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Abstract: Early and accurate disease diagnosis is pivotal for effective phytosanitary management 
strategies in agriculture. Hyperspectral sensing has emerged as a promising tool for early disease 
detection, yet challenges remain in effectively harnessing its potential. This study compares 
parametric spectral Vegetation Indices (VIs) and a nonparametric Gaussian Process Classification 
based on an Automated Spectral Band Analysis Tool (GPC-BAT) for diagnosing plant bacterial 
diseases using hyperspectral data. The study conducted experiments on tomato plants in controlled 
conditions and kiwi plants in field settings to assess the performance of VIs and GPC-BAT. In the 
tomato experiment, the modeling processes were applied to classify the spectral data measured on 
the healthy class of plants (sprayed with water only) and discriminate them from the data captured 
on plants inoculated with the two bacterial suspensions (108 CFU mL−1). In the kiwi experiment, the 
standard modeling results of the spectral data collected on nonsymptomatic plants were compared 
to the ones obtained using symptomatic plants’ spectral data. VIs, known for their simplicity in 
extracting biophysical information, successfully distinguished healthy and diseased tissues in both 
plant species. The overall accuracy achieved was 63% and 71% for tomato and kiwi, respectively. 
Limitations were observed, particularly in differentiating specific disease infections accurately. On 
the other hand, GPC-BAT, after feature reduction, showcased enhanced accuracy in identifying 
healthy and diseased tissues. The overall accuracy ranged from 70% to 75% in the tomato and kiwi 
case studies. Despite its effectiveness, the model faced challenges in accurately predicting certain 
disease infections, especially in the early stages. Comparative analysis revealed commonalities and 
differences in the spectral bands identified by both approaches, with overlaps in critical regions 
across plant species. Notably, these spectral regions corresponded to the absorption regions of 
various photosynthetic pigments and structural components affected by bacterial infections in plant 
leaves. The study underscores the potential of hyperspectral sensing in disease diagnosis and 
highlights the strengths and limitations of VIs and GPC-BAT. The identified spectral features hold 
biological significance, suggesting correlations between bacterial infections and alterations in plant 
pigments and structural components. Future research avenues could focus on refining these 
approaches for improved accuracy in diagnosing diverse plant–pathogen interactions, thereby 
aiding disease diagnosis. Specifically, efforts could be directed towards adapting these 
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methodologies for early detection, even before symptom manifestation, to better manage 
agricultural diseases. 

Keywords: plant disease; tomato; kiwi; hyperspectral spectroscopy; gaussian process classification; 
wavelength selection; ARTMO 
 

1. Introduction 
Plant diseases are a major threat to worldwide agriculture, causing substantial yield 

losses and impacting food security and quality [1]. Timely and accurate disease diagnosis 
is crucial for implementing effective management strategies in sustainable agriculture. 
These practices aim to contribute to more effective and precise plant protection measures 
due to more customized phytosanitary treatments regarding time, location, product used, 
and dose. However, traditional diagnostic methods often fail to detect diseases before 
visible symptoms emerge, limiting their effectiveness in proactive disease management 
[2,3]. Innovative plant disease monitoring and diagnosis methods involving different 
state-of-the-art sensing approaches have recently been explored for precise and in vivo 
and in situ disease assessment. Recent strides in innovative sensing techniques, 
particularly hyperspectral spectroscopy (HS), offer promising avenues for precise disease 
diagnosis [2,4]. 

Changes in the host plant’s physiological, biochemical, and metabolic properties 
caused by pathogens result in altered optical and metabolic features. Proximal optical 
sensors, including HS devices, can detect these changes, along with the monitorization of 
the spatiotemporal pattern of disease development [5], which allows the development of 
several methods of diagnosis. 

