some brief information about them is
provided below.

To describe the problem in a statistical way we suppose that D[P, Q] represents a distance
between two functions, where P = (p(λ1), · · · , p(λn)) is satellite and Q = (q(λ1), · · · , q(λn))
is LUT correspondent reflectances and λ1, · · · , λn represent n bands. Also we define η as a
biophysical parameter of our interest that we need to estimate (for example LAI or LCC) and
ζ̄ = (ζ1, ..., ζr) is a vector of other parameters that our function depends on but do not contribute
to minimization equation (1) . The classical statistical method of inversion (or estimation) and
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finding optimal parameter η∗) can be formulated as a semi-parametric problem

η∗ = arg min
η

sup
ζ̄

D[P(λj), Qi(λj)], æ = 1, ..., n. (4.1)

The purpose is to find the best estimate for η∗ by solving the minimization problem (1) using
different statistical distances, as those presented below.

Information measures

This family of measures, also referred to as ’divergence measures’, is based on minimization
of distances between two probability distributions. In this case reflectances are considered
as probability distributions and normalization is required (sum of probabilities is 1) prior to
numerical application. Note that normalization has been performed on LUT reflectances as
well. This family was first introduced by Kullback and Leibler (KL) [Kullback and Leibler,
1951] and refers to the concept of information divergences, which are non-symmetric between
two distributions P and Q. This concept has been further extended in many directions since its
initial application in decoding schemes and signal processing and now plays an important role
in multimedia classification, neuroscience and cluster analysis. More details and classifications
can be found in [Pardo, 2006]. Here is the list of the divergencies that we have used for our
study:

1. This measure is called the Kullback Leibler divergence and it also corresponds to the
maximum likelihood distance in probabilistic space:

D[P, Q] =
λn

∑
λ1=1

p(λl)ln
(

p(λl)

q(λl)

)
. (4.2)

2. This measure is called Pearson chi-square:

D[P, Q] =
λn

∑
λ1=1

(q(λl)− p(λl))
2

p(λl)
. (4.3)

3. Squared-Hellinger measure:

D[P, Q] =
λn

∑
λ1=1

q(λl)

(√
p(λl)

q(λl)
− 1

)2

=
λn

∑
λ1=1

(
√

p(λl)−
√

q(λl))
2 (4.4)

4. Neyman chi-square divergence:

D[P, Q] =
λn

∑
λ1=1

(p(λl)− q(λl))
2

q(λl)
. (4.5)
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5. Jeffreys-Kullback-Leibler:

D[P, Q] =
λn

∑
λ1=1

(p(λl)− q(λl)) (ln(p(λl))− ln(q(λl))) . (4.6)

6. K-divergence of Lin:

D[P, Q] =
λn

∑
λ1=1

p(λl)ln
(

2p(λl)

p(λl) + q(λl)

)
. (4.7)

7. L-divergence of Lin is a symmetric version of K-divergence:

D[P, Q] =
λn

∑
λ1=1

p(λl) ln(p(λl) + q(λl) ln(q(λl)− (p(λl) + q(λl)) ln
(

p(λl) + q(λl)

2

)
.(4.8)

8. The harmonique Toussaint measure:

D[P, Q] =
λn

∑
λ1=1

(
p(λl)−

2p(λl)q(λl)

p(λl) + q(λl)

)
. (4.9)

9. The negative exponential disparity measure:

D[P, Q] =
λn

∑
λ1=1

q(λl)

(
exp(− p(λl)− q(λl)

q(λl)
)− 1

)
. (4.10)

10. Bhattacharyya divergence:

D[P, Q] = −log

(
1 +

λ1

∑
λ1=1

√
p(λl)q(λl)−

1
2
(p(λl) + q(λl))

)
. (4.11)

11. Shannon (1948):

D(P, Q) = −
λn

∑
λ1=1

(
p(λl) + q(λl)

2

)
log
(

p(λl) + q(λl)

2

)
+

1
2

(
λn

∑
λ1=1

p(λl)log(p(λl)) +
λn

∑
λ1=1

q(λl)log(q(λl))

)
.

(4.12)

Nonlinear regression and M-estimates

M-estimates form a broad class of estimators which exhibit certain robust properties and it is
obtained as the minima of sums of functions of the data. "M" stands for "maximum likelihood-
type" estimates and can be described through a nonlinear regression function that seeks to
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find the relationship between one or more independent variables and a dependent one. Cer-
tain widely used regression functions, such as least-squares estimator (LSE) have favorable
properties if their underlying assumptions are true (for example noise is Gaussian), but can
give misleading results if those assumptions are violated. Least-squares estimators and many
maximum-likelihood estimators are M-estimators. They are obtained by replacing square loss
function into another more general convex function, see [Staudte and Sheather, 1990]. Gen-
erally estimates with robust regression methods can be more stable with respect to anomalous
errors but the performance of them drops when the parametric family is misspecified. Normal-
ization is not required but it may help improving accuracies.

The classical LSE distance corresponds to the function

D[P, Q] =
λn

∑
λi=1

(p(λi)− q(λi))
2. (4.13)

It is well known that LSE method is consistent, asymptotically normal and efficient and errors
have Gaussian distribution. Also it can be shown that least squares corresponds to the maximum
likelihood criterion and can also be derived as a method of moments estimator. Other examples
of M-estimates that are used in our research are listed below. 1) More general estimates with
Laplace distribution

D(P, Q) =
λn

∑
λ1=1
|p(λl)− q(λl)| (4.14)

are known as L1-estimate or as least absolute error.

2) The Geman and McClure function tries to reduce the effect of large errors further, but it
also cannot guarantee uniqueness.

D(P, Q) =
λn

∑
λ1=1

(p(λl)− q(λl))
2

(1 + (p(λl)− q(λl))2)
. (4.15)

Minimum Contrast Estimation

This class of estimates considers spectral domain and reflectances in this case can be seen as
spectral density functions of some stochastic process. It is close to the class of quasi-likelihood
estimators, where instead of independence (which does not hold for many cases) is used asymp-
totical independence. Under some sets of conditions the minimum contrast estimators are con-
sistent. More information can be found in [Taniguchi, 1979].

The basic idea behind it is to minimize the distance (which also called ’contrast’ in this case)
between a parametric model and a non-parametric spectral density. Since one can interpret
satellite observations as measurements in the spectral domain these distances seem to be a
natural choice for analyzing satellite data. Also for this family of CFs normalization is not
required but it may help improving accuracies.
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Here some of the spectral distances that have been used in our research with correspondent
K(x)- contrast function.

1. Let K(x) = logx + 1
x .

D(P, Q) =
λn

∑
λ1=1

{
log
(

q(λl)

p(λl)

)
+

p(λj)

q(λj)

}
− 1. (4.16)

2. let K(x) = −logx + x, then

D(P, Q) =
λn

∑
λ1=1

{
−log

(
q(λl)

p(λl)

)
+

q(λj)

p(λj)

}
− 1. (4.17)

3. let K(x) = (logx)2, then

D(P, Q) =
λn

∑
λ1=1
{log(q(λl))− log(p(λl))}2. (4.18)

4. let K(x) = xlogx− x, then

D(P, Q) = 1 +
λn

∑
λ1=1

q(λl)

p(λl)

{
log
(

q(λl)

p(λl)

)
− 1
}

. (4.19)

4.3.2 SPARC validation dataset

A diverse field dataset, covering various crop types, growing phases, canopy geometries and
soil conditions was collected during SPARC (SPectra bARrax Campaign). The SPARC-2003
and SPARC-2004 campaigns took place in Barrax, La Mancha, Spain (coordinates 30◦3’N,
28◦6’W, 700 m altitude). The test area has an extent of 5 km × 10 km, and is characterized
by a flat morphology and large, uniform land-use units. The region consists of approximately
65% dry land and 35% irrigated land. The annual rainfall average is about 400 mm. In the
2003 campaign (12-14 July) biophysical parameters were measured within a total of 110 Ele-
mentary Sampling Units (ESU) among different crops. ESU refers to a plot size of about 202

m2. LCC was derived by measuring within each ESU about 50 samples with a calibrated CCM-
200 Chlorophyll Content Meter. The calibration took place against field values taken from 50
ESUs. A logarithmic function led to best fit with a r2 of 0.93 [Gandía et al., 2004]. Green LAI
was derived from canopy measurements made with a LiCor LAI-2000 digital analyzer. Each
ESU was assigned to a LAI value, which was obtained as a statistical mean of 24 measures
(8 data readings × 3 replications) with standard errors between 5 and 10% [Fernández et al.,
2005]. Strictly speaking, due to the assumption of a random distribution of foliage, clumping is
only partially regarded by the instrument and corresponding software, giving therefore effective



60 LUT-BASED RTM INVERSION

LAI as ouptut. No bare soil samples were added in the validation dataset because inversion of
canopy RTMs is only relevant over vegetated land covers. For both years, we have a total of
9 crops (garlic, alfalfa, onion, sunflower, corn, potato, sugar beet, vineyard and wheat), with
field-measured values of LAI that vary between 0.4 and 5.9 (µ: 3.0, SD: 1.5) and LCC between
10 and 52 (µ: 38, SD: 14) µg/cm2.

4.3.3 Sentinel-2

Although the listed CFs can be applied to any EO data, in preparation to forthcoming Sentinel
missions we chose applying them to simulated Sentinel-2 (S2) data. The S2 satellites capitalize
on the technology and the vast experience acquired with Landsat and SPOT. S2 will be a polar-
orbiting, superspectral high-resolution imaging mission [Drusch et al., 2012]. Each S2 satellite
carries a Multi-Spectral Imager (MSI) with a swath of 290 km. It provides a set of 13 spectral
bands spanning from the visible and near infrared (VNIR) to the shortwave infrared (SWIR),
with four bands at 10 m, six bands at 20 m and three bands at 60 m spatial resolution (Table 6.1).
S2 incorporates three new bands in the red-edge region, which are centered at 705, 740 and 783
nm. The pair of S2 satellites aims to deliver data taken over all land surfaces and coastal zones
every five days under cloud-free conditions. To serve the objectives of GMES, S2 satellites will
provide imagery for the generation of high-level operational products (level 2b/3) such as land-
cover and land-change detection maps and geophysical variables such as LCC, LAI and leaf
water content. To ensure that the final product can meet the user requirements, the GMES user
committee defined an accuracy goal of the biophysical products of 10% [Drusch et al., 2012].

TABLE 4.1: Sentinel-2 MSI band settings. Bands used in this study are bolded
Band # B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12
Band center (nm) 443 490 560 665 705 740 783 842 865 945 1375 1610 2190
Band width (nm) 20 65 35 30 15 15 20 115 20 20 30 90 180
Spatial resolution (m) 60 10 10 10 20 20 20 10 20 60 60 20 20

Here, S2 MSI imagery was simulated on the basis of Compact High Resolution Imaging
Spectrometry (CHRIS) data because of its high spatial and spectral resolution. CHRIS provides
high spatial resolution (up to ∼17 m) hyperspectral data over the VNIR spectra from 400 to
1050 nm at 5 different viewing angles. It can operate in different modes, balancing the number
of spectral bands, site of the covered area and spatial resolution because of on-board memory
storage reasons [Barnsley et al., 2004]. We made use of nominal nadir CHRIS observation
in Mode 1 (62 bands, maximal spectral information), which were acquired during the SPARC
campaign (12/07/2003). CHRIS Mode 1 has a spatial resolution of 34 m at nadir. The spec-
tral resolution provides a bandwidth from 5.6 to 33 nm depending on the wavelength. CHRIS
imagery was processed using ESA’s CHRIS-Box available in VISAT/BEAM, which includes
radiometric recalibration, coherent-noise reduction, geometric correction and atmospheric cor-
rection [Alonso and Moreno, 2005; Guanter et al., 2005].
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Constrained by the spectral range of CHRIS, we considered the S2 bands starting from B2
(490 nm) until B8a (865 nm). The bands at a spatial resolution of 10 m have been coarse-
grained to 20 m so that in total 8 bands in the visible and NIR at a 20 m resolution are available.
S2 bands at 60 m were not considered as these bands are intended for atmospheric applications.
These bands are intended for atmospheric applications, such as aerosols correction, water vapor
correction and cirrus detection [Drusch et al., 2012] and are unable to deliver TOC reflectances
that are interpretable by canopy RT models.

4.3.4 LUT generation

This work was carried out with ARTMO (Automated Radiative Transfer Models Operator)
[Verrelst et al., 2011, 012c]. ARTMO is a GUI toolbox written in Matlab that provides essential
tools for running and inverting canopy reflectance models with different options. In its latest
version (V.3), the toolbox is designed in a modular way, i.e. the radiative transfer models mod-
ules along with several post-processing modules. In short, the toolbox enables the user: i) to
choose between various leaf optical models (e.g., PROSPECT-4, PROSPECT-5) and canopy
reflectance models (e.g., 4SAIL, SLC, FLIGHT), ii) to choose between spectral band settings
of various air- and space-borne sensors or to define new sensor band settings (in Sensor mod-
ule), iii) to simulate a massive amount of spectra and store them in a relational database running
underneath ARTMO (main module), iv) to visualize spectra of multiple models in the same
window (in Graphics module), and finally, v) to run LUT-based model inversion against EO im-
agery with selected cost function and with optimization and accuracy options for the estimates
(in Inversion module).

From the in ARTMO available models we chose for coupling PROSPECT-4 with 4SAIL
because of being fast, invertible and well representing homogeneous plant covers on flat sur-
faces areas such as those present at Barrax. Both models, commonly referred to as PROSAIL,
have been used extensively over the past few years for a variety of applications [Jacquemoud
et al., 2009]. PROSPECT-4 calculates leaf reflectance and transmittance over the solar spec-
trum from 400 to 2500 nm at a 1 nm spectral sampling interval as a function of its biochemistry
and anatomical structure. It consists of 4 parameters, being leaf structure, LCC, equivalent
water thickness and dry matter content [Feret et al., 2008]. 4SAIL calculates top-of-canopy
reflectance. 4SAIL inputs consist of: LAI, leaf angle distribution, ratio diffuse/direct irradi-
ation, a hot spot parameter and sun-target-sensor geometry. Spectral input consists of leaf
reflectance and transmittance spectra, here coming from PROSPECT-4, and a a moist and dry
soil reflectance spectrum. To obtain these soil spectra, the average of bare soil signature was
calculated from bare moist and dry soil pixels identified in the imagery. In 4SAIL a scaling fac-
tor, αsoil, has been introduced that takes variation in soil brightness into account as a function
of these two soil types.

The bounds and distributions of the PROSAIL variables are depicted in Table 4.2. Variable
bounds were taken from measurement campaigns and/or other studies working with the same
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crops [Richter et al., 2009, 2011]. They were chosen in order to describe the characteristics
of all crop types used in the study. Gaussian input distributions were generated for LAI and
LCC content in order to put more emphasis on the variable values being present in the actual
growth stages of the crops. Sun and viewing conditions correspond to the situation of the satel-
lite overpass. All possible combinations were calculated from the in Table 4.2 defined leaf and
canopy input ranges. Since the sum of all these combinations would lead to an unrealistic high
number of simulations (about 5 billion), a LUT size of 100000 TOC reflectance realizations
was randomly chosen in accordance with [Darvishzadeh et al., 2012]. All input parameters,
metadata and associated output simulations were automatically stored in a relational database
running underneath ARTMO.

4.3.5 Regularization options

Two regularization options are commonly applied in LUT-based inversion strategies. First, a
Gaussian noise is often added to the simulated canopy reflectance to account for uncertain-
ties [Bacour et al., 2006; Baret et al., 2007]. Second, several studies demonstrated that the sin-
gle best parameter combination corresponding to the very smallest distance as calculated by a
cost function does not necessarily lead to the best accuracy [Combal et al., 2002; Darvishzadeh
et al., 2008]. Instead the mean of multiple solutions tend to provide more accurate results.

TABLE 4.2: Range and distribution of input parameters used to establish the synthetic canopy re-
flectance database for use in the LUT.

Model Parameters Units Range Distribution
Lea f parameters: PROSPECT-4
N Leaf structure index unitless 1.3-2.5 Uniform
LCC Leaf chlorophyll content [µg/cm2] 5-75 Gaussian (x̄: 35, SD: 30)
Cm Leaf dry matter content [g/cm2] 0.001-0.03 Uniform
Cw Leaf water content [cm] 0.002-0.05 Uniform

Canopy variables: 4SAIL
LAI Leaf area index [m2/m2] 0.1-7 Gaussian (x̄: 3, SD: 2)
αsoil Soil scaling factor unitless 0-1 Uniform
ALA Average leaf angle [◦] 40-70 Uniform
HotS Hot spot parameter [m/m] 0.05-0.5 Uniform
skyl Diffuse incoming solar radiation [fraction] 0.05 -
θs Sun zenith angle [◦] 22.3 -
θv View zenith angle [◦] 20.19 -
φ Sun-sensor azimuth angle [◦] 0 -

Similar variable ranges/values/distributions were used according to field configurations and related stud-
ies [Richter et al., 2009, 2011]. x̄: mean, SD: standard deviation.
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Because different optimization numbers are reported in literature, the mutual impact of these
regularization options has been recently systematically studied for a limited set of CFs [Verrelst
et al., 2014b]. In that study a range of Gaussian noise levels was introduced up to 30% with
steps of 1%. It appeared however that in some cases this upper limit yielded best accuracies,
suggesting that the optimal noise configuration may not have been reached. Therefore, in this
study noise levels were examined from 0 to 50% with steps of 2%. The percentage noise is
considered as the maximal boundary wherein noise can fall and is wavelength dependent. The
same range was applied to multiple solutions, from 0% to 50% with steps of 2%. Note that
these wide ranges are only intended to study the behaviour of the CFs, thereby seeking for op-
tima. Further we investigate the impact of spectra normalization in M-estimates and Minimum
Contrast Estimates that have not been done before.

Thus, to summarize, we have:

1. Various standalone cost functions from three mathematically different families.

2. Insertion of Gaussian noise on simulated spectra: 0-50%.

3. Use of multiple sorted best solutions in the inversion: 0-50%.

4. Impact of normalization for CFs in M-estimates and Minimum Contrast Estimates fami-
lies.

Given all these factors, their effects on the robustness of LUT-based inversion have been
assessed for the retrieval of LCC and LAI at the 20-m S2 resolution. The retrieved predic-
tions were compared against the ground-based SPARC validation dataset using statistics such
as coefficient of determination (r2), absolute RMSE and the normalized RMSE (NRMSE [%]
= RMSE/range of the parameters as measured in the field *100). The NRMSE was used to
compare the performances across the different CFs and parameters. Lower values indicate less
residual variance and thus more successful inversion.

4.4 Results

4.4.1 Evaluation of cost functions and regularization options

Leaf chlorophyll content (LCC) retrieval

Figure 4.1 provides a systematic overview of the impact of different cost functions (matrices),
noise levels (x-axis) and multiple solutions (y-axis) on LCC retrieval. To enable comparison
across the different parameters, the performance of these inversion strategies were evaluated by
calculating the deviations between the retrieved parameter values and the 110 validation points
through the NRMSE; further referred to as relative error. When interpreting these error matrices,
opting for the very single best solution without added noise in the inversion appeared to be a
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poor inversion strategy for each of the CFs. Inversion without these regularization is shown
in the left-bottom corner of the matrices and also listed in the rightmost column of Table 4.3.
Accuracies further degraded when opting for the very single best solution and adding noise.
This pattern appeared for the majority of CFs, which suggests that the strategy of only adding
noise in the inversion is to be avoided. The reason of the poor performance of the single best
solution lies in the ill-possedness of the problem; multiple parameter combinations lead to the
same or very similar spectra. Therefore, picking the sorted most matching spectrum according
to a CF may not be the best choice, but rather the mean value of multiple best matching spectra
should be considered. Effectively, the inversion clearly benefited from introducing multiple
solutions in the inversion for all CFs, preferably in combination with added noise. Overall, with
consideration of the mean of all CFs, relative errors more were twice reduced when comparing

Kullback-leibler* Pearson Chisquare* gen. Hellinger* Neyman Chisquare* Jeff. Kullback leibler
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FIGURE 4.1: Normalised RMSE (NRMSE) matrices for LCC retrieval using cost function displaying
the impact of % noise (X-axis) against multiple solutions (Y-axis) in LUT-based RTM inversion. *:
normalized, **: non-normalized. The more bluish, the lower relative errors and thus the better the
inversion.
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results without regularization options; x̄ NRMSE from 49% to 22% (see Table 4.3).

Moreover, these error matrices reveal the true interactions between the different cost func-
tions and the regularization options. The matrices suggest that each of the tested CFs respond
differently to the regularization options. It is interesting to see that in the majority of them a
pattern with optimized performances appear (darkest blue), though the location and shape of
this pattern may vary per CF. Thereby, not only CFs that are mathematically more alike led to
similar trends, but also similarities appeared within the same CF family. This is particularly
noticeable for the family of information measures, which shows robust LCC estimates across
the whole noise and multiple solutions range, but also M-estimates CFs show similar behavior.

Interestingly, the matrices also revealed that data normalization governs the success of M-
estimates. Excellent performances were achieved for the three M-estimates (LSE, L1-estimate,
Geman and McClure), with best performances for L1-estimate (NRMSE of 17.6% at 6% multi
solutions and 18% noise ). Note that L1-estimate is proven to be optimal when distribution of
errors have Laplace distribution. Also Neyman Chi-square and Generalized Hellinger reached

TABLE 4.3: Statistics (r2, RMSE , NRMSE) based on best evaluated NRMSE and corresponding
mean multiple solutions (%) and noise level (%) for LCC retrieval. *: normalized, **: non-normalized.
The ’0.0 NRMSE’ column represents the results without regularization options (left-bottom corner in
matrices). Best inversion strategy is in bold font.

Cost function mult. sol. (%) noise (%) r2 abs. RMSE NRMSE (%) 0,0 NRMSE (%)
Kullback leibler* 10 26 0.71 7.34 19.47 47.54
Chi square* 8 24 0.69 7.57 18.64 48.94
Generalised Hellinger* 20 36 0.74 7.16 17.63 47.55
Neyman Chi square* 16 44 0.73 7.16 17.63 46.62
Jeffreys Kullback leibler* 10 26 0.70 7.41 18.25 48.36
K-divergence Lin* 8 26 0.70 7.43 18.30 48.01
L-divergence Lin* 10 26 0.70 7.39 18.20 48.25
Harmonique Toussaint* 10 26 0.71 7.37 18.15 48.36
Negative exp. disparity* 10 26 0.71 7.31 18.01 47.43
Bhattacharyya divergence* 10 28 0.70 7.40 18.22 48.18
Shannon 1948* 10 26 0.70 7.39 18.20 48.18
LSE* 20 36 0.74 7.16 17.63 47.55
LSE** 22 0 0.68 8.23 20.27 46.99
L1-estimate* 6 18 0.73 7.14 17.59 45.88
L1-estimate** 20 12 0.61 9.14 22.52 45.58
Geman and McClure* 20 36 0.74 7.16 17.63 47.55
Geman and McClure** 22 0 0.68 8.24 20.30 46.99
K(x)=log(x)+1/x* 50 50 0.68 13.43 33.09 70.96
K(x)=log(x)+1/x** 16 50 0.62 13.36 32.91 43.86
K(x)=-log(x)+x* 2 0 0.70 7.45 18.34 31.82
K(x)=-log(x)+x** 50 50 0.48 15.76 38.83 83.15
K(x)=log(x)2* 8 32 0.68 7.76 19.11 46.68
K(x)=log(x)2** 50 50 0.31 13.87 34.15 44.14
K(x)=x(log(x))-x* 6 30 0.66 7.95 19.58 47.19
K(x)=x(log(x))-x** 50 50 0.30 15.05 37.06 48.99
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such degree of accuracy (see Table 4.3). However, M-estimates performed considerably poorer
(best results around 20%) when data is non-normalized, and matrices show that retrieval results
are more affected by the two regularization options. Finally, the Minimum Contrast Estima-
tion family yielded more irregular patterns. While in general they benefited from normalizing
the dataset, only the ’K(x)=log(x)2’ and ’K(x)=xlog(x)-x’ proved to be robust CFs for LCC
retrieval. In the absence of normalization best performances of these CFs were obtained at
a maximal of tested noise level (i.e., 50%). Because these noise levels led to a considerable
degradation of the simulated spectra it seems that these CFs only function well for LCC when
data is normalized.

Kullback-leibler* Pearson Chi-square* gen. Hellinger* Neyman Chi-square* Jeff. Kullback leibler
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FIGURE 4.2: NRMSE matrices for LAI retrieval using cost function displaying the impact of %
noise (X-axis) against multiple solutions (Y-axis) in LUT-based RTM inversion. *: normalized, **:
non-normalized. The more bluish, the lower relative errors and thus the better the inversion.
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TABLE 4.4: Statistics (r2, RMSE , NRMSE) based on best evaluated NRMSE and corresponding
mean multiple solutions (%) and noise level (%) for LAI retrieval. *: normalized, **: non-normalized.
The ’0.0 NRMSE’ column represents the results without regularization options (left-bottom corner in
matrices). Best inversion result is in bold font.

Cost function mult. sol. (%) noise (%) r2 abs. RMSE NRMSE (%) 0,0 NRMSE (%)
Kullback leibler* 4 50 0.63 1.25 22.74 45.59
Chi square* 8 50 0.62 1.29 23.53 45.74
Generalised Hellinger* 2 42 0.62 1.17 21.34 44.59
Neyman Chi square* 4 50 0.62 1.24 22.48 45.51
Jeffreys Kullback leibler* 6 50 0.62 1.26 22.93 45.60
K-divergence Lin* 6 50 0.62 1.27 23.06 45.67
L-divergence Lin* 10 26 0.70 1.26 22.92 45.54
Harmonique Toussaint* 6 50 0.62 1.26 22.91 45.60
Negative exp. disparity* 4 50 0.63 1.25 22.72 45.53
Bhattacharyya divergence* 6 50 0.62 1.26 22.93 45.53
Shannon 1948* 6 50 0.62 1.26 22.92 45.54
LSE* 2 42 0.62 1.17 21.34 44.58
LSE** 2 14 0.74 0.84 15.32 25.45
L1-estimate* 2 50 0.62 1.22 22.25 44.93
L1-estimate** 2 12 0.73 0.91 16.57 25.31
Geman and McClure* 2 42 0.62 1.17 21.34 44.59
Geman and McClure** 2 14 0.74 0.85 15.39 25.45
K(x)=log(x)+1/x* 2 42 0.63 0.91 16.51 34.02
K(x)=log(x)+1/x** 10 50 0.50 1.35 24.57 46.17
K(x)=-log(x)+x* 50 50 0.52 1.53 27.80 51.69
K(x)=-log(x)+x** 2 0 0.64 1.09 19.86 51.17
K(x)=log(x)2* 12 50 0.54 1.40 25.42 45.13
K(x)=log(x)2** 2 46 0.66 1.13 20.47 37.94
K(x)=x(log(x))-x* 6 50 0.63 1.42 25.82 45.11
K(x)=x(log(x))-x** 2 40 0.63 1.08 19.56 35.57

Leaf area index (LAI) retrieval

Introducing noise and mean of multiple solutions considerably improved the LAI accuracies
(Figure 4.2). Overall, on average relative errors almost halved: NRMSE from µ 42% to µ 22%
(Table 4.4). However, in contrast to LCC retrievals, the information measures and the normal-
ized M-estimates were no longer able to deliver good inversion results. In fact for the majority of
CFs, normalization of the data caused that best results were achieved with the maximal degree
of injected noise (i.e., 50%). Since such a spurious high noise level led to a considerable degra-
dation of the simulated spectra it makes us concluding that normalization is not recommended
for LAI retrieval. Consequently non-normalized M-estimates greatly improved accuracy of
LAI retrievals. Particularly the classical LSE demonstrated to be the best CF (NRMSE: 15.3%
at multiple solutions of 2% and noise of 14%), closely followed by the other M-estimates (L1-
estimate, Geman and McClure). This means that in our example the errors tend to be Gaussian
and solution is stable. Also these results suggest that controlling the normalization option can
play an important role in LUT-based inversion. The contrast functions family did not perform
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very well and only normalized K(x)=log(x)+1/x is able to retrieve LAI with best relative error
of 16.5%. In comparison with LCC (Table 4.3) it can be noted that best LAI retrieval is per-
forming slightly better (e.g., see NRMSE). Though, most important is to realize that different
optimized inversion strategies were identified for both parameters. Finally, although not shown
here for the sake of brevity, the retrieval capability of canopy-integrated chlorophyll content
(CCC: LAI × LCC) was evaluated. CCC showed analogous patterns as LAI which suggests
that this parameter, more than LCC, is the driving parameter of CCC. This can be probably
attributed to the fact that LAI influences the whole spectral range, while LCC sensitive spectral
range is limited to the beginning of the red edge.

4.4.2 Biophysical parameters mapping

Obtained systematic overview of the various inversion performances shows that deriving simul-
taneously multiple biophysical parameters using one inversion strategy is not the best choice.
When parameters are correlated in a non-linear way it appears that the optimal cost functions
are different for each parameter [Leonenko et al., 2013]. Hence, when we try to quantify LCC
and LAI simultaneously will at least for one parameter lead to suboptimal performances. While
in an operational setting it may be desirable to seek for an inversion strategy that leads to a
balanced performance in the generation of all retrievable parameters [Verrelst et al., 2014b],
because of their non-linear dependency applying different retrieval strategies to different pa-
rameters is generally preferable. That is also the approach pursued here; for each parameter
the best performing inversion strategy was applied (i.e., bolded in Tables 4.3, 4.4). For LCC
we applied L1-estimate (with mult. sol.: 4%, noise: 18%) and for LAI non-normalized normal
distribution LSE (with mult. sol.: 2%, noise: 14%). Since in each of these strategies the mean
of multiple solutions is applied it leads to the mapping of the mean estimates (µ) and associated
standard deviation (±σ) (Figure 4.3).
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FIGURE 4.3: Mean predictions, standard deviation (SD), coefficient of variation (CV) and residuals
for LCC and LAI by using for each parameter best evaluated inversion strategy (see Table 4.3, 4.4).
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These maps are briefly interpreted. Starting with the µ-estimate maps, it can be observed
that not only the irrigated circular fields with green biomass are clearly marked, but also pro-
nounced within-field variations are notable by both parameters. These irrigated fields are char-
acterized by a LCC above 40 µg/cm2 and LAI above 3. Areas with low LCC (≤ 25 µg/cm2) and
LAI (≤ 1.5) are mainly bare soils, non-irrigated fallow lands or senescent or harvested cereal
fields (wheat, barley). Particularly detailed spatial variation was encountered in the LAI map
which suggests that greater sensitivity for this structural parameter is achieved. The ±σ-maps
can be interpreted as uncertainty of the µ-estimate. The smaller the ±σ for a pixel, the lower
that variation in multiple solutions is encountered during the inversion. Note that such ±σ map
is also obtained by the MODIS LAI LUT-based retrieval method [Knyazikhin et al., 1998b]
and serves as a measure of the solution accuracy; starting from Collection 5, the ±σ(LAI) has
been provided in the standard products. Here, at a glance, large uncertainty ranges arise when
medium to high LCC conditions prevail. Similar studies observed the same large uncertainty
ranges over dense canopies and are attributed to the saturation effect in the radiative transfer and
the limited information provided in the a generation of the LUT [Pinty et al., 2007; Weiss et al.,
2007; Garrigues et al., 2008]. However, since the ±σ also directly depends on the magnitude
of µ, it may be more of interest to map the relative uncertainties, i.e. the coefficient of variation
(CV; σ/µ). A relative indicator is of interest as it provides more information about the inver-
sion process, i.e. a lower CV means a greater uniformity across the % best solutions, but it also
allows a comparison of the inversion performance across all maps (Figure 4.3). For both LCC
and LAI the CV maps suggest that the inversion process had least difficulty with the vegetated
areas (circular irrigated fields), while most uncertainty was propagated over the fallow land and
calcareous bare soils (South-East of image).

At the same time, parameter-independent information regarding the performance of the in-
version process can also be obtained by mapping the residuals of the CFs. They provide another
indicator on the inversion certainty. For each pixel, it indicates the degree of mismatch between
the observed spectrum and the best matching simulated spectra. More than CV, these maps de-
lineate the surfaces where the simulated spectra closely matched the observed spectra and thus a
higher probability achieving a successful inversion. The maps suggest that particularly LAI was
retrieved without difficulty, with perfect match over the vegetated areas. The inversion process
had in all generality more difficulty with LCC, but large differences can be observed, leading to
essentially the same earlier observed pattern; a close agreement over vegetated areas as opposed
to senescent and non-vegetated lands. On the whole, the uncertainty analysis suggests that the
inversion would benefit from a wider LUT with more spectral variation of senescent vegetation
and bare soil surfaces.

4.5 Discussion

The upcoming S2 missions open opportunities to implement novel retrieval algorithms in oper-
ational processing chains. Specifically, there is a need for retrieval methods that are accurate,
robust, and make fully use of the new S2 MSI bands. While in related works vegetation indices
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[e.g., Delegido et al., 2011; Clevers and Gitelson, 2013], or machine learning regression algo-
rithms [e.g., Verrelst et al., 2012a; Richter et al., 2012b] have been proposed for S2 biophys-
ical parameter retrieval, alternatively we advocate the method of LUT-based RTM inversion.
Although this approach is not new, it has never been exploited to the fullest. Here we system-
atically analyzed the impact of CFs and regularization options. It led to consolidated findings
discussed below.

4.5.1 Cost functions and regularization options

To mitigate the drawback of ill-posedness instead of introducing prior information it was opted
to exploit the performances of alternative CFs in combination with regularization options. The
rationale for evaluating CFs as opposed to the widely used LSE (or RMSE) is that propagated
uncertainties and errors, e.g., due to uncertainties in instrument calibration, variations in at-
mospheric composition or simplifying assumptions in the representation of canopy and soil
background, distort the residuals and in many cases violate a key assumption for using LSE,
which corresponds to the maximum likelihood estimation with Gaussian distribution of resid-
uals [Leonenko et al., 2013]. Nevertheless in our presented dataset it was found that LSE
outperformed most of the alternative tested CFs for LCC with the condition of data normaliza-
tion. Only the ’L1-estimate’ function performed slightly better, which suggest that the errors
rather tend to be distributed according to a Laplace distribution. Moreover normalization led to
better performances with respect of varying added noise and multiple solutions in the inversion.
Hence, data normalization provides good accuracy for LCC inversion and can be explained as
follows. Variation in reflectance as a function of chlorophyll absorption occurs predominantly
in the visible part of the spectrum and declines rapidly once entering red edge [Gitelson et al.,
1996], i.e. encompassing S2 bands B2 to B5. Accordingly, in PROSPECT the chlorophyll
absorption coefficients start to become negligible from 730 nm onwards. A closer look to the
simulated dataset revealed that normalization compresses the dataset and so ensures that the
observation spectrum falls within the same range. This particularly plays a role in the visible
part of the spectrum. As reflectance of vegetated surfaces in the visible is typically low (often≤
10%) and variation in this region is narrow, normalization helps reaching a better match in this
region between simulated and observed spectra. Conversely, data normalization did not lead
to the good CFs performance for LAI, and non-normalized data in combination with multiple
solutions and the CF LSE showed to be the most successful. It should herewith be noted that
LAI variation (i.e. vegetation density) causes a spectral variation over the whole VNIR spec-
trum, i.e. S2 bands from B2 to B8. Thereby, the larger magnitude of reflectance in the NIR
and greater LAI-induced variation in comparison to the visible part makes NIR an important re-
gion for LAI retrieval in LUT-based inversion. Consequently, a spectral observation easily falls
within such a broad range of simulated spectral variation, and compression of the simulations
through normalization tend to disturb the matching between observed and simulated spectra.
A standard inversion scheme proved thus to be most successful for LAI retrieval. Effectively,
many publications demonstrated that LAI can be relatively easily retrieved without data nor-
malization [e.g., Darvishzadeh et al., 2008; Richter et al., 2009; Si et al., 2012; Atzberger and
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Richter, 2012]. We are not aware of other studies that have systematically evaluated the role of
data normalization in LUT-based inversion, though proper usage may greatly improve accura-
cies. For instance, it explains why in [Verrelst et al., 2014b] RMSE was performing poorly for
LAI where this CF was employed in normalized mode only. It may also explain why similar
studies reported a poor LCC inversion as there no mentioning of normalizing the data has been
made [Darvishzadeh et al., 2008; Si et al., 2012]. Further, as earlier observed in [Verrelst et al.,
2014b], this study confirms for 18 tested CFs that introducing some degree of noise and mean of
multiple solutions in the inversion can lead to improved inversion performances, though its ac-
tual impact strongly depended on the considered parameter and cost function. Hence developing
optimized inversion strategies for each single retrievable parameter is strongly recommended.

4.5.2 Inversion performance

The evaluation of various CFs and regularization options led to identified inversion strategies
with accuracies of r2 on the order of 0.73-0.81 and relative errors (NRMSE) of 15-18%. A range
of 15%-20% is regarded as the currently achievable accuracy for LAI from EO data [Baret,
2010]. However, a retrieval accuracy of 10% is targeted for the S2 mission [Drusch et al.,
2010]. It should thereby be emphasized that the validation dataset consisted of all kinds of crop
types, including row crops such as maize, potatoes, onions and vineyards. In related work by
[Darvishzadeh et al., 2008; Richter et al., 2009] this degree of accuracy was only achieved over
single crops, and it was concluded that PROSAIL fails to invert over multi-species canopies.
Thereby, various types of uncertainties have been identified that may lead to suboptimal re-
trievals, with respect to model usage (e.g., 1D vs. 3D models), parametrization and valida-
tion data [Combal et al., 2003]. Suggestions for improvements typically refer to adding more
prior information at the level of individual parcels , i.e. through a more specialized LUT [e.g.,
Knyazikhin et al., 1998a; Combal et al., 2003; Meroni et al., 2004; Atzberger, 2004; Richter
et al., 2009; Verrelst et al., 012c]. While such strategies could be beneficial for dedicated
sites, site-specific information is usually unavailable in an operational context for larger areas.
The proposed regularization options yielded robust inversion schemes that are easily applicable
over full scenes covering heterogeneous canopy surfaces. Although most of the CFs within the
same family perform alike and are in principle thus replaceable, performance gain is especially
reached in combination with applying multiple solutions and noise in the inversion. More-
over, further improvements can be achieved by applying CFs that require tuning of additional
parameters. In general tuning parameters in CFs would lead to refined inversion strategies as
compared to standalone CFs (e.g. see [Leonenko et al., 2013; Verrelst et al., 2014b]). Further
research is planned to have these tunable CFs optimized in an automated fashion.

At the same time, information about the inversion uncertainty on a pixel-by-pixel basis may
be as relevant as overall accuracies calculated from a limited set of ground-based validation
data. Uncertainty indicators were obtained through mapping of CV and residuals. The CV is
an indicator of the uncertainty range around the mean estimate, which tells something about
the ill-posedness of the inversion of a retrievable parameter, whereas the residuals tells us how
much the observed spectra deviate against that from the LUT spectra in the inversion scheme.
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These quality layers allow masking out uncertain estimates.

Both indicators showed a consistent spatial trend for all parameters: pixels of vegetated
surfaces matched closely with the synthetic reflectance database while pixels of non-vegetated
surfaces faced more difficulties. Two reasons can be identified for this discrepancy: 1) the inver-
sion strategy was optimized against validation data that was exclusively collected on vegetated
areas, and 2) PROSAIL is a canopy reflectance model and thus well able to detect variation
in vegetation properties. Hence the generated LUT and final inversion scheme were not op-
timized to detect variations in dried-out fallow and bare soil lands. For retrievals over full
images there is thus a need for regulating the inversion strategy both over vegetated targets as
well over non-vegetated targets. Therefore, while having inversion over vegetated canopies re-
solved, adequately processing non-vegetated surfaces remains to be optimized. To start with,
further efforts are needed in the generation and evaluation of more generic LUTs, i.e. including
spectra of kinds of soil types, man-made surfaces and water bodies. PROSAIL alone is not
able to deliver this; hence coupling with a generic soil reflectance model that enables generat-
ing a variety of non-vegetated reflectances would be a next step to do. It should hereby also
be noted that the 20m-S2 bands B11 and B12 have not been considered in this study because
of falling outside the CHRIS range. These bands in the SWIR are known to be sensitive to
vegetation structure [Brown et al., 2000] and can better distinguish between dried-out fallow
and non-vegetated lands. It is expected that inclusion of the SWIR bands will further improve
the retrieval quality. Another promising avenue to be investigated is relying on vegetation in-
dices to spatially constrain the LUTs. For instance, vegetation indices are able to detect bare
soil, water bodies, sparsely vegetated areas and densely vegetated areas (e.g., see also [Dorigo
et al., 2009]). That information could then be used to constrain LUTs on a per-pixel basis and
is currently explored to be implemented into ARTMO.

4.6 Conclusions

LUT-based inversion is considered as a physically-sound retrieval method to quantify biophysi-
cal parameters from Earth observation imagery, but the full potential of this method has not been
consolidated yet. Here, we have systematically compared 18 different cost functions (CFs) orig-
inating from three major statistical families: information measures, M-estimates and minimum
contrast methods. All these CFs are standalone functions that can be directly implemented in
processing algorithms. These CFs were fully exploited through various regularization options,
i.e., adding noise, multiple solutions and normalization, for the benefit of improved LCC and
LAI estimations. Inversion of the PROSAIL model against a simulated 20 m Sentinel-2 imagery
(8 bands: B2-B8a) over an agricultural site (Barrax, Spain) and against a validation dataset led
to the following conclusions:

� All evaluated CFs and biophysical parameters gained from regularization options such
as adding some noise and multiple solutions in the inversion. These options with proper
adjustment can significantly reduce relative errors.
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� With introduction of multiple solutions and noise information measures CFs proved to
be successful for deriving LCC. However best LCC results were achieved with the M-
estimate L1 (NRMSE of 17.6% at 6% multiple solutions and 18% noise) when data is
normalized.

� Data normalization appeared to be unsuccessful for retrieving LAI. Here, the classical
LSE yielded best results for non-normalized data; NRMSE of 15.3% at 6% multiple
solutions and 18% noise, and 16.4% at 16% multiple solutions and 0% noise, respectively.

Systematic analysis for each biophysical parameter identified different optimized inversion
strategy, which was subsequently applied to pixel-by-pixel Sentinel-2 imagery. It provided us
with maps of mean estimates and associated statistics and showed insight into the uncertainty
of the retrievals (e.g. coefficient of variation and residuals). These indicators showed that inver-
sions were most successful over densely vegetated areas. PROSAIL had more difficulty with
processing fallow and non-vegetated lands, but that is expected to be resolved with an adjusted
LUT and the addition of SWIR bands in actual Sentinel-2 data.

The bottom line of this work is that, despite common practice, no single inversion strat-
egy was found to be optimal for deriving multiple biophysical parameters. While some general
trends with respect to regularization options and CFs was revealed, it is the data distribution that
determines the success of the inversion strategy, which is governed by the biophysical parame-
ter, the generated LUT, the spectral bands and the validation data. It is therefore recommended
to test different CFs and regularization options before implementing an inversion scheme in a
processing chain.
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5.1 Abstract

Biophysical parameters such as leaf chlorophyll content (LCC) and leaf area index (LAI) are
standard vegetation products that can be retrieved from Earth observation imagery. This paper
introduces a new Machine Learning Regression Algorithms (MLRA) toolbox into the scientific
Automated Radiative Transfer Models Operator (ARTMO) software package. ARTMO facil-
itates retrieval of biophysical parameters from remote observations in a Matlab graphical user
interface (GUI) environment. The MLRA toolbox enables analyzing the predictive power of
various machine learning regression algorithms in a semiautomatic and systematic manner, and
applying a selected MLRA to multispectral or hyperspectral imagery for mapping applications.
It contains both linear and nonlinear state-of-the-art regression algorithms, in particular linear
feature extraction via principal component regression (PCR) and partial least squares regression
(PLSR), decision trees (DT), neural networks (NN), kernel ridge regression (KRR) and Gaus-
sian processes regression (GPR). The performance of multiple implemented regression strate-
gies has been evaluated against the SPARC dataset (Barrax, Spain) and simulated Sentinel-2
(8 bands), CHRIS (62 bands) and HyMap (125 bands) observations. In general, nonlinear re-
gression algorithms (NN, KRR, GPR) outperformed linear techniques (PCR, PLSR) in terms
of accuracy, bias, and robustness. Most robust results along gradients of training/validation
partitioning and noise variance were obtained by KRR while GPR delivered most accurate es-
timations. We applied a GPR model to a hyperspectral HyMap flightline to map LCC and LAI.
We exploited the associated uncertainty intervals to gain insight in the per-pixel performance of
the model.
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5.2 Introduction

Leaf area index (LAI) and leaf chlorophyll content (LCC) are essential land biophysical pa-
rameters retrievable from optical Earth observation (EO) data [Whittaker and Marks, 1975;
Lichtenthaler, 1987; Malenovský et al., 2012]. These parameters provide information about
the phenological stage and health status (e.g., development, productivity, stress) of crops and
forests [Lichtenthaler et al., 1996]. The quantification of these parameters from space over
large areas has become an important aspect in agroecological, environmental and climatic stud-
ies [Dorigo et al., 2007]. At the same time, remotely sensed observations are increasingly be-
ing applied at a within-field scale for dedicated agronomic monitoring applications [Delegido
et al., 2011, 2013; Gianquinto et al., 2011]. With the forthcoming superspectral Sentinel-2
and Sentinel-3 missions and the planned EnMAP and PRISMA imaging spectrometers, the un-
precedented data availability requires retrieval processing techniques that are accurate, robust
and fast to apply.