Plant pigments are one of the first host compounds to be affected and degraded by 
pathogens, resulting in changes in plant’s optical behavior. Chlorophylls (Chl) a and b are 
the major pigments of plants (accounting for almost 65% of the total pigment content), 
and their spectral absorption range is mostly concentrated in the 410–430 and (Chl a), 450–
470 nm (Chl b), and 600–690 nm (Chl a) bands, located in the blue and red regions, 
respectively. Green radiation, on the other hand, is less strongly absorbed. In healthy 
plants, chlorophyll concentration is approximately ten times higher than that of other 
pigments (e.g., carotenoids and flavonoids, among others), thus masking out the specific 
absorption features of these compounds [6] . 

With the disease development and onset, other photosynthetic pigment levels are 
increasingly more affected, namely carotenoids and polyphenols. The first type of 
pigment absorbs most effectively between 440 and 480 nm and extends its absorption 
action into the blue-green region. They include compounds such as yellow lutein 
pigments, β-carotenes, and xanthophylls (e.g., violaxanthin and zeaxanthin). In turn, 
polyphenols (e.g., brown pigments) start to appear only when the plant tissues begin to 
necrose [7–10]. They include compounds such as flavonoids and anthocyanins, which 
absorb radiation from blue to red spectral ranges with higher intensity in the shorter 
wavelengths [7–10]. 

Moreover, the optical spectral properties of host plants are also affected in the Near-
Infrared (NIR) region (700–1300 nm) and short-wave infrared (SWIR, 1000–2500 nm) when 
plant leaves structure (e.g., cell layers, cell size, structural components—lignin, and 
proteins, among others), air spaces, and water content is affected [9,11]. 

In this regard, it is possible to see those changes in plant leaves’ biochemistry and 
cellular composition result in changes in a plant’s spectral characteristics. Nevertheless, it 
is important to mention that a leaf’s spectral properties are not a static phenomenon over 
time. Indeed, they continuously change during growth, maturity, senescence, decay, or 
stress (e.g., plant disease development). 
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Hence, despite the potential of HS in plant disease diagnosis, challenges persist in 
harnessing its full potential due to the complexity of hyperspectral data and the need for 
efficient processing methodologies to extract relevant information [12,13]. Addressing 
these challenges is crucial to unlocking the full potential of HS in improved disease 
diagnosis and management strategies. 

HS is known for acquiring data in narrow wavebands (<10 nm), with high precision 
and resolution, and being able to capture detailed information from the electromagnetic 
spectrum [12]. Nevertheless, despite this evident benefit, the measurement of this large 
number of variables (i.e., features, wavelengths) results in the data’s high dimensionality, 
which increases the complexity of its processing to produce relevant information. 
Furthermore, the spectral data assessed in near-contiguous variables likely present similar 
or overlapping information. This potential data redundancy also increases the complexity 
of its analysis interpretation and the chance of overfitting occurrence [14]. Dimensionality 
reduction methods were developed to mitigate the effects of high dimensionality and 
collinearity, mostly based on identifying and extracting the most relevant and distinctive 
spectral features (without losing relevant information) [13]. 

The computation of spectral Vegetation Indices (VIs) is one of the most widespread 
Feature Selection (FS) approaches for retrieving crop biophysical information, especially 
due to their intrinsic simplicity. It consists of a user-defined mathematical combination of 
two or more wavelengths that improves crop biophysical information extraction from 
data, i.e., identifying spectral relationships that unravel specific plant properties. Hence, 
VIs are considered as parametric, physiological-driven methods. Nonetheless, it is 
important to note that when narrowband hyperspectral data are used, Vis can be a 
restrictive formulation, since they only use some of the available wavelengths, failing to 
leverage the complete wealth of information in the continuous spectral data [15]. Besides 
that, some of the VIs that have already been developed were designed to estimate specific 
vegetation traits (e.g., plant biomass and photosynthetic pigments research), which might 
not entirely suit the assessment of plant disease. The ones developed for studying specific 
plant–pathogen interactions (e.g., [16]) are usually only applicable in analyzing that 
specific pathosystem (usually in similar environmental conditions), mostly in 
symptomatic conditions, and are unsuitable for generalized disease assessment. Disease 
studies are usually modeled as a classification approach, which adds difficulty to the 
application of the index. 