Biophysical parameter retrieval always require an intermediate modeling step to transform
the measurements into useful estimates [Baret and Buis, 2008]. This modeling step can be
approached with either statistical, physical or hybrid methods. In this paper we will focus on
the statistical approximation as this field has advanced largely over the last two decades [Camps-
Valls and Bruzzone, 2009; Camps-Valls et al., 2012b]. Statistical models can be categorized into
either a parametric or nonparametric approaches. Parametric models assume an explicit relation
between the variables. They rely on physical knowledge of the problem and build explicit
parametrized expressions that relate a few spectral channels with the biophysical parameter of
interest. Alternatively, nonparametric models are adjusted to predict a variable of interest using
a training dataset of input-output data pairs, which come from concurrent measurements of
the parameter and the corresponding reflectance/radiance observation. Several nonparametric
regression algorithms are available in the statistics and machine learning literature, and recently
they have been introduced for biophysical parameter retrieval [Baret and Buis, 2008; Verrelst
et al., 2012a].

Particularly, the family of machine learning regression algorithms (MLRAs) emerged as
a powerful nonparametric approach for delivering biophysical parameters. MLRAs have the
potential to generate adaptive, robust relationships and, once trained, they are very fast to ap-
ply [Hastie et al., 2009]. Typically, machine learning methods are able to cope with the strong
nonlinearity of the functional dependence between the biophysical parameter and the observed
reflected radiance. They may therefore be suitable candidates for operational applications. Ef-
fectively, algorithms such as neural networks (NNs) are already implemented in operational
retrieval chains (e.g. CYCLOPES products) [Bacour et al., 2006; Verger et al., 2008]. It re-
mains still to be questioned whether NNs offer the most flexible tools for parameter estimation,
gaining insight in the retrievals and evaluating retrieval performances. Besides, training NNs
involve tuning several parameters that may greatly impact the final robustness of the model. In
part, this why in the recent years alternative and simpler to train regression methods have started
replacing NNs. Specifically the family of kernel methods [Camps-Valls and Bruzzone, 2009]
has emerged as an alternative to NNs in many scenarios. Kernel methods typically involve
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few and intuitive hyperparameters to be tuned, and can perform flexible input-output nonlin-
ear mappings. Even though MLRAs are widely recognized as very powerful methods, some
questions still remain open, e.g. how robust are these models in case of noisy situations, and
how much they depend on changes between the training and testing data distributions. Per-
haps more important is the fact that, for the broader remote sensing community, they are also
perceived as complicated black boxes with several parameters to be tuned, which requires ex-
pertise. Further, until now no user-friendly graphical user interface (GUI) toolbox exists that
brings several state-of-the-art MLRAs together. To facilitate and automate the use of MLRAs,
in this work we present a novel software package that allows systematically analyzing and ap-
plying MLRA-developed models. The so-called MLRA toolbox has been implemented within
the in-house developed toolbox called ARTMO (Automated Radiative Transfer Models Opera-
tor). ARTMO is a scientific GUI toolbox dedicated to the retrieval of vegetation properties from
optical imagery [Verrelst et al., 012c].

This brings us to the objectives of this work, which are: (1) to present the novel MLRA
toolbox for semiautomatic retrieval of biophysical parameters; (2) to evaluate the different ML-
RAs on their performance and robustness; and, (3) to apply the best performing MLRA to EO
imagery to test the robustness and accuracy in real scenarios.

The following sections will first briefly describe the considered nonparametric regression
algorithms and then the latest status of ARTMO, followed by an introduction of the most im-
portant components of the new MLRA toolbox. The used data is subsequently described and
an evaluation of six nonparametric regression methods is presented. A discussion on the use of
these models for EO processing and a conclusion closes this paper.

5.3 Machine learning regression algorithms

Machine learning regression algorithms learn the relationship between the input (e.g. reflectances)
and output (e.g. biophysical parameters) by fitting a flexible model looking at the structure of
the data. The hyperparameters of the model are typically adjusted to minimize the prediction
error in an independent validation dataset. This way, one looks for the best generalization capa-
bilities, not only a good performance in the training set that would give rise to an overfitted so-
lution. In this paper we compare several regression algorithms. A first family of linear methods
follow a simple chained approach: first data dimensionality is applied to alleviate collinearity
problems which is then followed by canonical least squares linear regression. A second family
of methods consists of building nonlinear functions of the data directly. Several state-of-the-art
methods are considered here: (1) regression trees (RT), (2) artificial neural networks (NN), (3)
kernel ridge regression (KRR), also known as least squares support vector machine, and (4)
Gaussian processes regression (GPR). All these regression techniques are popular in various
application domains thanks to its relatively fast training, good performance, and robustness to
the overfitting problem. In the following subsections we briefly summarize them.
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5.3.1 Dimensionality reduction and linear regression

Let us consider a supervised regression problem, and let X and y be the input and output cen-
tered matrices of sizes n × d and n × 1, respectively. Here, l is the number of training data
points in the problem and d is the data dimension. The objective of standard linear regression
is to adjust a linear model for predicting the output variable from the input features, ŷ = Xw,
where w contains the regression model coefficients (weights) and has size d× 1. Ordinary least-
squares (OLS) regression solution is w = X†y, where X† = (X>X)−1X> is the Moore-Penrose
pseudoinverse of X. Highly correlated input variables can result in rank-deficient covariance
matrix Cxx = 1

n X>X, making the inversion unfeasible. The same situation is encountered in
the small-sample-size case.

A common approach in statistics to alleviate these problems considers first reducing data di-
mensionality and then applying the OLS normal equations to the projected data or scores [Arenas-
García et al., 2013]. These scores reduce to a linear transformation of the original data, X′ =
XU, where U = [u1, u2, . . . , un f ] is referred to as the projection matrix, ui being the ith pro-
jection vector and n f the number of extracted features. The best known linear dimensionality
reduction method is Principal Component Analysis (PCA) [Jolliffe, 1986] which reduces to
solve the eigenproblem:

Cxxu = λu.

An alternative supervised method is Partial Least Squares (PLS) [Wold, 1985] in which we have
to solve (

0 Cxy
C>xy 0

)(
u
v

)
= λ

(
u
v

)
.

Note that PCA disregards the target data and exploits correlations between the input variables
to maximize the variance of the projections, while PLS looks for projections that maximize
the covariance between the features and the target data. In both cases, the user selects the di-
mensionality of the projected data n f . After projection, the OLS equations are solved using
X′. The approaches respectively lead to the so-called principal component regression (PCR)
[Wold et al., 1987] and the partial least squares regression (PLSR) [Geladi and Kowalski, 1986]
methods. Particularly PLSR emerged as a popular regression technique for interpreting hy-
perspectral data, with various experimental applications in vegetation properties mapping [e.g.,
Coops et al., 2003; Gianelle and Guastella, 2007; Cho et al., 2007; Ye et al., 2007].

5.3.2 Regression trees (RT)

Regression trees build predictive models that take the observations as inputs and map them to
the target variable. The model structure is made out of nodes (or leaves) and branches. Leaves
represent output variable discrete values and branches constitute piece-wise linear decisions.
Decision tree learning can be done in several ways and using different algorithms, which mainly
vary on the procedure used to determine where to split. In this paper we focused on the standard
Breiman’s algorithm [Breiman et al., 1984]. Regression trees have several advantages, among
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them: 1) They can manage a high number of features and examples in an easy way; 2) They are
nonparametric flexible methods so they do not impose a specific functional form to the solution;
and 3) The variables, or combination of variables, used at each node to divide the samples into
subgroups are the most discriminative features since they assure the lowest estimated error.

The main advantage for analysts in remote sensing applications is that regression trees al-
low knowledge discovery and full interpretability by analyzing the surrogate and main splits
of the tree. They have been successfully used to estimate land surface variables such as LAI,
fraction of photosynthetically active radiation (FAPAR) and chlorophyll content from VEGE-
TATION/SPOT4 [Weiss and Baret, 9991], or broadband albedo from the Earth Observing 1
(EO-1) data [Liang et al., 2003], just to name a few applications.

5.3.3 Neural Networks (NN)

The most common approach to develop nonparametric and nonlinear regression is based on ar-
tificial neural networks (NN) [Haykin, 1999]. A NN is a (potentially fully) connected structure
of neurons organized in layers. A neuron basically performs a linear regression followed by a
nonlinear function, f (·). Neurons of different layers are interconnected with the corresponding
links (weights). Therefore, in the limit case of using a NN with only one neuron, the results
would be similar (or slightly better because of the nonlinearity) than those obtained with OLS
regression. Training a NN implies selecting a structure (number of hidden layers and nodes
per layer), initialize the weights, shape of the nonlinearity, learning rate, and regularization pa-
rameters to prevent overfitting. In addition, the selection of a training algorithm and the loss
function both have an impact on the final model. In this work, we used the standard multi-layer
perceptron, which is a fully-connected network. We selected just one hidden layer of neu-
rons. We optimized the NN structure using the Levenberg-Marquardt learning algorithm with a
squared loss function. A cross-validation procedure was employed to avoid overfitting issues.
NN weights were initialized randomly according to the Nguyen-Widrow method, and model
regularization was done by limiting the maximum number of net weights to half the number
of training samples. NNs have been vastly used in biophysical parameter retrieval [e.g., Smith,
1993; Gopal and Woodcock, 1996; Kimes et al., 1998; Bacour et al., 2006; Verger et al., 2011],
and are very useful in operational settings [e.g., Baret et al., 2013] because they scale well with
the number of training examples.

5.3.4 Kernel Ridge Regression (KRR)

Kernel Ridge Regression (KRR) minimizes the squared residuals in a higher dimensional fea-
ture space, and can be considered as the kernel version of the (regularized) OLS linear re-
gression [Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004]. The linear re-
gression model is defined in a Hilbert space, H, of very high dimensionality, where samples
have been mapped to through a mapping φ(xi). In matrix notation, the model is given by
ŷi = φ(xi)

>w + b.
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Notationally, we want to solve a regularized OLS problem in Hilbert spaces:

∑
i
(yi − ŷi)

2 + λ‖w‖2. (5.1)

Taking derivatives with respect to model weights w and b, and equating them to zero, leads
to an equivalent problem depending on the unknown mapping function φ, which in principle
is unknown. The problem can be solved by applying the Representer’s theorem, by which the
weights can be expressed as a linear combination of mapped samples, w = ∑n

i=1 αiφ(xi). The
prediction for a test sample x∗ is obtained as a function of the dual weights α = [α1, . . . , αn]>

(one per sample), as follows:

E[ f (x∗)] = k>∗,:(K + λI)−1y = k>∗,:α, (5.2)

where k∗,: contains the (kernel) similarities between the test example and all training data
points. Note that for obtaining the model, only the inversion of the Gram (or kernel) matrix
K of size n × n regularized by λ is needed. We have used the RBF kernel function, whose
components [K]ij are:

K(xi, xj) = exp(−‖xi − xj‖2/(2σ2)). (5.3)

Therefore, in KRR only the regularization parameter λ and the kernel parameter σ have to be
selected. Both parameters were optimized via standard cross-validation. It is worth noting that
KRR has been recently used in remote sensing applications [Camps-Valls and Bruzzone, 2009;
Camps-Valls et al., 2012a].

5.3.5 Gaussian Processes Regression (GPR)

Gaussian processes regression (GPR) has been recently introduced as a powerful regression
tool [Rasmussen and Williams, 2006b], and applied to remote sensing data [Pasolli et al., 2010;
Verrelst et al., 2012b, 2013a,b]. The model provides a probabilistic approach for learning
generic regression problems with kernels. The GPR model establishes a relation between the
input and the output variable (biophysical parameter) in the same way as KRR (see Eq. 5.2).
However, two main advantages of GPR must be noted.

First, not only a predictive mean but also a predictive variance can be obtained:

V[ f (x∗)] = k∗,∗ − k>∗,:(K + λI)−1k:,∗ (5.4)

Note that the mean prediction in (5.2) is a linear combination of observations y = [y1, . . . , yn]>,
while the predictive variance in (5.4) only depends on input data and can be taken as the differ-
ence between the prior kernel and the information given by observations about the approxima-
tion function.

The second advantage is that one can use very sophisticated kernel functions because hy-
perparameters can be learned efficiently by maximizing the marginal likelihood in the training
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set. See [Rasmussen and Williams, 2006b; Camps-Valls et al., 2009; Verrelst et al., 2012b] for
further details. We used a scaled anisotropic Gaussian kernel function,

K(xi, xj) = ν exp
(
−

B

∑
b=1

(x(b)i − x(b)j )
2

2σ2
b

)
, (5.5)

where ν is a scaling factor, B is the number of bands, and σb is a dedicated parameter controlling
the spread of the relations for each particular spectral band b.

Summarizing, three important properties of the method are worth stressing here. First, the
obtained weights αi after optimization gives the relevance of each spectrum xi. Second, the
inverse of σb represents the relevance of band b. Intuitively, high values of σb mean that relations
largely extend along that band, hence suggesting a lower informative content. Finally, a GPR
model provides not only a pixel-wise prediction for each spectrum but also an uncertainty (or
confidence) level for the prediction.

The previous methods are implemented from the simple Regression toolbox [Camps-Valls
et al., 2013], simpleR, freely available at http://www.uv.es/gcamps/code/simpleR.
html. The simpleR toolbox contains simple educational code for linear regression (LR), de-
cision trees (TREE), neural networks (NN), support vector regression (SVR), kernel ridge re-
gression (KRR), aka Least Squares SVM, Gaussian Process Regression (GPR), and Variational
Heteroscedastic Gaussian Process Regression (VHGPR). The toolbox is not explicitly included
in ARTMO, but may be of interest for the reader, as it provides more regression and analysis
tools.

5.4 ARTMO

ARTMO brings multiple leaf and canopy radiative transfer models (RTM) together along with
essential tools required for semiautomatic retrieval of biophysical parameters in one GUI tool-
box. In short, the toolbox permits the user: (1) to choose between various invertible leaf and
canopy RTMs of a low to high complexity (e.g., PROSPECT-4, PROSPECT-5, DLM, 4SAIL,
FLIGHT); (2) to specify or select spectral band settings specifically for various existing air- and
space-borne sensors or user defined settings, typically for recently developed or future sensor
systems; (3) to simulate large datasets of top-of-canopy (TOC) reflectance spectra for sensors
sensitive in the optical range (400 to 2500 nm); (4) to generate look-up tables (LUT), which are
stored in a relational SQL database management system (MySQL, version 5.5 or higher; local
installment required), and finally; (5) to configure and run various retrieval scenarios using EO
reflectance datasets for biophysical parameter mapping applications. ARTMO is developed in
Matlab (2009 version or higher) and does not require additional Matlab toolboxes. Figure 5.1
presents ARTMO V.3’s main window and a systematic overview of the drop-down menu below.
To start with, in the main window a new project can be initiated, a sensor chosen and a comment
added, whereas all processing modules are accessible through drop-down menus at the top bar.
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FIGURE 5.1: Screenshot of ARTMO’s main window and schematic overview of its drop-down menu.

A first rudimentary version of ARTMO has been used in LUT-based inversion applica-
tions [Verrelst et al., 012c, 2014b]. ARTMO v3 is formally presented in this paper. The soft-
ware package is freely downloadable at: http://ipl.uv.es/artmo. Its most important
novelties are briefly listed below:

� ARTMO v3 is designed modularly. Its modular architecture offers the possibility for easy
addition (or removal) of components, such as RTM models and post-processing modules.

� The MySQL database is organized in such a way that it supports the modular architecture
of ARTMO v3. This avoids redundancy and increases the processing speed. For instance,
all spectral datasets are stored as binary objects.

� New retrieval toolboxes are incorporated. They are based on parametric and non-parametric
regression as well as physically-based inversion using a LUT. This has led to the develop-
ment of a: (1) ’Spectral Indices assessment toolbox’ [Rivera et al., 2014a]; (2) ’Machine
Learning Regression Algorithm toolbox’; and, (3) ’LUT-based inversion toolbox’ [Rivera
et al., 2013a].

This paper introduces the ‘Machine Learning Regression Algorithm module’. Its general archi-
tecture is outlined in Figure 5.2.

5.4.1 MLRA Settings module

The following step addresses the analysis of multiple MLRA-based retrieval strategies. A first
step to do is inserting input data (i.e. a plain text file), which refers to retrievable biophysical
parameters and associated spectra. This is done in ’Input’ and can be either RTM-simulated
data or can be ground truth data as measured in the field. The GUI will guide the user through
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FIGURE 5.2: Screenshot of MLRA’s toolbox and schematic overview of its drop-down menu.

the data selection steps and checks if data is properly read (not displayed for brevity). Once
data is inserted the ‘MLRA settings’ module can be configured (Figure 5.3). It can be opted
to select either single-output or multi-output regression algorithm. Currently, only PLSR, NN
and KRR encompass multi-output capabilities. Obviously these models can also be used for
single-output applications.

The ‘MLRA settings’ module configures the regression algorithms given various options.
First, if a land cover map in ENVI format (Exelis Inc.) has been provided then retrieval strate-
gies can be configured per land cover class. Second, multiple regression algorithms at once can
be selected, which means that they will be analyzed one-by-one. Third, options to add Gaussian
noise are provided. Noise can be added both on the parameters to retrieve and on the spectra. A
range of noise level can be configured, so that multiple noise scenarios can be evaluated. The
injection of noise can be of importance to account for environmental and instrumental uncer-
tainties when synthetic spectra from RTMs are used for training. Fourth, the training/validation
data partition can be controlled by setting the percentage of how much data from an RTM or
user-defined is assigned to training or to validation (i.e. split-sample approach). Thereby, the
user can evaluate the impact of ranging training/validation partitioning by entering a range of
training/validation partitions. For each training/validation partition The MLRA toolbox inter-
nally divides the defined training set into k subsets using a k-fold cross-validation strategy in
order to tune the free parameters of the model.

5.4.2 Validation module

Once that the training/validation data splitting has been defined and MLRA settings configured,
a range of scenarios can be run, tested and their performance assessed. This is done by naming
a validation set in the ’Validation’ module. Each regression model strategy over the configured
ranges are one-by-one analyzed through goodness-of-fit measures and validation results are
stored in a MySQL database. As such, a large number of results can be stored in a systematic
manner, so that they can be easily queried and compared. Validation results are presented in
the ‘MLRA validation table’ (Figure 5.4). The table shows the best performing validation
results according to a selected land cover class (if loaded), parameter and statical goodness-
of-fit measure. Various options to display the results are provided, e.g., 1:1-line, plotting the
band relevance as given by the GPR model, and 2D matrices of performances along ranges of
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FIGURE 5.3: MLRA’s setting window.

noise and varying training/validation distribution (see further in the Results section). Finally,
by clicking on ‘Retrieval’, an analyzed regression function can be selected for each retrievable
parameter (e.g. the best one). Such regression function will be accessed in the ’Retrieval’ GUI
and can then be applied to a remote sensing image.

FIGURE 5.4: MLRA’s validation window.

5.4.3 Retrieval module

The ‘Retrieval’ module enables to run an evaluated model or directly configure a model and
apply it to an image (provided in standard ENVI file format) to map a parameter (Figure 5.5).
Hence, the user can select the required land cover class (if available), the retrievable parameter,
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the regression algorithms and training/validation splitting. Similarly, noise can be added to the
spectra or parameters and the size of the training data can be selected. The user will then be
invited to select one or multiple remote sensing images to which the developed model will be
applied. Generated maps are stored in ENVI format.

FIGURE 5.5: MLRA’s retrieval window.

5.5 Mapping applications

Having the MLRA toolbox presented, it is subsequently applied for evaluating the performance
of the six presented nonparametric regression techniques to achieve optimized biophysical pa-
rameters estimation. Used data is first outlined, followed by the experimental setup. Results are
then presented and a mapping application is shown.

5.5.1 Used data

A diverse field dataset, covering various crop types, growing phases, canopy geometries and soil
conditions was collected during SPARC (Spectra bARrax Campaign). The SPARC-2003 cam-
paign took place during 12-14 July in Barrax, La Mancha, Spain (coordinates 30◦3’N, 28◦6’W,
700 m altitude). Biophysical parameters were measured within a total of 110 Elementary Sam-
pling Units (ESU) among different crops (garlic, alfalfa, onion, sunflower, corn, potato, sugar
beet, vineyard and wheat). ESU refers to a plot size compatible with pixel dimensions of about
20m× 20m. Leaf chlorophyll content (LCC) was derived by measuring within each ESU about
50 samples with a calibrated CCM-200 Chlorophyll Content Meter [Gandía et al., 2004] Green
LAI was derived from canopy measurements made with a LiCor LAI-2000 digital analyser.
Each ESU was assigned to a LAI value, which was obtained as a statistical mean of 24 mea-
sures (8 data readings × 3 replications) with standard errors between 5 and 10% [Fernández
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et al., 2005]. In total LAI varies between 0.4 and 6.3 and LCC between 2 and 55 µg/cm2. Addi-
tionally, 60 random spectra over bare soils, man-made surfaces and water bodies were added to
broaden the dataset to non-vegetation samples (i.e., with a LCC and LAI value of zero), leading
to a total of 170 samples.

During the campaign airborne hyperspectral spaceborne CHRIS images and airborne HyMap
flightlines were acquired. CHRIS provides high spatial resolution hyperspectral data over the
VNIR spectra from 400 to 1050 nm. It can operate in different modes, balancing the number of
spectral bands, size of the covered area and spatial resolution because of on-board memory stor-
age reasons [Barnsley et al., 2004]. We made use of nominal nadir CHRIS observation in Mode
1 (62 bands, maximal spectral information), which were acquired during the SPARC campaign
(12 July 2003). CHRIS Mode 1 has a spatial resolution of 34 m at nadir. The spectral resolu-
tion provides a bandwidth from 6 to 33 nm depending on the wavelength. CHRIS imagery was
processed using ESA’s CHRIS-Box available in VISAT/BEAM, which includes radiometric re-
calibration, coherent-noise reduction, geometric correction and atmospheric correction [Alonso
and Moreno, 2005; Guanter et al., 2005]. HyMap was configured with 125 bands between 430
and 2490 nm with bandwidths varying between 11 and 21 nm and a pixel size of 5 m. The
same geometric and atmospheric preprocessing as for CHRIS was applied, but given a superior
signal-to-noise ratio this sensor provides a better radiometric quality than CHRIS.

5.5.2 Experimental setup

SPARC field data was used for training and validation, and associated spectral data came from
CHRIS and HyMap. In view of ESA’s forthcoming Sentinel-2 (S2) mission, also S2 data at a
spatial resolution of 20 m were additionally generated. S2 satellites capitalize on the technology
and the vast experience acquired with SPOT and Landsat over the past decades. It provides a
set of 13 spectral bands spanning between 443 and 2190 nm, four bands at 10 m, six bands
at 20 m and three bands at 60 m spatial resolution [Drusch et al., 2012]. Because of being
spaceborne and providing similar pixel size, CHRIS data was resampled to the band settings
of S2. Nearest neighbor was used for the spatial resampling and a Gaussian model with full
width at halve maximum (FWHM) spacings was used for spectral resampling. Constrained by
the spectral range of CHRIS, a dataset of eight bands at 20 m (4 bands at 20 m plus 4 bands at
10 m coarse-grained at 20 m) was prepared, hereafter referred as ‘S2-20m’.

The MLRA toolbox was used to evaluate the performance of the different regression algo-
rithms along gradients of changing training/validation distributions (from 5 to 95% training,
with steps of 5%; the remaining data goes to validation) and increasing Gaussian noise levels
(from 0 to 20% with steps of 2%). By systematically evaluating the performance along those
two dimensions in a 2D matrix format, an indication about the robustness of these regression
methods can be obtained. Models were developed both for LCC and LAI. The predictive power
of the developed models was evaluated with the absolute root-mean-squared error (RMSE), the
normalized RMSE (NRMSE [%] = RMSE/ range parameter measurements *100) and the co-
efficient of determination (r2) to account for the goodness-of-fit. Here, validation results are
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presented in the form of NRMSE, which allows accuracy comparison across different parame-
ters. Typically, remote sensing end users require an error threshold below 10%.

5.6 Results

5.6.1 Regression method evaluation

For each parameter, sensor type and regression algorithm, NRMSE results along varying train-
ing/validation distribution and increasing noise levels are presented in 2D matrices (Figure 5.6).
The best performing scenario for each matrix is also shown in Table 5.1. When comparing these
matrices, the following observations can be made.
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FIGURE 5.6: Normalised RMSE (NRMSE) matrices of validation results for LCC and LAI retrieval
using a regression algorithm displaying the impact of % noise (X-axis) against multiple solutions (Y-
axis). The more bluish, the lower relative errors and thus the better the retrieval.
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Starting with principal component regression (PCR), this method proved to perform rather
stable within the matrix space. For S2-20m and CHRIS data, PCR seems to be hardly affected
by a varying training/validation partition and noise injection. In fact, injection of some noise
rather improved accuracies of CHRIS and HyMap. Hence adding noise can lead to a closer
match between training and validation data. However, results were never outstanding, and LCC
prediction with HyMap data completely failed. Only for HyMap LAI results improved to r2 up
to 0.97 when 95% of the data was assigned to the training process. Therefore, on the whole,
PCR is evaluated as suboptimal performing.

Second, the partial least square regression (PLSR) is an improved version of the PCR and
widely used in EO applications. It systematically outperforms PCR in absence of noise. Im-
provements are particularly notable for LCC (r2 up to 0.96 for CHRIS and HyMap). But PLSR
is also more affected by the injection of noise. Low noise levels led to superior results, but
above about 8% accuracies degraded rapidly.

Third, decision trees (DT) yielded on the whole poorest results. Particularly unacceptable
poor results were obtained with low training data, and when many bands are involved. This
suggests that decision trees would not be a good choice for applying to hyperspectral data unless
a large database is available. In fact, only good results were obtained (r2 up to 0.94 (LCC) and
0.97 (LAI)) in case of ‘S2-20m’ (8 bands) when more than 80% was used for training and below
8% noise added.

Fourth, neural networks (NN) are characterized by causing erratic patterns in each of the
matrices. While being able to deliver very accurate results in some cases (e.g. for LAI using
CHRIS and HyMap: r2 up to 0.96 and 0.99) NN also showed to perform rather unstable, with
large probability of delivering poor results. Particularly when more noise is involved and when
less data is dedicated for training NN tends to perform more unstable. This erratic behavior
can be explained by the complicated training phase whereby a highly specialized model is
developed, but therefore easily faces the problem of overfitting. The lack of robustness to noise
along with the complexity in training are therefore major drawbacks of NN.

Fifth, from all evaluated regression algorithms, kernel ridge regression (KRR) yielded most
robust results. It led to excellent accuracies with r2 maxima between 0.94 and 0.99 for all
datasets, and more importantly also proved to perform very stable with increasing noise levels.
Also it should be noted that from all tested nonlinear MLRAs, this regression technique is fastest
in developing their models (see [Verrelst et al., 2012a] for a quantitative comparison).

Finally, Gaussian processes regression (GPR) appears to be the most promising regression
algorithm. It easily leads to excellent performances, with r2 maxima between 0.94 and 0.99 for
all datasets. Though, in comparison to KRR, GPR is somewhat more affected by noise injection.
Note that the predictive mean equations for KRR and GPR are exactly the same so in principle
the results should be exactly identical. Nevertheless, in GPR we used a very flexible kernel to
account for different lengthscales per feature. While beneficial without noise, this turns to be a
curse in these particular experiments because noise affected the marginal likelihood estimation
of hyperparameters. For this reason, it can be concluded that GPR performs slightly less robust
than KRR.
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TABLE 5.1: Validation statistics (noise level (%), training %, RMSE , NRMSE and r2) sorted accord-
ing to best evaluated NRMSE for LCC and LAI retrieval. Best NRMSE result per sensor and biophysical
parameter is bold typed.

Regression algorithm noise (%) training (%) RMSE NRMSE (%) r2

S2
-2

0m
(8

ba
nd

s) L
C

C

Principal component regression 4 65 7.11 13.79 0.87
Partial least square regression 0 85 5.58 10.90 0.92
decision tree 6 90 4.56 8.95 0.94
Neural network 2 95 3.94 7.72 0.96
kernel ridge regression 0 75 3.48 6.82 0.97
Gaussian processes regression 0 90 2.40 4.71 0.98

L
A

I

principal component regression 0 90 0.50 9.30 0.93
partial least square regression 0 90 0.45 8.36 0.95
decision tree 6 85 0.33 6.09 0.97
neural network 0 90 0.39 7.17 0.96
kernel ridge regression 2 90 0.36 6.03 0.98
Gaussian processes regression 0 80 0.38 7.03 0.95

C
H

R
IS

(6
2

ba
nd

s) L
C

C

principal component regression 12 90 5.68 11.14 0.91
partial least square regression 12 95 4.07 7.99 0.96
decision tree 0 55 10.59 20.51 0.71
neural network 0 95 1.94 3.81 0.99
kernel ridge regression 0 85 1.95 3.81 0.99
Gaussian processes regression 0 95 1.06 3.01 0.99

L
A

I

principal component regression 16 85 0.50 9.30 0.92
partial least square regression 4 70 0.46 8.20 0.93
decision tree 6 85 1.05 13.32 0.68
neural network 0 65 0.37 6.50 0.96
kernel ridge regression 0 95 0.25 6.70 0.97
Gaussian processes regression 0 90 0.37 6.88 0.95

H
yM

ap
(1

25
ba

nd
s) L
C

C

principal component regression 16 85 6.48 13.18 0.89
partial least square regression 8 85 3.84 7.82 0.96
decision tree 12 90 2.25 4.69 0.98
neural network 4 95 1.19 3.60 0.99
kernel ridge regression 0 75 2.28 4.64 0.98
Gaussian processes regression 0 80 1.73 3.51 0.99

L
A

I

principal component regression 8 95 0.39 8.26 0.97
partial least square regression 6 70 0.55 8.83 0.88
decision tree 6 85 0.54 10.17 0.88
neural network 2 95 0.23 4.74 0.99
kernel ridge regression 0 60 0.42 6.78 0.94
Gaussian processes regression 0 80 0.30 5.66 0.95

5.6.2 Biophysical parameter mapping

The developed models can be applied to any EO imagery given the same band settings as those
presented during the training phase. From all considered regression techniques, GPR was eval-
uated as reaching highest accuracies for the majority of cases. Moreover, GPR has unique
additional features: (1) it reveals most relevant bands when developing the model; and (2) it
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LCC [µg/cm2] LAI [m2/m2]
µ σ µ σ

FIGURE 5.7: LCC [µg/cm2] and LAI [m2/m2] mean estimates (µ) and associated uncertainties (σ) for
a HyMap flightline over Barrax agricultural area (Spain).

provides uncertainty intervals (σ) associated with the mean predictions (µ). Therefore the con-
secutive approach was to apply GPR to a hyperspectral HyMap imagery for mapping LCC and
LAI estimates along with associated uncertainty intervals (Figure 5.7). In the obtained µ maps,
the irrigated circular agricultural fields are clearly differentiated, including within-field variabil-
ity. In the uncertainty maps, the lower the σ (whiter color) indicate the more certain the retrieval
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as processed by the trained model. The delivery of uncertainty estimates allows us to provide in-
sight on a pixelwise basis when applied to any image and so enables the interpretation at which
land covers retrievals were associated with great certainty and land covers would benefit from
additional sampling. It can be observed that, particularly over the circular agricultural parcels,
LCC were processed with high certainty. This is less obvious for LAI retrievals, however it
should be kept in mind that σ is also related to the magnitude of the mean estimates (µ). For
this reason relative uncertainties (σ/µ) may provide a more meaningful interpretation. These
maps can function as a spatial mask that enables displaying only pixels with great certainty.
Moreover, uncertainty maps can also give information about the portability of the regression
models when applied to images over areas other than the training site [Verrelst et al., 2013a,b].

5.7 Discussion

The hereby presented MLRA toolbox allows evaluating and applying a wide range of regression
techniques in a semiautomatic and user-friendly way. As a case study we applied the MLRA
toolbox to compare six regression algorithms on their performance and robustness along ranges
of varying training/validation distribution and noise variance. These algorithms can be cate-
gorized in either data dimensionality transformations (PCR, PLSR) and nonlinear algorithms
(DT, NN, KRR, GPR). For all used datasets (S2-20m, CHRIS and HyMap) pronounced differ-
entiation in their best performances emerged. While for PCR, PLSR and DT best accuracies
fell within a range of 4.7% to 20.5% (r2: 0.86-0.97) the MLRA algorithms NN, KPR and
GPR yielded higher accuracies, between 3.5% and 7.7% (r2: 0.94-0.99). Hence, each of these
MLRAs reached accuracies below 10%, which is typically demanded in operational products.
These excellent performances can be explained by that MLRAs may find the nonlinear feature
relations by building more flexible and adaptive models than those restricted to linear projec-
tions or regression. The excellent performance of the MLRAs becomes even more apparent
when comparing against other classic retrievals methods. The same validation dataset reached
r2 on the order of 0.85 by using vegetation indices from CHRIS data [Verrelst et al., 2012b], and
r2 up to 0.77 for the same S2-20m bands by using look-up table inversion of the PROSAIL ra-
diative transfer (RT) model through cost functions [Verrelst et al., 2014b]. Moreover, apart from
the here evaluated algorithms, others can be added relatively easily. Meanwhile a wide array of
new MLRAs have already been implemented, among others: support vector regression (SVR),
extreme learning machines (ELM) and variational heteroscedastic Gaussian process regression
(VHGPR) [Camps-Valls et al., 2013; Lazaro-Gredilla et al., 2014].

An urging open question is about evaluating how well these algorithms perform when being
fed by large datasets as generated by canopy RT models. The advantage of RT models is that a
broad range of land cover situations can be simulated (e.g. up to hundred thousands), leading
to a dataset several times bigger than what can be collected during a field campaign. Opera-
tional processing chains typically rely on this hybrid approach [Verger et al., 2008], and similar
strategies could be developed by the ARTMO toolbox. It remains however to be investigated
how well kernel-based MLRAs perform with large datasets. This is not a trivial point. For



5.8 CONCLUSIONS 93

instance, the computational load of the GPR increases exponentially with each added sample,
making that this function faces difficulties when being trained by several thousand (in princi-
ple distinct) samples. Alternatively, dimensionality reduction techniques may largely overcome
the burden of large datasets. Currently, a diversity of linear and nonlinear principal component
analysis (PCA) techniques are being implemented (e.g. kernel PCA) in order apply dimension-
ality reduction. On the other hand, redundancy also takes place along the simulated spectra,
e.g., because not all RTM parameters lead to spectral variations, causing redundancy along the
dataset. Therefore, the emerging field of redundant data reduction is expected to further reduce
the dataset while preserving good performance [Shen et al., 2012; Wang et al., 2012]. The
field is also related to active learning approaches [Tuia et al., 2011]. These dimensionality re-
duction techniques are foreseen to be implemented as well, which will eventually facilitate a
smooth coupling between RTM-generated simulated spectra and powerful MLRAs for generic
and operational retrieval applications.

5.8 Conclusions

ARTMO’s new ‘MLRA toolbox’ enables applying and analyzing the predictive power of vari-
ous MLRAs in a semiautomatic manner. Various regularization options have been implemented
into the toolbox, e.g., training/validation data splitting, adding noise, and regression models
can be developed and evaluated per land cover class. Data can either come from field cam-
paigns or from simulations as generated by radiative transfer models. The predictive power of
multiple nonparametric regression algorithms was evaluated across gradients of varying train-
ing/validation distribution and increasing noise levels. By using the local SPARC dataset and
multispectral simulated sentinel-2 and hyperspectral CHRIS and HyMap imagery over the Bar-
rax (Spain) agricultural area, kernel ridge regression (KRR) and Gaussian processes regression
(GPR) emerged as most robust and best performing regression algorithms (r2 up to 0.94-0.99
and NRMSE down to 7.0-3.0 %). Moreover, GPR provides additional uncertainty estimates on
a pixelwise basis, which provides insight in the performance of the model. In all generality,
the linear nonparametric algorithms such as the popular partial least squares regression (PLSR)
performed systematically poorer than the nonlinear, kernel-based regression algorithms (KRR,
GPR).

The presented experimental results demonstrated the utility of the MLRA toolbox, which
essentially has been developed to serve efficient and optimized surface properties mapping.
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6.1 Abstract

ESA’s upcoming Sentinel-2 (S2) Multispectral Instrument (MSI) foresees to provide continuity
to land monitoring services by relying on optical payload with visible, near infrared and short-
wave infrared sensors with high spectral, spatial and temporal resolution. This unprecedented
data availability leads to an urgent need for developing robust and accurate retrieval methods,
which ideally should provide uncertainty intervals for the predictions. Statistical learning re-
gression algorithms are powerful candidates for the estimation of biophysical parameters from
satellite reflectance measurements because of their ability to perform adaptive, nonlinear data
fitting. In this paper, we focus on a new emerging technique in the field of Bayesian non-
parametric modeling. We exploit Gaussian process regression (GPR) for retrieval, which is an
accurate method that also provides uncertainty intervals along with the mean estimates. This
distinct feature is not shared by other machine learning approaches. In view of implementing
the regressor into operational monitoring applications, here the portability of locally trained
GPR models was evaluated. Experimental data came from the ESA-led field campaign SPARC
(Barrax, Spain). For various simulated S2 configurations (S2-10m, S2-20m and S2-60m) two
important biophysical parameters were estimated: leaf chlorophyll content (LCC) and leaf area
index (LAI). Local evaluation of an extended training dataset with more variation over bare soil
sites led to improved LCC and LAI mapping with reduced uncertainties. GPR reached the 10%
precision required by end users, with for LCC a NRMSE of 3.5-9.2% (r2: 0.95-0.99) and for
LAI a NRMSE of 6.5-7.3% (r2: 0.95-0.96). The developed GPR models were subsequently ap-
plied to simulated Sentinel images over various sites. The associated uncertainty maps proved
to be a good indicator for evaluating the robustness of the retrieval performance. The generally
low uncertainty intervals over vegetated surfaces suggest that the locally trained GPR models
are portable to other sites and conditions.
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6.2 Introduction

Biophysical parameter products such as leaf chlorophyll content (LCC) and leaf area index
(LAI) have become standard products by space agencies and research institutions. At the same
time, proper usage of such products requires that associated uncertainty information needs to
be provided [Buermann et al., 2001; Morisette et al., 2006; Fang et al., 2012]. Two categories
of product uncertainty information are generally available in the literature, either physical or
theoretical [Fang et al., 2012]. Physical uncertainties indicate the departure of product values
from hypothetical true values and are obtained through the collection of ground-based validation
data. Theoretical uncertainties are caused by uncertainties in the input data and model imper-
fections and are usually estimated during the retrieval process [Knyazikhin et al., 1998b; Baret
et al., 2007; Pinty et al., 2011]. Several operationally delivered products are nowadays accom-
panied with theoretical uncertainties in the form of a quantitative quality indicator [Knyazikhin
et al., 1998b; Pinty et al., 2011]. An alternative method was recently proposed in Fang et al.
[2012] where authors apply an independent uncertainty calculation through a triple collocation
method. As such, independently the uncertainties of MODIS, CYCLOPES, and GLOBCAR-
BON LAI products were evaluated. From these products, it was concluded that particularly
CYCLOPES generally meet the quality requirements (±0.5) proposed by the Global Climate
Observing System (GCOS) [GCOS, 2011]. The CYCLOPES algorithm is based on a neural
network (NN) trained from the 1D SAIL radiative transfer model (RTM) [Baret et al., 2007].

While NN have proven robust in various operational processing chains, the retrieval schemes
are far from being perfect and various limitations have been identified. For instance, LAI es-
timates from CYCLOPES are less accurate at higher values due to the saturation effect in the
radiative transfer simulation and the NN inversion algorithm [Bacour et al., 2006; Weiss et al.,
2007]. Furthermore, NN not only behave as a black box model, but they are also relatively
unpredictable when used with input spectra that deviate (even slightly) from what has been
presented during the training stage [Atzberger, 2004; Baret and Buis, 2008]. It is therefore
to be questioned whether NNs offer the most flexible tools for parameter estimation, gaining
insights in the retrievals and evaluating retrieval performances. Besides, training NNs involve
tuning several parameters that may greatly impact the final robustness of the model. For these
reasons, alternatives that overcome these limitations are needed. In part, this is why in the re-
cent years NNs are being replaced by other more advanced, simpler to train, machine learning
regression algorithms (MLRAs). Actually, during the last two decades, the family of kernel
methods [Camps-Valls and Bruzzone, 2009] has emerged as an alternative to NNs in many ap-
plications. Kernel methods typically involve few and intuitive hyperparameters to be tuned, and
can perform flexible input-output nonlinear mappings. They are able to cope with the strong
nonlinearity of the functional dependence between the biophysical parameter and the observed
reflected radiance. Intimately related to the field of kernel methods, here we find the new
emerging field of Bayesian non-parametric modeling. The framework of Bayesian nonparamet-
rics gives a Bayesian treatment of statistical inference. This field has given rise to particularly
powerful methods, such as relevance vector machines and Gaussian processes. These meth-
ods are able to provide high accuracies and at the same time provide uncertainty intervals for
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the predictions [e.g. Camps-Valls et al., 2006; Verrelst et al., 2012b]. They may therefore be
more suitable candidates for operational applications, especially now that Earth observation is
reaching a mature state.

In 2014, the European Space Agency’s (ESA) forthcoming Sentinel-2 (S2) mission will start
delivering high-resolution optical images on a global scale. This unprecedented data availabil-
ity leads to an urgent need for developing robust and accurate retrieval methods. Recently, Ver-
relst et al. [2012a] have tested the capabilities of four state-of-the-art MLRAs given different
Sentinel-2 and Sentinel-3 band settings. Selected MLRAs were NNs, support vector regression,
kernel ridge regression, and Gaussian processes regression (GPR). The methods were compared
in terms of accuracy, goodness of fit, robustness to low sample sized scenarios, and compu-
tational cost. Training and validation data came from the ESA-led field campaign SPARC,
which took place on the agricultural test site Barrax, Spain. The main conclusion of this work
was that, in general, GPR outperformed the other regression algorithms in terms of speed and
computational costs. At the same time, GPR yielded superior accuracies for the majority of
tested cases. Moreover, in contrary to NN, GPR provide directly theoretical uncertainty esti-
mates through Gaussian probability (cf. Section 6.4). These uncertainty estimates opened a new
source of information. For instance, they make possible to assess the robustness of the retrievals
at various spatial scales. In Verrelst et al. [2013a], retrievals from hyperspectral airborne and
spaceborne data over the Barrax area were compared. In this way, the uncertainty measure pro-
vided information about the upscaling quality, i.e., if the uncertainties are kept constant then
the upscaling can be considered stable. Even though retrievals proved to be robust over vege-
tated areas, high uncertainties appeared over non-vegetated surfaces, which suggested that the
training dataset was not representative enough for those land cover types. Furthermore, since
statistical approaches are often criticized because of limited generalization and transferability
[e.g. Colombo et al., 2003; Meroni et al., 2004], it remains to be questioned how robust the
locally-trained GPR models function when applied to other sites and conditions. In this respect,
the delivery of additional uncertainty estimates may enable to evaluate the portability of the re-
gression model. Specifically, when uncertainty intervals as produced by a locally trained GPR
model over an arbitrary site are on the same order as those produced over the successfully vali-
dated reference site, then it can be reasonably assumed that the parameter retrievals are also of
the same quality as the retrievals of the reference site. Thus, when successfully validated over a
reference imagery then the uncertainty estimates can work as a quality indicator. This concept
has been evaluated here, and brings us to the following specific objectives of the present paper:
(1) to evaluate the impact of experimental training data on the development of GPR models,
particularly in view of improved retrievals over non-vegetated surfaces, and (2) to evaluate the
portability of a locally trained GPR model to other sites and conditions by making use of its
associated uncertainty intervals.

The remainder of the paper is organized as follows. Section 6.3 briefly describes the
Sentinel-2 concept, while section 6.4 revises the Bayesian nonparametric field in general and
the Gaussian process regression algorithm in particular. In the methodology (section 6.5) the
used training dataset, experimental Sentinel-2 images, and experimental setup are described.
Results focus first on a local evaluation of the GPR models (section 6.6.2) and then moves to
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the evaluation of algorithm’s performance on other sites (section 6.6.3). Section 6.7 discusses
main findings and section 6.8 concludes the paper.

6.3 Sentinel-2

ESA’s S2 satellites capitalize on the technology and the vast experience acquired with SPOT
and Landsat over the past decades [Drusch et al., 2012]. S2 is a polar-orbiting, superspectral
high-resolution imaging mission. The mission is envisaged to fly a pair of satellites with the
first planned to launch in 2014. Each S2 satellite carries a Multi-Spectral Imager (MSI) with a
swath of 290 km. It provides a versatile set of 13 spectral bands spanning from the visible and
near infrared (VNIR) to the shortwave infrared (SWIR), featuring four bands at 10 m, six bands
at 20 m and three bands at 60 m spatial resolution (Table 6.1). S2 incorporates three new bands
in the red-edge region, which are centered at 705, 740 and 783 nm. The pair of S2 satellites
aims to deliver data taken over all land surfaces and coastal zones every five days under cloud-
free conditions, and typically every 15-30 days considering the presence of clouds. To serve
the objectives of Copernicus (The European Earth Observation Programme), S2 satellites will
provide data for the generation of high-level operational products (level 2b/3) such as land-cover
and land-change detection maps and geophysical variables such as LCC, LAI and leaf water
content maps. To ensure that the final products can meet user requirements, the Copernicus
user committee defined an accuracy goal of 10% [Drusch et al., 2012].

TABLE 6.1: Sentinel-2 MSI band settings.

Band # B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12
Band center (nm) 443 490 560 665 705 740 783 842 865 945 1375 1610 2190
Band width (nm) 20 65 35 30 15 15 20 115 20 20 30 90 180
Spatial resolution (m) 60 10 10 10 20 20 20 10 20 60 60 20 20

6.4 Bayesian nonparametrics and Gaussian processes

Finding a functional relation between input (e.g. reflectances) and ouput (e.g. physical pa-
rameter) variables is the main goal of statistical learning. The problem is complex and elusive
because possibly an infinite number of functions can be found to fit the data. This problem
is known as the excess of capacity of the class of functions implementing the model, and has
been referred to the problem of overfitting. The key is to constrain model’s capacity, in either
one of the following two ways: imposing strong prior knowledge or via regularization schemes
that promote simpler solutions. In the last decades, statistical learning (inference) has wit-
nessed an overwhelming interest in kernel methods because they implement nonlinear models
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and still rely on linear algebra operations [Camps-Valls and Bruzzone, 2009]. Kernel meth-
ods are very appealing for physical parameter retrieval, mainly because they deal efficiently
with low-sized datasets of potentially high dimensionality, which are the situations we find in
parameter retrieval from multispectral or hyperspectral imagery using models trained by field
campaign data. Also, since kernel methods do not assume an explicit prior data distribution but
are inherently non-parametric models, they cope well with remote sensing data specificities and
complexities [Camps-Valls and Bruzzone, 2009].

In the context of statistical inference and for remote sensing products, one is not solely in-
terested in high accuracies of the algorithm but also in producing uncertainty intervals for the
predictions. This calls for a Bayesian treatment of the inference problem. While recently kernel
methods have advanced the field of remote sensing data analysis [Camps-Valls and Bruzzone,
2009], the problem of uncertainty estimation with nonparametric models has been elusive in
most of the approaches. In this context, the emerging field of non-parametric Bayesian mod-
eling constitutes a proper theoretical framework to tackle the problem of physical parameter
retrieval [O’Hagan, 1994; Rasmussen and Williams, 2006b; Orbanz and Teh, 2010]1. Essen-
tially, a nonparametric Bayesian model is a Bayesian model on an infinite-dimensional param-
eter space, which corresponds to the set of possible patterns, e.g. the class of smooth functions
for regression (retrieval). The field has been very active in the last decade, and has delivered
successful model instantiations. Some of them has been actually introduced in the field of
remote sensing data analysis. For example, the relevance vector machine (RVM) introduced
in Tipping [2001] is a nonparametric Bayesian model that assumes a Gaussian prior over the
weights in order to enforce sparsity, and uses expectation-maximization to infer the parameters.
In Camps-Valls et al. [2006] the RVM model was used for oceanic chlorophyll content estima-
tion. The model, however, may incur in too sparse solutions that do not fit well in parts of the
space not considered in the retained relevant vectors. Lately, Bayesian nonparametric modeling
with Gaussian Processes [Rasmussen and Williams, 2006b] have received much attention in
the field of machine learning, and has been also introduced in the remote sensing application
field [Verrelst et al., 2012b,a, 2013a]. This paper will focus on GPR.

GPR provides a probabilistic (Bayesian) approach for learning generic regression problems
with kernels [Rasmussen and Williams, 2006b]. The GPR model establishes a relation between
the input (B-bands spectra) x ∈ RB and the output variable (canopy parameter) y ∈ R of the
form:

ŷ = f (x) =
N

∑
i=1

αiK(xi, x), (6.1)

where {xi}N
i=1 are the spectra used in the training phase, αi ∈ R is the weight assigned to each

one of them, and K is a function evaluating the similarity between the test spectrum x and all N

1Excellent online lectures on Bayesian nonparametrics are available at:
http://videolectures.net/mlss09uk_teh_nbm/ and
http://videolectures.net/mlss09uk_orbanz_fnbm/
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training spectra, xi, i = 1, . . . , N. We used a scaled Gaussian kernel function,

K(xi, xj) = ν exp
(
−

B

∑
b=1

(x(b)i − x(b)j )
2

2σ2
b

)
+ δij · σ2

n, (6.2)

where ν is a scaling factor, B is the number of bands, σb is a dedicated parameter controlling
the spread of the relations for each particular spectral band b, σn is the noise standard deviation
and δij is the Kronecker’s symbol. The kernel is thus parametrized by signal (ν, σb) and noise
(σn) hyperparameters, collectively denoted as θ = {ν, σb, σn}.

For training purposes, we assume that the observed variable is formed by noisy observations
of the true underlying function y = f (x) + ε. Moreover we assume the noise to be additive
independently identically Gaussian distributed with zero mean and variance σn. Let us define
the stacked output values y = (y1, . . . , yn)>, the covariance terms of the test point k∗ =
(k(x∗, x1), . . . , k(x∗, xn))>, and k∗∗ = k(x∗, x∗). From the previous model assumption, the
output values are distributed according to:

(
y

f (x∗)

)
∼ N

(
0,
(

K + σ2
nI k∗

k>∗ k∗∗

))
(6.3)

For prediction purposes, the GPR is obtained by computing the posterior distribution over
the unknown output y∗, p(y∗|x∗,D), where D ≡ {xn, yn|n = 1, . . . , N} is the training
dataset. Interestingly, this posterior can be shown to be a Gaussian distribution, p(y∗|x∗,D) =
N (y∗|µGP∗, σ2

GP∗), for which one can estimate the predictive mean (point-wise predictions):

µGP∗ = k>∗ (K + σ2
nI)−1y, (6.4)

and the predictive variance (confidence intervals):

σ2
GP∗ = k∗∗ − k>∗ (K + σ2

nI)−1k∗. (6.5)

The corresponding hyperparameters θ are typically selected by Type-II Maximum Likelihood,
using the marginal likelihood (also called evidence) of the observations, which is also analytical.
When the derivatives of the log-evidence are also analytical, which is often the case, conjugated
gradient ascent is typically used for optimization (see [Rasmussen and Williams, 2006b; Camps-
Valls et al., 2009] for further details).

Three important properties of the method are worth stressing here. First, the obtained
weights αi after optimization gives the relevance of each spectrum xi. The predictive mean
is essentially a weighted average of the canopy parameter values associated to the training sam-
ples closest to the test sample. Second, the inverse of σb represents the relevance of band b.
Intuitively, high values of σb mean that relations largely extend along that band hence sug-
gesting a lower informative content. These features have been extensively studied in [Ver-
relst et al., 2012b,a] and proved to be valuable for gaining insight in relevant bands. Fi-
nally, a GPR model provides not only a pixelwise prediction for each spectrum but also an
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uncertainty (or confidence) level for the prediction. Hence in contrary to other approaches
(e.g. NN) uncertainty intervals are directly delivered along with mean estimates. The in-
terested reader is referred to the book by Rasmussen and Williams [2006b] for more details
on the theoretical aspects of GPR. A Matlab implementation of GPR is freely available at
http://www.gaussianprocess.org/gpml/.

We illustrate the uncertainty intervals estimated by GPR and through standard boostrap-
ping [Wu, 1986] of the nonlinear regression solution in Figure 6.1. Note that GPR basically
accounts for a reduction of uncertainty based on the relative local density of the input data
points, not the outputs. This is obvious by looking at the predictive variance equation above.
On the other hand, the variance of the bootstrap variance estimate quickly vanishes if one moves
away from data points in the set. This behavior correctly reflects the fact that the predictions
will be practically zero far away from points in the training sets. Gaussian processes indicate
that the uncertainty is high because no data has been observed in that area.

FIGURE 6.1: Toy regression example in 1-D: we predict the y-values from the x-values in a synthetic
signal generated by a combination of Gaussian bumps. We show the predictive variance or confidence
interval estimates via bootstrap variance estimates (left), and Gaussian process regression (right).

6.5 Methodology

6.5.1 SPARC database

GPR has been trained with a local ground dataset coming from SPARC (SPectra bARrax Cam-
paign). The SPARC-2003 and SPARC-2004 campaigns took place in the Barrax agricultural
site in Central Spain (coordinates 39◦N, -2◦1’E, 700 m altitude). The test area has a rectangular
form and an extent of 5 km × 10 km, and is characterized by a flat morphology and large,
uniform land-use units. The region consists of approximately 65% dry land and 35% irrigated
land, mainly by center pivot irrigation systems. It leads to a patchy landscape with large circular
fields. The annual rainfall average is about 400 mm.
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In the 2003 campaign (12-14 July) biophysical parameters were measured within a total of
113 Elementary Sampling Units (ESU) among different crops. ESU refers to a plot size of about
202 m. The same field data were collected in the 2004 campaign (15-16 July) within a total of
18 ESUs among different crops. For both years, within each ESU the averaged leaf LCC was
derived by measuring about 50 samples with a calibrated CCM-200 Chlorophyll Content Me-
ter. Green LAI was derived from canopy measurements made with a LiCor LAI-2000 digital
analyzer. Each ESU was assigned to a LAI value, which was obtained by the average of 24
measures (8 data readings × 3 replications). In total 9 crop types (garlic, alfalfa, onion, sun-
flower, corn, potato, sugar beet, vineyard and wheat) were sampled, with field-measured values
of LAI that vary between 0.4 and 6.3 and LCC between 2 and 55 µg/cm2. Further details on
the measurements can be found in the data acquisition report [Moreno and participants of the
SPARC campaigns, 2004]. Additionally, 30 random bare soil spectra with a biophysical (LCC,
LAI) value of zero were added to broaden the dataset to non-vegetated samples. This ‘original’
dataset used in Verrelst et al. [2012b,a, 2014b] in training GPR models and hereafter refers to
‘training original’ or ‘TrOr’.

In the latter studies, the GPR uncertainty maps showed that mean estimates over vegetated
areas were associated to low uncertainties. At the same time, considerably higher uncertainties
were encountered over areas of fallow land and bare soils. These higher uncertainties can be
attributed to the relatively poor contribution of non-vegetated land cover types in the training
dataset. For this reason, we have extended the SPARC training dataset with 60 new spectra that
cover all kinds of non-vegetated surfaces, i.e. spectra with an LCC and LAI of zero. Most of
the spectra were taken over bare soil surfaces, but also man-made surfaces (e.g., build-up areas,
roads) and water bodies have been included. This ‘extended’ training dataset hereafter refers to
‘training extended’ or ‘TrEx’.

6.5.2 Reference and other simulated Sentinel-2 images

Because actual S2 data is not available yet, we opted for simulating it on the basis of Compact
High Resolution Imaging Spectrometry (CHRIS) data. CHRIS provides high spatial resolution
hyperspectral data over the VNIR spectra from 400 to 1050 nm. It can operate in different
modes, balancing the number of spectral bands, site of the covered area and spatial resolution
because of on-board memory storage reasons. The radiometric resolution of CHRIS is 12 bits,
which is the same as S2’s MSI. We made use of nominal nadir CHRIS observations in Mode
1 (62 bands, maximal spectral information) for the four SPARC campaign days, where field
measurements of surface properties were measured in conjunction with satellite overpasses.
CHRIS Mode 1 has a spatial resolution of 34 m at nadir. The spectral resolution provides a
bandwidth from 5.6 to 33 nm depending on the wavelength. The images were corrected for
atmospheric effects according to the method proposed in Guanter et al. [2005]. Since most
of ground truth data were collected during the 2003 campaign, the nadir image from 14 July
2003 was used as reference image for spectral and spatial resampling to the settings of S2. The
image is shown in Figure 6.2. The majority of ESUs are located on the circular green fields,
while non-vegetated samples came from the yellowish-white surfaces. Because configured with



104 GPR UNCERTAINTY ESTIMATES MAPPING

different pixel sizes (10, 20 and 60 m), it is of special interest to simulate S2 bands as a function
of pixel’s size. A nearest neighbor strategy was used for the spatial resampling and a Gaussian
model with full-width-half-maximum spacings was used for spectral resampling. Constrained
by the spectral range of CHRIS, experimental data according to the following three Sentinel
settings were generated, ‘S2-10m’: four bands at 10 m, ‘S2-20m’: eight bands at 20 m (4 bands
at 20 m plus the S2-10m bands coarse-grained at 20 m), and ‘S2-60m’: ten bands at 60 m (2
bands at 60 m plus the earlier bands coarse-grained at 60 m).

Since the objective of this work was to evaluate the ability of transferring Barrax-trained
GPR models for the various Sentinel settings to other images, multiple Mode 1 CHRIS images
over terrestrial surfaces were arbitrarily collected. The only requirement was that they are pre-
dominantly cloud-free and acquired during spring or summertime. The CHRIS images include:
multi-temporal images over Barrax (Spain); July 2004, and June 2009. Multitemporal images
over Demmin (Germany), May and July 2006, and an image over Los Monegros (Spain), Au-
gust 2006, Las Tablas (Spain), July 2006 and Sudbury (Canada), August 2007. These sites are
described in Table 6.2. All these CHRIS images were corrected for atmospheric effects accord-
ing to Guanter et al. [2005]. A cloud masking over the Sudbury image was applied to remove
the pixels with cloud contamination. Although not really necessary for this exercise, the Barrax
images were also geometrically corrected according to Alonso and Moreno [2005]. The images
were subsequently resampled according to above-described Sentinel settings (S2-10m, S2-20m
and S2-60m). The images are displayed in Figure 6.2.

TABLE 6.2: Description of test sites.

Site Acquisition time Description
Barrax, Spain (39◦N, -2◦E) 14 July 03 The Barrax agricultural area has a rectangular form and an extent of 5 km× 10 km, and is

characterized by a flat morphology and large, uniform land-use units. The region consists
of approximately 65% dry land and 35% irrigated land, mainly by center pivot irrigation
systems. It leads to a patchy landscape with large circular fields. The annual rainfall
average is about 400 mm.

Barrax, Spain (39◦N, -2◦E) 16 July 04
Barrax, Spain (39◦N, -2◦E) 19 June 09

Demmin, Germany (53.5◦N,
-13.1◦E)

08 May 06 The Demmin agricultural area is located in Northeast Germany and is based on a group of
farms covering app. 25000 ha. The surface is flat at 50 m a.s.l. with some slopes along the
Tollense River. The field sizes are large in this area for German standards, about 80-250
ha. The main crops grown are wheat, barley, rape, maize and sugar. The annual rainfall
ranges from 500 to 650 nm.

Demmin, Germany (53.5◦N,
-13.1◦E)

07 July 06

Monegros, Spain (41.2◦N, -
0.1◦1’E)

20 Aug 05 Los Monegros area is a semi-arid region, sparse vegetation and shallow as well as poorly
developed soils. Agricultural activities are poor and may trigger land degradation pro-
cesses. The area is characterized by various small playa lakes. These lakes form in small
karstic depression by the dissolution of evaporitic subsurface layers, mainly gypsum and
limestone. The playa lakes are usually dry in summer. The annual rainfall average is low,
about 350 mm.

Las Tablas, Spain (39.1◦N, -
3.4◦E)

03 July 06 Las Tablas de Daimiel is a Complex of shallow pools and associated marshland, which lies
in the great plain of La Mancha. The surface is flat at 600-620 m a.s.l. The site receives
floodwater from the permanent freshwater Río Guadiana and the seasonal brackish Río
Gigüela, and groundwater from an underground water basin. The surrounding area is
used for rain-fed agriculture, mainly olives and wine yards. The annual average rainfall
is about 450 mm.

Sudbury, Canada (47.1◦N, -
81.4◦E)

10 August 07 Sudbury is a boreal forested region located in the northern part of Ontario. It is a flat area
350 m a.s.l. The area is predominantly covered by black spruce and aspen stands with an
understory of shrubs and herbs. The annual rainfall average is about 820 mm.
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Barrax July 03 Barrax July 04 Barrax June 09 Demmin May 06

Demmin July 06 Monegros Aug 04 Las Tablas July 06 Sudbury August 07

FIGURE 6.2: RGB compositions of CHRIS images used for evaluating the performance of the locally-
trained GPR models. Barrax July 03 is the reference image.

6.5.3 Experimental setup

The local TrOr and TrEx experimental datasets were divided into two subsets: 80% for training
and the remaining 20% for validation. The subsequent undertaken approach was straightfor-
ward; for each biophysical parameter (LCC, LAI) and each S2 configuration (S2-10m, S2-20m,
S2-60m) a TrOr and TrEx model were trained. The predictive power of the developed models
was subsequently validated against the 20% validation data by using the absolute root-mean-
squared error (RMSE) and the normalized RMSE (NRMSE [%] = RMSE / range of the pa-
rameters as measured in the field *100) to assess accuracy, and the coefficient of determination
(r2) to account for the goodness-of-fit. The NRMSE was used to compare the performances
across the different methods and parameters. Once successfully validated, the TrOr- and TrEx-
developed models were applied to the other experimental S2 images and the mean estimates
and associated uncertainties were compared. To preserve a physical meaning, negative LCC or
LAI estimates were automatically converted to near-zero values (0.0001) during the retrieval
process.
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6.6 Results

6.6.1 GPR performance with original and extended training dataset

The evaluation of the TrOr- and TrEx-developed GPR models starts with inspection of the
validation results (Table 6.3). Excellent prediction accuracies were obtained for all scenarios
with a r2 between 0.92 and 0.99 and NRMSE between 3.5 and 10.5%. Noteworthy hereby
is that excellent LAI accuracies were already achieved with only 4 bands (S2-10m). This is
encouraging for LAI mapping at high spatial resolution. The inclusion of more bands only
improved accuracies marginally. Conversely, LCC clearly gained from the inclusion of extra
bands, with a S2-20m configuration (8 bands: B2-B8a) that managed to reach NRMSE down
to 3.5% (r2: 0.99). It is well known that the inclusion of red-edge bands (B5 and B6) can
considerably improve biophysical parameter estimation [e.g. Delegido et al., 2011; Verrelst
et al., 2012a; Delegido et al., 2013]. However, the addition of 2 more bands in the blue (B1)
and NIR (B9) at a coarser resolution of 60 m (S2-60m) slightly degraded accuracies.

Of more relevance here is the comparison of validation results as achieved by using models
developed using TrOr and TrEx. It can be noticed that TrEx yielded slightly improved results.
This is especially the case for LAI, where for all S2 scenarios NRMSE dropped with about 2%.
Hence, the GPR model is able to incorporate more samples without losing accuracy. In fact the
contrary occurred; for all S2 configurations, the NRMSE kept below the threshold of 10%.

Even though successfully validated, it is well understood that a validation dataset is rather
limited as compared to the total variability observed in satellite images. Therefore, it is expected
that inspection of the mean estimate and associated uncertainty maps on complete scenes will
allow us to better understand the performances of both GPR models.

TABLE 6.3: Validation statistics (r2, absolute RMSE and NRMSE (%)) for the Sentinel configurations
and the parameters using TrOr- and TrEx-developed GPR models.

r2 abs. RMSE NRMSE (%)
Parameter TrOr TrEx TrOr TrEx TrOr TrEx
S2-10m:
LCC 0.931 0.949 5.36 4.70 10.50 9.21
LAI 0.910 0.948 0.51 0.39 9.37 7.28
S2-20m:
LCC 0.991 0.993 1.92 1.77 3.76 3.48
LAI 0.916 0.958 0.49 0.35 9.09 6.51
S2-60m:
LCC 0.977 0.993 2.37 1.81 6.49 3.55
LAI 0.934 0.959 0.29 0.36 8.42 6.63
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FIGURE 6.3: Mean estimate (µ) and associated uncertainty (±σ) maps for LCC and LAI as generated
by the original training dataset (TrOr) [top], and extended training dataset (TrEx) [middle]. Scatterplots
are shown below.

6.6.2 Local mapping over Barrax, Spain

Although LCC and LAI maps were generated for all S2 settings from the 2003 Barrax reference
site, for the sake of brevity we only display generated maps at a high spatial resolution of 10
m. In turn the maps will allows us to appreciate the strength of GPR. Biophysical parameter
retrieval was thus achieved with 4 bands only: 490, 560, 665 and 842 nm. The retrieval process
was completely automated and image-based; the generation of a map was completed almost
instantaneously.

Figure 6.3[top] provides mean estimate (µ) maps and associated uncertainties (±σ) over the
Barrax test site as generated by the original training dataset (TrOr). The mean estimate maps
are first briefly interpreted. Within-field variations are clearly detected in both maps. Particu-
larly, the pronounced spatial variation of LCC marks prominently the irrigated circular fields
with green biomass. These irrigated fields are characterized by an LCC above 40, and an LAI
above 3. Areas with low LCC and LAI (the whitish parts) are mainly bare soils, fallow lands
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or rain-fed senescent or harvested cereal fields (wheat, barley). The same maps are provided
below, but then generated by the extended training dataset (TrEx). When comparing TrOr-
and TrEx-generated LCC maps it can be observed that they are very similar. That similarity
is also reflected when correlating both maps in a scatter plot, as displayed below. The large
majority of the pixels fall right on the 1:1-line. In turn, more differences between TrOr- and
TrEx-generated LAI maps occurred over non-green vegetated areas (e.g. fallow land and bare
soils). The addition of bare soil spectra in the training dataset led thus to more meaningful LAI
retrievals for a considerably amount of pixels, as was also observed by the validation dataset in
Table 6.3. The scatter plot shows that the TrEx-developed LAI model causes that a substantial
part of pixels are interpreted towards lower LAI estimates. While this may imply an improved
accuracy, the associated uncertainty intervals will manifest the quality of the estimates.

Within these uncertainty maps, areas with reliable retrievals can be clearly distinguished
from areas with unreliable retrievals. These differences are more obviously observed in the
TrOr-generated maps. Reliable retrievals (low±σ) were found on irrigated areas and harvested
fields. This is not surprising since the majority of training and validation samples came from
these fields. Unreliable retrievals (high ±σ) were found on areas with remarkably different
spectra, such as bright, whitish calcareous soils (center, right), or harvested rain-fed barley
fields with remaining bright straws covering the surface (center). Hence, as earlier noticed
in Verrelst et al. [2012b,a], a practical implication of the uncertainty maps is the detection of
areas that may benefit from a denser ground truth sampling regime. That was also the rationale
for the collection of an extended training dataset over non-vegetated targets (i.e. TrEx). For
both biophysical parameters, TrEx resulted in reduced uncertainties across the whole map (see
also statistics in Table 6.4), and regions with large uncertainties have been considerably reduced.
That trend is again visualized by the scatter plots displayed down Figure 6.3; the majority of
pixels fall below the 1:1-line. Consequently, the extended training dataset demonstrated its
superiority; it was validated with high accuracy, yielded realistic LCC and LAI maps, and these
maps were delivered with lower uncertainties.

TABLE 6.4: Overview statistics (mean (x) and standard deviation (SD)) for LCC and LAI µ (mean
prediction) and±σ (associated uncertainty) maps as retrieved by TrOr- and TrEx-developed GPR mod-
els. ‘Barrax July 03’ is the reference image.

µ LCC ±σ LCC µ LAI ±σ LAI
TrOr TrEx TrOr TrEx TrOr TrEx TrOr TrEx

Image x (SD) x (SD) x (SD) x (SD) x (SD) x (SD) x (SD) x (SD)
Barrax July 03 7.71 (14.89) 7.54 (14.76) 5.53 (1.04) 4.75 (0.41) 1.21 (1.00) 0.82 (0.89) 0.58 (0.26) 0.51 (0.13)
Barrax July 04 9.48 (14.75) 9.22 (14.54) 5.50 (1.03) 4.75 (0.39) 1.37 (1.02) 1.13 (0.91) 0.60 (0.32) 0.51 (0.14)
Barrax June 09 12.44 (11.34) 10.66 (11.49) 6.10 (1.39) 4.98 (0.51) 0.91 (0.99) 0.73 (1.07) 0.73 (0.32) 0.73 (0.32)
Demmin May 06 25.38 (18.35) 24.31 (18.61) 5.75 (0.50) 5.00 (0.25) 2.37 (0.96) 1.70 (1.02) 0.66 (0.19) 0.59 (0.09)
Demmin July 06 26.60 (11.08) 25.69 (11.78) 5.53 (0.23) 4.93 (0.14) 1.85 (0.65) 1.37 (0.58) 0.55 (0.08) 0.55 (0.06)
Monegros Aug 05 2.16 (7.24) 2.42 (6.95) 7.22 (2.05) 4.96 (0.27) 1.81 (1.24) 0.24 (0.46) 1.44 (0.88) 0.67 (0.21)
Las Tablas July 06 7.99 (7.61) 7.42 (7.12) 5.67 (0.88) 4.78 (0.19 0.66 (0.83) 0.24 (0.38) 0.65 (0.35) 0.55 (0.11))
Sudbury Aug 07 6.92 (4.67) 3.65 (4.71) 8.30 (1.40) 5.97 (0.47) 2.32 (0.27) 0.63 (0.44) 1.80 (0.52) 0.96 (0.23)
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FIGURE 6.4: Scatterplots of maps generated by original training datasets (TrOr) vs. extended training
dataset (TrEx) for µ LCC [top], ±σ LCC [below], µ LCC [below] and ±σ LAI [bottom].

6.6.3 Evaluating portability GPR models to other experimental S2 images
by inspecting scatterplots

Even though promising results have been obtained over the reference Barrax site, a key require-
ment for operational applications is to ensure that GPR models are portable to other regions
with similar accuracy. Henceforth, the TrOr- and TrEx-developed GPR models were applied
to simulated S2 images over various sites in Spain, Germany and Canada. Mean estimate and
uncertainty TrOr and TrEx maps were generated and again correlated. Scatter plots are dis-
played in Figure 6.4. Some interesting observations can be made from these scatter plots. For
all tested images, LCC mean estimates fell right on the 1:1-line. It confirms the earlier observed
trend that the extended training dataset did not lead to erratic LCC predictions. But also the
scatter plots of the uncertainty estimates confirms the earlier observed systematic trend; for all
images the TrEx-developed models yielded a systematic decrease in uncertainty, e.g. LCC ±σ

hardly reached above 10 µg/cm2.

Also with respect to LAI estimates, we observed the same pattern encountered in the refer-
ence image, i.e. the majority of TrEx-processed pixels largely follows the 1:1-line. However,
a considerable amount of pixels tended to deviate towards lower estimates. While this trend
appeared only slightly over Barrax and Demmin, the down-estimating occurred strongly over
the scarcely vegetated areas of Los Monegros and Las Tablas. Also over Sudbury (Canada),
LAI values were underestimated despite being dominated by vegetated surfaces. But most im-
portant is that, for all images, a significant and systematic decrease in uncertainties took place.
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Particularly those areas that earlier suffered from large uncertainties were now predicted with
more certainty.

Overview statistics (mean and standard deviation) for prediction and uncertainty maps are
provided in Table 6.4. With regard to portability evaluation, special attention goes to the mean
uncertainty statistics along the different images. For both GPR models and LCC and LAI maps
uncertainty statistics turned to be almost as good as the reference image. It can thus be con-
cluded that the locally trained GPR model is generally applicable to other sites, thereby reaching
uncertainties on the same order of the Barrax 2003 reference site. Only the Sudbury data was
processed with considerably less certainty. Moreover, for all images, mean uncertainties have
been considerably reduced when comparing TrEx with TrOr. Summarizing, the portability of
the extended training dataset (TrEx) model has been successfully evaluated as mean uncertain-
ties stabilized to about the same level as the reference Barrax image.

6.6.4 S2-10m biophysical parameter mapping

In this section we pay attention to the TrEx-generated maps, see Figure 6.5. A first obser-
vation across the different sites is that LCC and LAI estimations fall within expected ranges.
Variations in land cover are clearly observable and non-vegetated surfaces can be easily distin-
guished from vegetated surfaces. A second observation is that for most of the sites uncertainty
maps show rather low values in general. Nevertheless, noticeable within-image variations are
still occurring, particularly for LAI over the Barrax 2009 image. Only for Sudbury (Canada)
systematically greater uncertainties appeared. Here a suboptimal atmospheric correction may
explain the poorer performance.

While the uncertainty maps provide some information about the robustness of the retrievals,
one has nevertheless to be careful with its interpretation. Note that ±σ represents the uncer-
tainty interval around the mean predictions, meaning that they need to be interpreted in relation
to the estimates. For instance, an LCC uncertainty interval of about 5 would be more problem-
atic for a mean estimate of 5 µg/cm2 than of 50 µg/cm2. Therefore, to evaluate the robustness
of the GPR models it requires calculating the coefficient of variation:

CV =
σ

µ
∗ 100. (6.6)

CV maps provide relative uncertainties and are displayed in Figure 6.6. These maps can then be
evaluated against an uncertainty threshold, e.g. as proposed by GCOS, i.e. 20% [GCOS, 2011].
Considering the reference Barrax image, dark areas represent retrievals with high uncertainties.
These are typically bare soil areas which are characterized by low estimates (close to zero)
and a relative high ±σ. Conversely, it can be observed that most reliable retrievals occurred
on the irrigated agricultural sites. However, only 9.0% of the pixels fell below the GCOS’s
20% threshold. This low number seems surprising because the map was earlier excellently
validated. It underlines the limited meaning of a (sparse) validation dataset when inspecting a
heterogeneous map as a whole.
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FIGURE 6.5: GPR mean estimation (µ) and uncertainty (±σ) maps for LCC and LAI, for the config-
urations of S2-10m, S2-20m, S2-60m and S3-300m.

When comparing the CV maps across the different sites it can be observed that particularly
over the agricultural areas meaningful estimates were obtained. For instance, the July 2006
Demmin LCC map is processed with low uncertainty over the whole image; 53.5% of pixels fell
below the 20% threshold, and 75.6% below the 30% threshold. Also here agricultural parcels
were processed with low uncertainty. Only non-vegetated surfaces such as water bodies are
flagged with a high relative uncertainty. Spurious relative uncertainties are also observed across
the Los Monegros and Las Tablas sites where bare soil dominate. With TrEx it was attempted
to account for these bare soils, but due to near-zero mean estimates (0.0001) and, although ±σ

is reduced, they still fall above near-zero threshold. CV turned therefore above 100%. Note that
these relative uncertainty maps suggest that, at 10 m resolution, there is a greater problem of
portability within an image than to other images. Solely the Sudbury maps show systematically
higher relative uncertainties. This is probably due to the more difficult atmospheric correction
as a consequence of cloud cover and lower sunlight intensity. The Sudbury case underlines
the importance of an accurate and consistent atmospheric correction processing chain, which is
expected to be provided by ESA (Level 2A Product). From a practical perspective, the CV map
serves as a useful quality layer that allows masking out biophysical parameters estimates within
an acceptable uncertainty (e.g. CV <20%), and at the same time can mask out non-vegetated
surfaces (e.g. CV >100%).
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FIGURE 6.6: GPR coefficient of variation (CV) maps for LCC and LAI, for S2-10m configuration.

6.7 Discussion

The forthcoming S2 mission opens opportunities to implement novel retrieval algorithms in op-
erational processing chains. The interest is put on retrieval algorithms that are accurate, fast,
robust, and sufficiently flexible to make fully use of the new S2 MSI bands. Machine learning
regression algorithms (MLRAs) are able to cope with most of these objectives. In an earlier
work, GPR was evaluated as a very promising regressor in terms of processing speed and ac-
curacy when using a local training dataset [Verrelst et al., 2012a]. At the same time, GPR is
transparent in terms of model development [Rasmussen and Williams, 2006b]; it may provide
a ranking of features (bands) and samples (spectra), thus alleviating the black-box problem. A
discussion on its performance in comparison to alternative state-of-the-art retrieval approaches
presented literature was provided in Verrelst et al. [2012b,a]. In short, in a local setting GPR
reached accuracies with S2 MSI band settings comparable (LAI) or superior (LCC) to competi-
tive approaches. Nevertheless, the portability of this statistical approach to other sites remained
questionable.

The here presented extended experimental training dataset (TrEx) not only further improved
performances but also allowed a decrease in theoretical uncertainties. This proof of concept un-
derlines the importance of a broad and diverse training dataset. More importantly, the GPR
models were successfully applied to simulated S2 images covering various sites; associated
uncertainties were on the same order as those generated by the reference image. The S2-10m
examples demonstrated that excellent retrievals can be achieved already with 4 bands at a high
spatial resolution of 10 m. Specifically, over fully vegetated surfaces relative uncertainties fell
below the 20% requirements proposed by GCOS. This is encouraging for processing data from
broadband sensors with a limited number of bands such as SPOT and Landsat or high resolu-
tion image such as Ikonos and Quickbird. On the other hand, S2 MSI encompasses additional
bands at a coarser spatial resolution of 20 and 60 m. Note hereby that MSI’s SWIR bands B11
and B12 have not been considered in this study because of falling outside the CHRIS’ spectral
range. These SWIR bands are known to be sensitive to vegetation structure [Brown et al., 2000]
and can better distinguish between dried-out fallow and non-vegetated lands. It is expected that
inclusion of the SWIR bands will further improve the retrieval quality and reduce uncertain-
ties. Moreover, further improvements can be achieved, which may lead to further reduction
of uncertainties over non-vegetated surfaces. For instance, one could develop a set of GPRs
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each working with different portions of the data or features. The uncertainty intervals could be
optimally combined to improve the accuracy and reduce prediction bias. Alternatively, more
sophisticated kernel functions that exploit signal-to-noise relations could be eventually consid-
ered [Gómez-Chova and Camps-Valls, 2012; Lazaro-Gredilla et al., 2013].

At the same time, it should be noted that in operational biophysical parameter retrievals,
pixels over non-vegetated targets are flagged as non-valid and are not considered in uncer-
tainty calculation [see Fang et al., 2012]. Thereby, at coarser pixel’s size of MODIS and
SPOT/VEGETATION, non-vegetated areas are well-defined by land cover maps, such as desert,
inland water body, urban surfaces. In contrast, at 10 m resolution non-vegetated pixels can virtu-
ally appear anywhere. Since those kinds of pixels can be easily identified (e.g., mean estimates
of ≈ 0, or CV >100%), they could actually just be discarded when interpreting uncertainty es-
timates. Another remark to bear in mind is that the derived theoretical uncertainties are directly
related to what has been presented during the training phase. Theoretical uncertainties are thus
not intended to replace the true physical uncertainties of the biophysical parameter products but
instead to provide additional complementary information. Physical uncertainties are manda-
tory to be provided and should be obtained through comprehensive validation datasets collected
on various sites, such as that coordinated by the Committee on Earth Observation Satellites
(CEOS) Land Product Validation (LPV) community [Morisette et al., 2006].

Finally, it does not escape our attention that only a limited set of images acquired during
May-August have been evaluated. In an attempt to make the training data more representative
at temporal and global scales, it should be able to cope with the majority of global land cover
types along latitudinal gradients and over time. Ideally, ground truth data (biophysical param-
eters plus associated radiometric data) should be collected over a broad variety of terrestrial
surfaces and vegetation types at multiple phenological stages. This, however, is a tedious and
expensive job. Alternatively, an urging open question in this respect is to evaluate how robust
GPR performs when trained by artificial spectra, e.g. as generated by a radiative transfer model
(RTM). The advantage of RTMs is that a broad range of land cover situations can be simulated
(e.g. up to hundred thousands), leading to a dataset several times bigger than what can be col-
lected during a field campaign. Operational processing chains typically rely on such a hybrid
approach [e.g. Bacour et al., 2006; Baret et al., 2007]. Initial efforts in this direction have been
undertaken by implementing a MRLA module into the ARTMO (Automated Radiative Trans-
fer Models Operator) toolbox, which is a suite of RTMs into one GUI toolbox [Verrelst et al.,
012c]. As such, GPR and other MLRA models can be automatically developed through lookup
tables of simulated spectra and corresponding input parameters (e.g. LCC, LAI). Nevertheless,
it should hereby be noted that, while GPR works successful for small training datasets (e.g.
<2000 samples), its heavy computational load impedes the use of very large datasets. This lim-
itation has to be resolved when aiming to develop generic models for global applications. For
instance, alternative (sparse) versions of GPR have been proposed that can handle large scale
datasets, see e.g. http://www.gaussianprocess.org/. Greedy algorithms in active
learning settings can be also an alternative: GPRs trained on different data portions can provide
a ranked list of the most informative spectra which could be used then to generate a final model.
Forthcoming research will move in these directions, ultimately to reach a robust and generic
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retrieval processing scheme.

6.8 Conclusions

The delivery of uncertainty information is a prerequisite for the operational use of remote sens-
ing products. Currently only few retrieval approaches provide such estimates. Gaussian Pro-
cesses Regression (GPR), a machine learning regression algorithm (MLRA) based on Bayesian
non-parametric modeling, is one of them. Such retrieval algorithm may be of interest in view of
ESA’s forthcoming Sentinel-2 (S2) mission. In this work these uncertainty estimates were used
to evaluate the robustness and portability of locally-trained GPR models. Hyperspectral CHRIS
data was used for the simulation of experimental S2 images, being: S2-10m (4 bands), S2-20m
(8 bands) and S2-60m (10 bands). While providing accurate estimates when trained with a lo-
cal dataset called SPARC (TrOr; Barrax, Spain), it was also observed that non-vegetated pixels
were processed with great uncertainty. In an attempt to make the LCC and LAI GPR mod-
els more robust, an extended training dataset was introduced (TrEx), i.e. the original SPARC
dataset plus 60 spectra over all kinds of non-vegetated surfaces (e.g., soils, man-made surfaces,
water bodies). For the Barrax 2003 reference image, TrEx-developed GPR model delivered val-
idation errors below 10% (NRMSE: 3.5-9.2%; r2: 0.95-0.99), robust LCC and improved LAI
estimates, and above all reduced associated uncertainty estimates. These locally-trained GPR
models were subsequently applied to other experimental S2 images over various sites across
Spain, Germany, Canada. The uncertainty estimates provided insight in the success of the mod-
els’ performance. Overall, GPR models are portable to other images and uncertainty estimates
can thereby function as quality layer to filter out unreliable retrievals. Uncertainty intervals
were on the same order as the Barrax 2003 reference image and relative uncertainties over veg-
etated surfaces were below the 20% requirements proposed by GCOS. However, typically large
uncertainty variation within an image was observed due to surface heterogeneity. GPR is con-
cluded as a powerful regressor for remote sensing applications; not only it delivers accurate
predictions, it is currently the only MLRA that provides associated uncertainty intervals.
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7.1 Main results

The estimation of vegetation properties from optical remote sensing data is a broad field, where
a lot of progress has been made in the last three decades. This thesis brought together a wide
range of retrieval methods dedicated to the quantification of biophysical variables. In all gener-
ality, retrieval methods can be categorized into three main domains: (1) parametric regression,
(2) non-parametric regression, and (3) physically-based model inversion. Each of these three
domains have been largely automated and fully analyzed in Chapters 3 - 5, eventually leading
for each of them to fully operational retrieval toolboxes. In particular, the retrieval toolboxes
enable to analyze, compare and apply a variety of state-of-the-art methods in order to reach
optimized and automated mapping strategies. These toolboxes have been developed within the
scientific ARTMO software package environment.
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The principles of vegetation properties mapping from remote sensing data as well the philos-
ophy of the ARTMO toolbox have been explained in Chapter 2. Essentially ARTMO automates
the running of RTMs in forward mode, and process them in subsequent retrieval toolboxes. At
the same time, these retrieval toolboxes are not restricted to simulated data, but also external
data obtained from field campaigns can be processed. These toolboxes enable vegetation prop-
erties mapping from optical sensors. To facilitate its usability, ARTMO has been equipped with
a list of predefined sensors; established ones, such as Landsat, SPOT, MERIS, MODIS, CHRIS
as well forthcoming superspectral and hyperspectral sensors, such as Sentinel-2, -3, EnMAP,
FLEX. Emphasis in this thesis was put on the processing of Sentinel-2 data, which is especially
designed for land applications, but at the same time mapping strategies have been developed
and analyzed for spaceborne CHRIS or airborne HyMAP hyperspectral data. The principles
of ARTMO’s retrieval toolboxes and relevant findings using these toolboxes are summarized in
following sections.

In this section, the main research questions of this thesis, which are elaborated in the core
Chapters 3 – 6, are revised and followed by a discussion of the main results.

7.1.1 Research question A: The performance of spectral indices to LAI
and LCC mapping

1. What is the performance of all possible two-band vegetation indices to enable optimized
LCC and LAI estimation?

In Chapter 3, ARTMO’s Spectral Indices (SI) assessment toolbox is presented [Rivera
et al., 2014a]. This toolbox enables the analysis and assessment of the accuracy of a large
number of SI models. Basically, the toolbox offers a systematic but still empirical approach for
the assessment of all possible 2, 3 or up to 10-band SI formulations. Datasets can be partitioned
into calibration and validation subsets. These datasets may originate from simulations or from
field campaigns. Several options have been included in the SI assessment approach, amongst
which: (1) The addition of noise and the possibility to select fitting functions (e.g., linear,
exponential, power or polynomial functions); (2) the SI toolbox virtually allows for any type
of spectral index model to be formulated and evaluated using up to ten spectral bands; and (3)
the possibility to assess and apply SIs per land cover class. To illustrate its functioning and
predictive power, all two-band combinations according to simple ratio (SR) and normalized
difference (ND) formulations as well as various fitting functions (linear, exponential, power,
logarithmic, polynomial) have been assessed. HyMap imaging spectrometer [430-2490 nm]
data obtained during the SPARC campaign in Barrax, Spain, have been used to extract leaf area
index (LAI) and leaf chlorophyll content (LCC) estimates. For both SR and ND formulations,
the most sensitive regions have been identified for two-band combinations of green (539-570
nm) with longwave SWIR (2421-2453 nm) for LAI (r2: 0.83) and far-red (692 nm) with NIR
(1340 nm) or shortwave SWIR (1661-1686 nm) for LCC (r2: 0.93). The identification of
the SWIR rather than the conventional NIR as an important spectral region emphasizes the
importance of a systematical assessment for accurate vegetation properties mapping.
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7.1.2 Research question B: The performance of LUT-based inversion of
PROSAIL to LAI and LCC mapping

2. What is the performance of physically-based inversion routines given a suite of cost func-
tions and regularization options to enable optimized LCC and LAI estimation?

In Chapter 4, ARTMO’s LUT-based inversion toolbox is presented [Rivera et al., 2013a].
Lookup-table (LUT)-based radiative transfer model inversion is considered a physically-sound
and robust method to retrieve biophysical parameters from Earth observation data but regular-
ization strategies are needed to mitigate the drawback of ill-posedness. While various LUT-
based inversion methods have been proposed in literature, they mostly rely on RMSE as cost
function. However RMSE can result in large losses of efficiency when the error distribution is
non-Gaussian or non-symmetric. The LUT-based inversion toolbox enables the analysis and as-
sessment of the accuracy of a wide range of alternative cost functions. Apart from over 60 cost
functions, several more regularization options have been included, such as the role of (1) added
noise; (2) role of data normalization, and (3) mean of multiple solutions in inversion function.
Three families of cost functions were compared: information measures, M-estimates and min-
imum contrast methods. We have selected only cost functions without additional parameters
to be tuned, and thus they can be immediately implemented in processing chains. The coupled
leaf/canopy model PROSAIL was inverted against simulated Sentinel-2 imagery at 20 m spatial
resolution (8 bands) and validated against field data from the ESA-led SPARC (Barrax, Spain)
campaign. It was found that introducing noise and opting for the mean of multiple best solu-
tions in the inversion considerably improved retrievals; relative errors can be halved as opposed
to without these regularization options. Best LCC retrievals were obtained using a normalized
’L1-estimate’ function with a relative error of 17.6% (r2: 0.73), while best LAI retrievals were
obtained through non-normalized ’least-squares estimator’ (LSE) with a relative error of 15.3%
(r2: 0.74). Summarizing, the inversion performance is directly related to the used cost function
due to different assumptions on the nature and properties of errors. Regularization strategies
play thereby a great role in optimization. It is therefore recommended to evaluate different
inversion strategies prior to applying an inversion strategy to the whole image.

7.1.3 Research question C: The performance of nonparametric regres-
sion algorithms to LAI and LCC mapping

3. What is the performance of a range of nonparametric regression methods and regulariza-
tion options to enable optimized LCC and LAI estimation?

In Chapter 5, ARTMO’s Machine Learning Regression Algorithms (MLRA) toolbox is pre-
sented [Rivera et al., 2013b]. The MLRA toolbox enables analyzing the predictive power
of various machine learning regression algorithms in a semiautomatic and systematic manner
and applying a selected MLRA to multispectral or hyperspectral imagery for mapping applica-
tions. It contains both linear and nonlinear state-of-the-art regression algorithms, such as linear
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feature extraction via principal component regression (PCR) and partial least squares regres-
sion (PLSR), decision trees (DT), neural networks (NN), kernel ridge regression (KRR) and
Gaussian processes regression (GPR). Similar to the aforementioned toolboxes, various regu-
larization options have been implemented into the MLRA toolbox, e.g., training/validation data
splitting, adding noise, and regression models can be developed and evaluated per land cover
class. Training and validation data can either come from field campaigns or from simulations as
generated by radiative transfer models. The performance of multiple implemented regression
strategies has been evaluated for LAI and LCC retrieval against the SPARC dataset (Barrax,
Spain) and simulated Sentinel-2 (8 bands), CHRIS (62 bands) and HyMap (125 bands) ob-
servations. In general, nonlinear regression algorithms (NN, KRR, GPR) outperformed linear
techniques (PCR, PLSR, DT) in terms of accuracy, bias, and robustness. Most robust results
for LAI and LCC retrieval along gradients of training/validation partitioning and noise vari-
ance were obtained by KRR, while GPR delivered most accurate estimations (r2: 0.94-0.99 and
NRMSE: 7.0-3.0 %). Apart from excellent performance, GPR provides additional uncertainty
estimates on a pixelwise basis. A GPR model was applied to a hyperspectral HyMap flightline
to map LAI and LCC.

7.1.4 Research question D: The utility of GPR uncertainty estimates in
broader LAI and LCC mapping

4. Can the best evaluated retrieval method be applied to other sites and conditions in view
of operational retrieval of LCC and LAI from forthcoming Sentinel-2 data?

In Chapter 6, a mapping application is presented that moves away from the local Barrax
test site [Verrelst et al., 2013b]. Because of their ability to perform adaptive, nonlinear data
fittings, statistical learning regression algorithms are perceived as powerful candidates for the
estimation of biophysical parameters from satellite reflectance measurements. However, these
methods have often been criticized for their lack of generality and portability. In this work,
we analyzed the applicability of Gaussian process regression (GPR) for retrieving LAI and
LCC from simulated Sentinel-2 (S2) images over landscapes varying in space and time. GPR
was chosen because it is not only a powerful regression function, but also provides uncertainty
intervals along with the mean estimates. We used those uncertainties to analyze the portability
of locally trained GPR models. Experimental data came from the ESA-led field campaign
SPARC (Barrax, Spain). Local evaluation of an extended training dataset with more variation
over bare soil sites led to improved LCC and LAI mapping with reduced uncertainties. GPR
reached the 10% precision required by end users, with for LCC a NRMSE of 3.5-9.2% (r2:
0.95-0.99) and for LAI a NRMSE of 6.5-7.3% (r2: 0.95-0.96). The developed GPR models
were subsequently applied to simulated Sentinel images over various sites across the world. The
associated uncertainty maps were compared relative to the local Barrax test site. The generally
low uncertainty intervals over vegetated surfaces suggest that the locally trained GPR models
are portable to other sites and conditions. GPR is concluded as a powerful regression algorithm
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for remote sensing applications; not only it delivers accurate predictions; it is currently the only
MLRA that provides valuable associated uncertainty intervals.

7.2 General conclusions

This Thesis brought together and analyzed a wide variety of retrieval methods within the sci-
entific ARTMO toolbox. The implemented methods have been evaluated in view of optimized
LAI and LCC mapping. The main conclusions drawn from this work are:

1. The ARTMO toolbox has been developed during this thesis. This toolbox consists of a
suite of RTMS and retrieval toolboxes in a Matlab GUI environment and with a MySQL
database running underneath, and is freely available to the broader remote sensing com-
munity (http://ipl.uv.es/artmo/). ARTMO has been modularly designed; RTMs
or toolboxes can be seamlessly added or removed. Essentially, it automates the running of
RTMs and assists in the development of retrieval strategies. At the same time, its modular
design facilitates developers to implement new tools or toolboxes based on available tem-
plates. ARTMO can underpin and strengthen advances in remote sensing of vegetation.

2. The calculation of vegetation indices is a widely-known, simple and fast way to develop
parametric regression models for biophysical variable mapping. However, no evidence
was found that the well established indices (e.g. NDVI, PRI) are best performing. In
fact, by assessing the predictive power of all possible two-band combinations more sen-
sitive spectral regions were found with one band in the SWIR region. Moreover, there
is no reason to believe that a two-band index is best performing. Initial results indicate
that performances can still improve significantly when a well-selected combination of
multiple bands is entered into an index formulation.

3. Inversion of a RTM is generally considered as a physically-sound approach to realize
retrievals. However, the approach is not straightforward. Model assumptions, boundary
conditions and applied inversion strategy are all factors impacting the retrieval perfor-
mance. Typically a RMSE is applied as cost function, and the same inversion strategy is
applied to retrieve multiple variables. It was found that evaluating alternative cost func-
tions and regularization options can halve relative errors as compared to a non-optimized,
standard inversion strategy. It was also found that optimized inversion strategies differ per
variable due to the nature of its data; hence retrieval of multiple variables is suboptimal
and not recommended.

4. For the last few years most progress regarding mapping algorithms has been made in
the field of machine learning regression approaches (MLRAs). The majority of these
advanced nonparametric regression algorithms have hardly made it into the field of veg-
etation mapping. Only partial least square regression (PLSR) and neural networks (NN)
received broad attention in many mapping applications. However, we found that PLSR
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performs inferior and NN performs less robust than the non-linear, kernel-based MLRAs.
Moreover, the family of kernel-based MLRAs (KRR, GPR) not only proved to deliver
accurate estimates, but also more robust to varying noise and training/validation splitting.

5. Regarding novel kernel-based MLRAs, the most promising one is probably GPR. Apart
from robust retrievals, this Bayesian regression algorithm also provides insight in relevant
bands during model development and delivers associated uncertainty estimates. These
uncertainties proved to be particularly valuable when transporting the developed model
to other sites and conditions. We have demonstrated that for the majority of processed
images uncertainties were on the same order as on the local image (Barrax, Spain). Thus,
associated uncertainty estimates as delivered by a GPR model can serve as a convenient
quality check when processing images in space and time.

7.3 Reflection

In Chapters 3 – 5, three different toolboxes have been presented that assess and apply the
main retrieval domains: i.e. parametric regression, LUT-based inversion strategies and non-
parametric regression. State-of-the-art methods of each retrieval domain have been imple-
mented into their respective toolboxes, and in this thesis these methods have been systemat-
ically analyzed. This extensive assessment across the three domains allows, for the first time,
synthesizing the field of biophysical parameter retrieval. Such comparison is possible, because
for all chapters the dataset from the same campaign (SPARC, Barrax, Spain) was used and the
same variables were retrieved (LAI and LCC). Before entering into conclusions, the following
points should be remarked:

� For the spectral indices analysis airborne HyMap imaging spectrometer (430-2490 nm)
data was used, while for the inversion analysis simulated Sentinel-2 (20 m; 8 bands) data
was used. However, for the MLRA analysis both simulated Sentinel-2 (20 m; 8 bands),
CHRIS and airborne HyMap data were analyzed.

� For the spectral indices analysis and for the inversion analysis all field data (the SPARC
dataset) was used for either calibration (spectral indices) or validation (inversion). How-
ever, for the MLRA analysis, the SPARC dataset was split into training-validation subsets.

It is recognized that these inconsistencies affect accuracies, e.g. more bands, a broader spec-
tral range, better SNR, airborne scale (HyMap) may favor retrieval performances. Nevertheless,
some general observations can be made:

� Spectral indices: best two-band vegetation indices applied to HyMAP data (430-2490
nm) led to a r2 prediction efficiency of 0.93 for LCC (NRMSE: 7.75%) and r2 of 0.83
for LAI (NRMSE: 12.51%). The SI models are designed by the user thus completely
transparent. Computational cost of development as well image processing is minimal.
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The downside of these rather simple methods is that they suffer from poor generality and
portability.

� LUT-based inversion: best LCC retrievals for Sentinel-2 (20 m; 8 bands) data were
obtained using a normalized ’L1-estimate’ function with a r2 prediction efficiency of
0.73 (NRMSE: 17.6%), while best LAI retrievals were obtained through non-normalized
’least-squares estimator’ (LSE) with a r2 of 0.74 (NRMSE:15.3%). In principle the re-
trieval procedure is transparent since RTMs are based on physical laws, and minimization
cost functions. However, the many model assumptions and parametrization steps makes
that transparency somewhat obscured, and expert knowledge is required. An advantage
of this method is that insight in retrieval uncertainty is obtained, e.g. through inversion
residuals. Because the inversion problem is resolved against a large LUT table on a pixel-
by-pixel basis, its computational burden is a serious drawback. Another important point
to be remarked is that inversion of a RTM essentially means calculating back to its input
variables. Hence, this inherently implies that only so-called ’state-variables’, i.e. RTM
input variables that have strong impact on reflectance through physical laws, can be re-
trieved.

� Machine learning regression algorithms (MLRA): KRR and GPR delivered most accu-
rate estimates with a r2 prediction efficiency between 0.94-0.99 and NRMSE down to
7.0-3.0% for both LCC and LAI and regardless of the different analyzed sensor con-
figurations. These methods, although very powerful, are mainly criticized for the lack
of model transparency, i.e. so-called ’black box’ models. Nevertheless, some of latest
MLRAs include features that give some hints in model development. For instance, GPR
provides information of band relevance during model development.

Comparing best obtained results, the MLRA approaches led to highest accuracies, while
LUT-based inversion routines performed on the whole poorest. The spectral indices approaches
led to intermediate results. The relatively poorer performance of the LUT-based inversion can
be largely explained by the fact that this method relies on simulated data. While inverting
a radiative transfer model makes this approach generally applicable, simulated data does not
always properly represent image observations (e.g. due to simplicity of the model, poor model
parametrization, imperfect atmospheric correction, etc.).

Table 7.1 summarizes the most important features of the three retrieval approaches.

TABLE 7.1: Synthesis key features of the three main retrieval approaches. Best features are bolded.
Parametric regression: Vegetation Indices LUT-based inversion Non-parametric regression: MLRAs

Surface variables Any Only state variables Any
Model performance Good to excellent good Excellent

Insight in model Yes partly partly
Mapping speed Instantly slow fast

Uncertainties no Yes (e.g. residuals) Yes

Altogether, taken both performance and processing speed into account, MLRA approaches
seem to be most promising for new generation of mapping methods. Moreover, some MLRAs
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provide additional uncertainties (e.g. GPR). Based on this synthesis the following recommen-
dations can be drawn:

� When a broad field dataset of the target area is available that can be applied for training,
statistical nonparametric mapping should be preferred. These methods are accurate, fast
and for GPR also associated uncertainties are provided.

� Robust earlier generated GPR models (e.g. from SPARC dataset) can be applied to other
sites with similar conditions as shown in GPR study. The uncertainties provide insight in
quality of performance. As a guideline, the Global Climate Observing System (GCOS)
proposed uncertainties below 20% are considered as reliable, but also below 30% should
be still acceptable (see Chapter 6).

� If little field data is available that prevents developing a robust leading to non-robust
models (e.g. images processed with uncertainties above 30% for the large majority of the
map) then LUT-based inversion strategies may be an attractive alternative. However, here
it should be kept in mind that expert knowledge is required and only state variables can
be retrieved.

7.4 Outlook

7.4.1 Retrieval toolboxes

The retrieval toolboxes paved the path for various new mapping applications, pushing those
fields into superior performances and new application opportunities. They have been made
freely available to the broader remote sensing community. During the course of this work
several suggestions have been identified to boost the field of vegetation properties mapping for-
ward:

Spectral Indices toolbox:

� In Chapter 3, two-band vegetation indices according to SR and NDVI formulations have
been optimized. However, the SI toolbox permits the development and assessment of
new vegetation indices with all possible band combinations of up to 10 different bands.
A follow-up study with spectral indices on the basis of simulated Sentinel-2 data for all
possible four bands has been conducted [Verrelst et al., 2013c], with optimized indices
that pushed accuracies with a few points r2 up. It is to be expected that new index formu-
lations with more bands involved will further improve accuracies.

� Another path to be explored concerns the analysis of generic indices based on simulated
reflectance data. In this thesis, optimized vegetation indices have been derived from the
SPARC dataset. Given the absence of uncertainties, it remains however unknown how
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general optimized models can be applied to other sites and conditions. For this reason
it would be valuable to have indices analyzed on the basis of simulated reflectance data.
ARTMO has all the tools operational to undertake this research, not only with RTMs both
at leaf or canopy level, but also for different vegetation types, i.e. 1D (e.g. SAIL) or 3D
forest RTMs (e.g. FLIGHT).

LUT-based inversion toolbox:

� In Chapter 4, only 18 stand-alone cost functions out of more than 60 functions have been
analyzed. The majority of cost functions require one or more parameters to be tuned,
which in principle should lead to refined performances compared to the stand-alone cost
functions. The inversion toolbox offers the possibility to loop over those parameters in or-
der to seek for optimum. These features have not been explored yet, leaving opportunities
for further optimizing the inversion scheme.

� LUT-based inversion relies on a large spectral database that have been generated by
RTMs. Until now only PROSAIL has been applied to generate the LUT because of rel-
atively few input variables involved (about 8). However, ARTMO enables the develop-
ment of spectral databases originating from more advanced RTMs such as FLIGHT, SLC,
SCOPE. While those models require more parametrization, once having them configured,
running the subsequent inversion process is just the same.

MLRA toolbox:

� In Chapter 5, only six available nonparametric regression algorithms have been analyzed
(PCR, PLSR, DT, NN, KRR, GPR). Meanwhile, several more novel MLRAs have been
implemented into the toolbox, with some of them never being applied in the context
of vegetation properties mapping, being bagging trees, boosting trees, extreme machine
learning, relevance vector machine, variational heteroscedastic GPR. Recent results in-
dicate that particularly relevance vector machine, variational heteroscedastic GPR and
extreme machine learning are among the top performing regression algorithms [Verrelst
et al., 2013c].

� Hybrid methods try to combine the generality of physically-based methods with the flex-
ibility and computational efficiency of MLRAs. The idea is to learn the inverse mapping
with a nonparametric model that is being trained using simulated data generated by RTMs.
This approach has long been restricted to training a neural net by simulated data from a
RTM (e.g. PROSAIL), which has been proven successful in an operational processing
scenes (e.g. GEOLAND products). However, given the recent advances made in the field
of MLRAs, it can be questioned whether a neural network is really the best choice. In
Chapter 5 it was demonstrated that novel MLRAs (e.g. GPR) tend to outperform neu-
ral networks. A MLRA such as GPR, with the feature of providing uncertainties, holds
promises to develop new generation of retrieval methods that can be implemented into
operational processing chains.
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7.4.2 Future work ARTMO: beyond the retrieval toolboxes

Coupling with atmospheric models

Although ARTMO is already at an advanced stage of development, currently the integration
with an atmospheric model is missing. This means that only top-of-canopy (TOC) reflectance
can be simulated. It also bears the consequences that an atmospheric correction has to be ap-
plied when aiming to invert a RTM against remote sensing data. Alternatively, when having
an atmospheric model implemented into ARTMO then canopy simulations can be upscaled to
top-of-atmosphere (TOA) radiance. This holds the advantage that it would allow us to develop
retrieval strategies of atmospheric and biophysical variables directly from the satellite observa-
tions, i.e. without the need to correct for atmospheric effects. Potential atmospheric models
to be implemented into ARTMO of a low to high complexity would be 6S and MODTRAN.
Efforts in coupling a MODTRAN-generated LUT with an ARTMO-generated LUT are already
underway, e.g. as part of a scene generator module.

Scene generator module (SGM)

In support of ESA’s Earth Explorer 8 candidate mission FLEX (FLuorescence EXplorer), a
scene generator module (SGM) is currently under development within the ARTMO environ-
ment [Rivera et al., 2014b]. Essentially, the SGM is in charge of simulating the scene to be
observed by an instrument. A scene is understood as a TOA radiance map, e.g. as observed
by a satellite mission. The generation of these synthetic scenes includes the distribution of bio-
geophysical and atmospheric parameters over the scene map. In addition, the SGM takes also
into account environmental conditions such as surface topography and observation/illumination
geometry. All these parameters and environmental conditions serve as input for the genera-
tion of TOA radiance maps through the use of canopy RTMs (as those provided by ARTMO)
coupled with an atmospheric model (e.g. MODTRAN) or from external radiometric data (e.g.
reflectance, fluorescence and/or TOA radiance spectral databases or external image files). The
SGM will ultimately become part of a complete End-to-End FLEX mission performance simu-
lator software, that is being developed in collaboration with partners and industry. At the same
time, a simplified but more generic version of the SGM (i.e. applicable for any optical sensor)
is foreseen to be implemented as an ARTMO tool.

Global sensitivity analysis (GSA) tool

Another ongoing study within the ARTMO environment is the development of a global sensi-
tivity analysis GSA tool. Sensitivity analysis evaluates the relative importance of each input
parameter and can be used to identify the most (and least) influential variables in determining
the variability of model outputs. In contrast to a local sensitivity analysis that evaluates one
factor at a time, a GSA explores the full input parameter space, i.e., all input parameters are
tested together. In support of FLEX an advanced RTM that also provides fluorescence outputs,
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i.e. SCOPE, has recently been analyzed using GSA [Verrelst et al., 2014a]. In this way the
driving variables determining variations in reflectance and fluorescence outputs have been de-
rived. Apart from these FLEX-related activities, it is foreseen that in the near future a fully
operational GSA toolbox will be implemented into ARTMO that is able analyzing all available
RTMs, as well enabling sensitivity analysis of coupled RTMs, e.g. leading to the unraveling the
radiative transfer of a complete soil-leaf-canopy-atmosphere system.

Remaining forthcoming activities and final considerations

Finally, apart from the above-mentioned ongoing activities, the modular design of ARTMO
opens opportunities to implement new RTMs, tools and toolboxes as plug-ins into the existing
framework. To stay within the context of vegetation properties mapping – but in principle ap-
plications can go in any direction – the following activities are planned: (1) a classifier toolbox,
(2) time series toolbox, (3) unmixing toolbox, and (4) data assimilation toolbox.

Ultimately these activities will not only facilitate the use of advanced remote sensing tech-
niques to a broader community, the developed tools and toolboxes will also boost progress
towards: (1) an improved understanding in the interactions between light and vegetation proper-
ties, (2) improved retrieval algorithms serving forthcoming optical missions such as Sentinel-2
-3, EnMAP, FLEX, (3) new mapping applications to understand better our changing Earth.

For instance, currently no operational global LCC mapping algorithm exists, which prevents
this variable to be considered as an essential climate variable (ECV). Currently only absorbed
photosynthetically active radiation (FAPAR) is considered as an ECV [GCOS, 2014], and often
used as a substitute of LCC because of closely related with LCC [Gitelson et al., 2003] and
carbon assimilation [Sellers, 1987; Sellers et al., 1992]. However, FAPAR is a component
of the land-surface radiation budget and also influenced by recording time and direct versus
indirect/diffuse solar radiation. The robustness of FAPAR as an indicator of LCC may therefore
be questioned and more robust retrieval schemes are desirable. An operational LCC retrieval
algorithm can be developed within ARTMO, e.g. based on the one presented in Chapter 6.
A precise knowledge of LCC and LAI is also indispensable in view of the FLEX mission in
order to properly calculate and interpret solar-induced chlorophyll fluorescence and relate it
to photosynthesis activity of vegetation [Verrelst et al., 2013a]. Furthermore, ARTMO can
serve improved or new vegetation products, which in turn can serve as input into assimilation
procedures for higher level products such as plant traits, photosynthesis, plant diversity; e.g. by
coupling with Dynamic Global Vegetation Models or General Circulation Models. Altogether,
these activities will eventually open new avenues to improved local-to-global (agro)ecosystem
processes monitoring.



126 SYNTHESIS
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A.1 Introducción

La Biosfera es uno de los principales sistemas que conforman la Tierra. Su estudio permite
comprender la relación entre la vegetación y el ciclo del carbono y cómo éste puede ser afectado
por los cambios en los niveles de CO2 y los usos de suelo [IPCC, 2007]. Para el estudio
de estas dinámicas a escala global y local, han sido desarrollados diversos modelos que son
representaciones de la realidad en una escala y complejidad más simple.

Los modelos de circulación general son algoritmos numéricos avanzados que en la
actualidad se usan para la simulación de los complejos procesos en la atmósfera, la cubierta
terrestre y los océanos a escala global [Donner et al., 2011]. Los modelos globales de la
dinámica vegetal - DGVM (por sus siglas en inglés Dynamic Global Vegetation Models)
simulan los cambios espacio-temporales en la cubiertas vegetales asociados a la biogeología,
hidrología y climatología [Malenovský, 2013].

Parte de las variables de entrada de estos modelos son obtenidas mediante medidas de
teledetección gracias al Global Climate Observing System (GCOS), que ha determinado un
conjunto de 50 variables climáticas esenciales que contribuyen a los estudios de cambio
climático que lidera la Convención Marco de las Naciones Unidas y el Panel Intergubernamental
del Cambio Climático [GCOS, 2014]. En esta lista está incluido el índice de área foliar (LAI).
El contenido de clorofila en hoja (LCC) es otro parámetro biofísico clave para los estudios de
biosfera.

La relevancia de estas dos variables se refleja en el papel que juegan en los estudios de
evaluación del vigor y el crecimiento de la vegetación, la parametrización de las dinámicas
vegetación-atmósfera en los modelos climáticos, estado fisiológico de las plantas y su
actividad fotosintética [Lichtenthaler, 1987; Running and Coughlan, 1988; Dorigo et al., 2007;
Jonckheere et al., 2004; Gitelson et al., 2005; Schlemmer et al., 2005; Zhang et al., 2008; Peng
and Gitelson, 2012]. La teledetección proporciona métodos para la estimación de éstas y otras
variables climáticas esenciales [Baret et al., 2013; Hollmann et al., 2013].

Para contribuir al estudio de la biosfera a escala local como es el caso de la agricultura
de precisión, modelos de producción agrícola o de los estudios ecológicos, esta tesis se
enfoca en la estimación de propiedades vegetales a partir de datos espectrales obtenidos por
plataformas espaciales, concretamente los parámetros LAI y LCC. El estudio de las propiedades
de la vegetación desde el espacio requiere: (1) Métodos óptimos para el procesamiento y la
estimación de la información y, (2) Disponibilidad de datos espaciales.

Los métodos de procesado y estimación de parámetros biofísicos son necesarios ya que
el sensor solo mide los flujos de energía reflejados por las cubiertas vegetales distribuidos
espacialmente. Por ello, han sido desarrollados diversos modelos, que van desde complejos
modelos con base física hasta modelos estadísticos o la combinación de los anteriores. En el
desarrollo de esta tesis se ha reunido una amplia variedad de ellos.

La disponibilidad de datos de calidad ha sido siempre uno de los retos de las agencia
espaciales ya que el monitoreo de la vegetación requiere de datos espectrales de calidad,
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adquiridos de manera regular y con un amplio histórico para analizar la evolución espacio-
temporal de la vegetación. Para ello, la Agencia Espacial Europea (ESA) ha desarrollado
la misión Sentinel-2 que está especialmente diseñada para el monitoreo de las propiedades
de la vegetación, con las capacidades operativas que cumplen los requerimientos espectrales,
espaciales y temporales [Drusch et al., 2012]. Los datos que proporcionará la misión Sentinel-2
permitirán garantizar la continuidad de las misiones presentes Spot y Landsat, aportando un
tiempo de revisita menor, mejora de la amplitud de barrido, mayor resolución espectral y una
mejor calibración y calidad de imagen.

Para el procesamiento y la extracción de información de parámetros biofísicos han sido
desarrollados diferentes paquetes computacionales por diversos grupos de investigación. Esta
tesis pretende suministrar un conjunto de herramientas computacionales, dinámicas y flexibles
que permitan automatizar y evaluar el potencial de los diferentes métodos que en la actualidad
han sido publicados y están disponibles para su libre uso. Presenta los resultados científicos
de la evaluación del impacto de diferentes parámetros de ajuste en los principales métodos de
estimación de parámetros biofísicos, centrándonos en datos simulados del satélite Sentinel-2,
previsto para ser lanzado en 2015.

Para dicho trabajo se han reunido los principales métodos de estimación que van desde las
simples relaciones espectrales hasta los complejos modelos de transferencia radiativa (RTM).
Para esto, hemos implementado un conjunto de herramientas informáticas que permiten el
diseño y evaluación de diversas estrategias de regularización como son la normalización de
los datos, la sinergia entre datos simulados por RTM y datos de campañas de campo o de
laboratorio, adición de modelos de ruido a los datos simulados y un amplio conjunto de métodos
de regresión tanto paramétricos como no paramétricos.

Este trabajo constituye la continuación de mi trabajo Final del Máster de Teledetección,
donde se desarrolló una herramienta informática llamado ARTMO (por sus siglas en inglés
Automated Radiative Transfer Models Operator) que reunió los RTM de la familia Prospect,
SAIL y FLIGTH. Se implementó el método de estimación por tablas de búsqueda (LUT). Esta
tesis presenta la evolución de ARTMO que pasa de ser una herramienta informática rígida que
no permitía de manera sencilla la ampliación de sus funciones, a un flexible marco de desarrollo
(framework software), donde ARTMO se convierte en una plataforma de soporte de diversos
módulos implementados de manera independiente.

Esta nueva versión de ARTMO permite a cualquier grupo de investigación desarrollar y
compartir nuevas funciones, algoritmos y métodos de estimación de parámetros biofísicos.
Además, hemos establecido las bases para la creación de una red tanto de usuarios como de
desarrolladores en torno al estudio de las propiedades de la vegetación, sirviendo de apoyo para
el estudio de nuevos algoritmos de estimación, diseño de nuevos sensores ópticos o para su uso
en el campo de la educación.
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A.2 Estructura

La presente tesis doctoral se presenta en el formato de compendio de publicaciones. Para ello,
según la normativa vigente, se exige que la tesis sea estructurada alrededor del trabajo de, al
menos, tres artículos científicos publicados. La tesis se ha dividido en siete capítulos:

1. El Capítulo 1 presenta la justificación de la temática elegida, se presentan los objetivos
de este trabajo y se explica la aportación original del autor en cada uno de los artículos
seleccionados.

2. El Capítulo 2 muestra una síntesis de los últimos avances de la teledetección en el
estudio de la vegetación y en especial los métodos de estimación de parámetros biofísicos
(paramétricos, no paramétricos y con base física). Se presenta, además, la estructura del
novedoso ARTMO como un marco de desarrollo o framework.

3. El Capítulo 3, corresponde a la publicación [Rivera et al., 2014a] en donde, utilizando el
módulo de ’índices espectrales’ de ARTMO, se han evaluado los diferentes parámetros de
ajuste como son el porcentaje de datos para la construcción del modelo, la combinación
de bandas y el método de regresión usado para relacionar el parámetro biofísico con su
respectivo índice espectral.

4. El Capítulo 4, corresponde a la publicación [Rivera et al., 2013a] en donde se presenta
el módulo de estimación por tablas de búsqueda (LUT) de ARTMO para la inversión de
parámetros biofísicos con datos simulados a partir de RTM. En este artículo se analiza
el impacto de la función de mérito y tres opciones de regularización: normalización de
datos, adición de ruido Gaussiano y media de los mejores resultados.

5. En el Capítulo 5 [Rivera et al., 2013b] se presenta el módulo de MLRA (por sus
siglas en inglés Machine Learning Retrieval Algorithm) de ARTMO que se especializa
en la inversión de parámetros biofísicos con algoritmos de regresión de tipo ’Machine
Learning’. Este artículo explora el impacto de seis algoritmos de regresión en la inversión
de los parámetros de LAI y LCC.

6. El Capítulo 6 corresponde a la publicación [Verrelst et al., 2013b] que aborda el tema de
la incertidumbre en la estimación de parámetros biofísicos usando MLRA. Evalúa el uso
de modelos no paramétricos para la estimación de propiedades de la vegetación en zonas
diferentes a donde se han tomado los datos para el desarrollo del modelo.

7. El Capítulo 7 presenta la síntesis y análisis de los resultados obtenidos, se muestran las
conclusiones y se proponen líneas futuras de investigación.
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A.3 Objetivo y metodología

El objetivo de esta tesis es analizar, optimizar y automatizar diferentes métodos de estimación
de parámetros biofísicos por teledetección enfocándose en los datos que generará la misión
Sentinel-2. Para lograr este objetivo se ha desarrollado un conjunto de tres herramientas
informáticas especializadas en la inversión de parámetros biofísicos o toolbox. Cada toolbox
se ha focalizado en cada uno de los tres grupos de métodos para la estimación de parámetros
biofísicos: índices espectrales, métodos estadísticos de regresión y tablas de búsqueda. Se ha
actualizado el software ARTMO para convertirlo en una plataforma donde se integran diversos
módulos y herramientas que permiten el estudio de las propiedades de la vegetación.

Para la validación de resultados, se ha usado una amplia base de datos de campo que abarca
diversos tipos de cultivos y árboles, en distintas etapas fisiológicas y con diferentes tipos y
condiciones del suelo. Estos datos se obtuvieron durante las campañas SPARC (Spectra bARrax
Campaign) llevadas a cabo por la ESA los años 2003 y 2004. Los parámetros biofísicos fueron
medidos en 110 unidades elementales de muestreo o ESU (por sus siglas en inglés Elementary
Sampling Units) que representa un pixel de 20 m x 20 m [Gandía et al., 2004; Fernández
et al., 2005]. Durante la campaña se contó con imágenes del sensor CHRIS sobre la plataforma
espacial PROBA y datos del sensor HyMAP sobre una plataforma aerotransportada. La base de
datos se completó con 60 espectros de suelo desnudo, superficies artificiales y cuerpos de agua
para un total de 170 muestras.

Se realizó un remuestreo espacial y espectral de los datos de SPARC a la configuración de
la misión Sentinel-2 para los canales con una resolución espacial menor a 20 m.

Se analizaron dos familias de índices espectrales, Ratio Simple (SR) y diferencias
normalizadas (ND), para los cuales se estudiaron todas las posibles combinaciones espectrales
y se evaluaron el impacto de 4 funciones de ajuste de tipo lineal, logarítmico, exponencial y
polinómica de grado 2.

Se generó una LUT de 100,000 datos simulados con el RTM PROSAIL. Se evaluó el
impacto de la función de mérito (FM) que permite discriminar la similitud entre los espectros
simulados, o medidos en campo o laboratorio (Q) y los espectros medidos por un sensor óptico
(P), donde D[P,Q] representa la distancia entre dos espectros. Evaluamos 18 FM clasificadas
en tres familias: f-divergence, M-estimates y mínimo contraste, seleccionadas según el trabajo
desarrollado por Leonenko et al. [2013]. Tambien se evaluó el impacto de tres opciones de
regularización diferentes: ruido Gaussiano añadido a los datos, normalización de los espectros
y promedio de múltiples soluciones.

Se evaluaron 6 métodos de regresión: Mínimos cuadrados parciales (PLS), Componentes
principales (PCR), Árboles de decisión (DT), Redes neuronales (NN), Kernel Rigde Regression
(KRR) y Gaussian processes regression (GPR). Éstos fueron entrenados con los datos de la
campaña SPARC para un conjunto de tres sensores: Sentinel-2 (8 bandas), CHRIS (62 bandas)
y HyMap (125 bandas). Se evaluó el impacto que tiene en la estimación de LAI y LCC el tamaño
de la muestra de entrenamiento, donde se evaluó entre el 5% y el 95% con un incremento de
5%, analizando además el nivel de ruido Gaussiano añadido a las muestras de entrenamiento
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variando entre un 0% y un 20%, con un incremento del 2%.

Se ha hecho una evaluación de la capacidad para extrapolar los modelos construidos a partir
de datos de entrenamiento local, con el objetivo de estimar parámetros de vegetación a partir de
imágenes con diferente configuración espectral, distinta localización y tiempo de adquisición.
Para determinar el nivel de incertidumbre en la estimación de estos parámetros, se usó GPR.
Se contó con una base de datos con medidas de campo y 8 imágenes adquiridas en España,
Alemania y Canadá entre los años 2003 y 2009. GPR se entrenó con los datos de la campaña
SPARC tomando un 80 % para entrenamiento y el restante para el test del modelo desarrollado.

A.4 Resultados

La estimación de los parámetros biofísicos de la vegetación a partir de datos espectrales
obtenidos por teledetección, ha sido objeto de numerosos estudios debido al gran número de
aplicaciones climáticas, agronómicas y medioambientales que posee. Por ello, los métodos
desarrollados para su estudio han logrado grandes avances en las últimas tres décadas. En
esta tesis se reúnen los principales y más novedosos métodos para la estimación de parámetros
biofísicos por teledetección, que se pueden clasificar en tres familias: (1) Paramétricos, (2) No
paramétricos y (3) Métodos con base física. Cada una de estas familias han sido evaluadas
sistemáticamente y optimizadas en los capítulos del 3 al 5 y se han desarrollado herramientas
informáticas operativas para su automatización. Cada una de estas herramientas permite
analizar y comparar una amplia gama de métodos de inversión y generar de manera automática
mapas de parámetros biofísicos a partir de imágenes obtenidas por teledetección.

A continuación se presentan los principales resultados obtenidos en el desarrollo de esta
tesis, para cada uno de los principales métodos de estimación de parámetros biofísicos:
paramétricos, no paramétricos y con base física, pues se han evaluado de manera sistemática
los principales parámetros en cada método.

Índices Espectrales: Desde los inicios de la teledetección, han sido utilizados y
desarrollados diferentes índices espectrales en el estudio de la vegetación. El capítulo 3 presenta
la herramienta informática implementada en ARTMO para evaluar el funcionamiento de los
parámetros involucrados en el diseño de índices espectrales:

� Combinación de bandas: La herramienta permite el diseño de relaciones espectrales
combinando hasta 10 bandas diferentes.

� Método de ajuste: se han implementado las funciones de ajuste lineal, exponencial,
logarítmico y polinómico.

� Parámetros de regularización: permite la adición de nivel de ruido Gaussiano en los datos
espectrales y los parámetros biofísicos.

Para la estimación de LAI, se han evaluado dos índices muy usados en teledetección: Ratio
Simple (SR) y Diferencias Normalizadas (ND). Los mejores resultados para el índice espectral
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SR se han obtenido con la configuración de bandas centradas en 570 nm y 2453 nm y ajuste
de tipo polinomio de grado 2 con un valor del RMSE de 0,6. Para el índice espectral tipo
ND, la mejor configuración de bandas es la de 555 nm y 2453 nm mediante un ajuste de tipo
logarítmico obteniendo el mismo valor de RMSE. Para la estimación de LCC con el índice
espectral tipo SR, el mejor resultado se obtuvo con la combinación de bandas de 692 nm y
1689 nm mediante un ajuste de un polinomio de grado 2, con un valor de RMSE de 4,2 µg/cm2

mientras que para el índice espectral tipo ND la combinación de bandas fue 692 nm y 1661 nm
con un ajuste de tipo polinomio de grado 2 y con un valor de RMSE de 4,3 µg/cm2.

Tablas de búsqueda: El artículo del capítulo 4 presenta la herramienta informática para
la evaluación sistemática de diferentes funciones de mérito, y 3 opciones de regularización:
normalización de datos espectrales, adición de ruido Gaussiano a los datos sintéticos y valor
medio de las mejores múltiples soluciones. Se evaluaron 18 funciones de mérito pertenecientes
a las familias: information measures, M-estimates y mínimo contraste. Los mejores resultados
en la estimación de LCC se obtuvieron con la función de mérito ’L1-estimate’ perteneciente a
la familia de M-estimates con los valores normalizados, con un error relativo de 17,6 % ( r2 =
0,73). Para LAI se obtuvieron con la función de mérito ’least-squares estimator’ perteneciente
a la familia de M-estimates con valores no normalizados y con un error relativo del 15,3 % ( r2

= 0,74).

Métodos no paramétricos: El artículo del capítulo 5 presenta la herramienta informática
que se especializa en la inversión de parámetros biofísicos con métodos estadísticos
paramétricos y no paramétricos. Permite la comparación de métodos estadísticos de inversión
y la evaluación de manera sistemática de los ajustes generales de estos métodos según: 1. El
tamaño de la base de datos de entrenamiento, 2. Trabajar con datos de campo y datos de
simulación con RTM y 3. Adición de ruido Gaussiano a los datos espectrales y los parámetros
biofísicos. Del conjunto de estimadores estadísticos implementados se evaluaron siete: PLSR,
PCR, RT, NN, KRR y GPR. En términos de robustez del modelo, los mejores resultados en
la estimación de LCC se obtuvieron con KRR, ya que con menos datos de entrenamiento se
obtuvieron los menores errores relativos de 6,8 %, 3,8 % y 4,6 % para las imágenes de Sentinel-
2, CHRIS y HyMAP respectivamente. En la estimación de LAI los métodos más robustos
fueron DT con un error relativo del 6,1 %, NN con un error relativo de 6,5 % y KRR con un
error relativo de 6,8 % para las imágenes de Sentinel-2, CHRIS y HyMAP respectivamente.

El capítulo 6 explora el uso de métodos estadísticos no paramétricos para la estimación de
parámetros biofísicos entrenados con datos que no pertenecen a la zona de interés. Una de las
grandes limitaciones de los métodos estadísticos es la necesidad de realizar un entrenamiento
previo para desarrollar el modelo. Esto limita su uso en zonas donde no se cuenta con datos de
entrenamiento. El método estadístico seleccionado fue GPR debido a su robustez, como ya se
mostró en el capítulo 5. Los resultados muestran que GPR alcanzó el resultado óptimo menor
al 10 % de error relativo para los dos parámetros en estudio, pues para la estimación de LCC su
error relativo estuvo entre 3,5 % a 9,2 % y para el LAI se obtuvo un error relativo entre 6,5 % y
7,3 %. Además se encontraron bajos valores de incertidumbre en la estimación en las zonas de
cultivos, aumentando la incertidumbre en píxeles de suelos desnudos o bosques.
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A.5 Conclusiones

La herramienta informática ARTMO, que ha sido ampliada y mejorada en esta tesis, es una
potente herramienta que permite a investigadores y usuarios de la teledetección el uso de los
principales métodos para la estimación de parámetros biofísicos de la vegetación. Además,
al ser capaz de utilizar de manera simultánea un elevado conjunto de métodos estadísticos
y modelos de inversión, permite evaluar la configuración idónea para futuras misiones o
la selección del mejor método para un sensor determinado. En concreto, al evaluar datos
simulados de Sentinel-2, se obtienen las siguientes conclusiones:

1. No hay evidencia de que las regiones espectrales usadas en las clásicas combinaciones
espectrales sean las óptimas para la estimación de parámetros como LCC y LAI. La
región del SWIR muestra una gran sensibilidad para el estudio de LCC y LAI, y aunque
no son regiones espectrales donde dichas propiedades interaccionen de manera directa,
sin embargo permiten mejorar la estimación utilizando índices. La toolbox de índices
espectrales es una herramienta robusta para el desarrollo de nuevos índices para sensores
hiperespectrales ya que permite la combinación de hasta 10 bandas.

2. En la estimación con LUT, existe una relación entre la función de mérito utilizada,
la estrategia de regularización y los parámetros biofísicos, que hace necesario que su
inversión se analice de manera independiente. La clásica función de mérito RMSE no se
muestra como la más precisa. Como alternativa se presentan los estimadores robustos de
la familia M-estimates, que junto con la óptima estrategia de regularización, mejora las
estimaciones de LAI y LCC. La normalización de los datos optimiza la estimación de LAI
pero no la de LCC. El promediar los mejores resultados es una estrategia efectiva para
mitigar el problema mal planteado inherente en la inversión de parámetros biofísicos.

3. Los novedosos algoritmos de regresión de tipo Kernel, como los GPR y KRR, sobresalen
respecto al resto de algoritmos tanto paramétricos como no paramétricos, por su
capacidad de adaptabilidad y precisión en estimación de LAI y LCC.

4. El método estadístico GPR permite, además, obtener información acerca de la
incertidumbre de la estimación, convirtiéndolo en una herramienta potente y robusta para
la extrapolación de los modelos desarrollados a nuevas zonas diferentes, rompiendo de
alguna manera la idea de la necesidad de datos de entrenamiento local para la obtención
de resultados aceptables.

El conjunto de herramientas informáticas desarrolladas en este trabajo incorporando los
principales métodos de estimación de los parámetros biofísicos, permitirá el desarrollo de
nuevas estrategias para el estudio de la vegetación y dise sensores ópticos. Además, la novedosa
estructura de programación de ARTMO mejorada en este trabajo, nos permite plantearnos las
siguientes líneas de trabajos:
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� Sinergia con modelos atmosféricos: la integración de los modelos de transferencia
radiativos de la vegetación, la atmósfera y el suelo permitirán evaluar los diferentes
métodos de inversión con datos espectrales en el techo de la atmósfera y desarrollar
estrategias de estimación de parámetros biofísicos que puedan ser aplicados a diferentes
localidades, distintas condiciones atmosféricas y diferentes tipos de suelo.

� Generación de escenarios multitemporales: el estudio temporal de las propiedades de la
vegetación permitirá el desarrollo de novedosas estrategias de inversión. Los diferentes
módulos de ARTMO conforman la base para la desarrollo de generadores de escenas
genéricos que puedan explorar la información que se puede extraer de la evolución
espacio temporal de las cubiertas vegetales.

El trabajo presentado en esta tesis, ha permitido avanzar en el estudio de las propiedades
de la vegetación. Los objetivos alcanzados y las nuevas líneas en las que se están trabajando,
como contar con una comunidad de usuarios especializados y desarrolladores de herramientas
informáticas, aportarán nuevas técnicas al estudio de la vegetación y el ciclo de carbono y
permitirá mejorar y facilitar el conocimiento de la vegetación a diferentes escalas por técnicas
de teledetección.
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Acronyms and Abbreviations

ARTMO Automated Radiative Transfer Models Operator

BRDF Bidirectional Reflectance Distribution Function

CCC Canopy-integrated Chlorophyll Content

CF Cost Function

CHRIS Compact High Resolution Imaging Spectrometer

CV Coefficient of Variation

DGVM Dynamic Global Vegetation Models

DT Decision Trees

EO Earth Observation

ECV Essential Climate Variables

ESA European Space Agency

ESU Elementary Sampling Units

FAPAR Fraction of absorbed photosynthetically active radiation

FLEX Fluorescence Explorer

FWHM Full-Width at Half-Maximum

GCOS Global Climate Observing System

GPR Gaussian processes regression

GSA Global Sensitivity Analysis

GUI Graphical User Interface

IPCC Intergovernmental Panel on Climate Change
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KRR Kernel Ridge regression

LAI Leaf Area Index

LCC leaf chlorophyll content

LSE least squares estimation

LUT Look-Up Table

MLRA Machine Learning Regression Algorithm

MODTRAN MODerate resolution TRANsmittance

MSI Multi-Spectral Instrument

ND Normalized Difference

NDVI Normalized Difference Vegetation Index

NIR Near–infraRed

NN Neural networks

PCA Principal Components Analysis

PCR Principal component regression

PFT Plant Functional Types

PLSR Partial least squares regression

RMSE Root Mean Squared Error

RTM Radiation Transfer Model

RVM Relevance Vector Machines

RR Ridge regression

RS Remote Sensing

RT Regression Trees

S2 Sentinel-2

SGM Scene Generator Module

SI Spectral Index

SPARC SPectra bARrax Campaign
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SR simple ratio

SVR Support vector machines

SWIR ShortWave-InfraRed

TOA Top Of Atmosphere

TOC Top Of Canopy

VNIR Visible and Near InfraRed
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