Another emerging strategy, recently employed for exploring hyperspectral data, is 
applying different advanced techniques (e.g., machine learning algorithms) that search 
for relationships between spectral data and biophysical variables (also known as 
nonparametric, data-driven methods). They mostly consider all the spectral features 
measured by the hyperspectral sensors, which constitutes an important benefit compared 
to the VIs [17]. These methods can be based on linear or nonlinear predictive methods. 

Furthermore, automated band analysis tools have been developed in the domain of 
machine learning classification algorithms (MLCAs). Following a band selection method 
earlier introduced in regression [18], this paper introduces an automated spectral band 
analysis tool (BAT) based on Gaussian process classification (GPC) for the spectral 
analysis of bacterial plant diseases. Briefly, starting from using all bands, GPC-BAT 
sequentially removes the least informative band in GPC until one band is left. By tracking 
the accuracy of statistics, GPC-BAT allows (1) to identify the most informative bands 
relating spectral data to a classification problem, and (2) to find the least number of bands 
that preserve optimized accurate classification tasks. 

Hence, despite the development and availability of diverse methods for extracting 
meaningful spectral information in the context of plant bacterial disease diagnosis, it is 
necessary to address their suitability and performance when leading with different 
pathosystems. Therefore, the main objective of the present work aimed to explore, test, 
and validate the application of proximal optical sensed data for the early assessment and 
diagnosis of bacterial plant diseases. In this regard, the specific goals of this study were: 
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(i) explore the suitability of different VIs for extracting relevant spectral features for per-
forming plant bacterial disease diagnosis, using both reflectance and transmittance hyper-
spectral data (physiological driven approach); (ii) investigate the potential of a GPC-BAT 
for performing plant bacterial disease diagnosis using reflectance and transmission hy-
perspectral data (data-driven approach); (iii) compare and contrast the performance of VIs 
and GPC-BAT in discerning spectral features crucial for differentiating between healthy 
and diseased plant tissues; and (iv) uncover the biological significance of the identified 
spectral features concerning specific plant–pathogen interactions and their implications 
for early disease diagnosis. To achieve this, two case studies were conducted on tomato 
(controlled conditions) and kiwi (field conditions) plants, aiming to explore the capabili-
ties of the developed approaches for performing bacterial disease diagnosis in distinct 
species in different environmental conditions. 

2. Materials and Methods 
The present analysis focuses on two case studies: one in controlled environmental 

conditions using hyperspectral transmittance sensing data and the second in field condi-
tions using hyperspectral reflectance sensing data. The first case consisted of collecting 
spectral data in healthy tomato leaflets’ tissues, along with measurements in inoculated 
(diseased) tissues with Pseudomonas syringae pv. tomato (responsible for the bacterial speck 
disease of tomato), and tissues inoculated with Xanthomonas euvesicatoria (responsible for 
the bacterial spot disease of tomato). The second case assessed spectral data in nonsymp-
tomatic and symptomatic kiwi leaf tissues affected by the bacterial canker of kiwi caused 
by Pseudomonas syringae pv. actinidiae. In both case studies, multiple spectral samples were 
gathered within an experimental setup at various time intervals, encompassing all the 
plants involved in the study. 

The hyperspectral data were then used in two modeling approaches involving a 
physiologically driven parametric approach based on VIs and a nonparametric approach 
based on a Gaussian Process Classification Banda Analysis Tool. 

2.1. Case Studies—Experimental Design for Kiwi and Tomato 
2.1.1. Tomato Bacterial Diseases—Indoor Assay 

An indoor assay was performed in a walk-in growth chamber (temperature of 25 to 
27 °C, humidity of 60% approximately, photoperiod of 12/12 h, and light intensity of 30 
W) with nine tomato (Solanum lycopersicum L.) plants of the variety Cherry in 200 mL pots 
with a commercial potting substrate. Groups of three plants were formed and physically 
separated from each other to avoid cross-contamination; one group was sprayed with dis-
tilled water (Control, healthy class), the second group with a bacterial suspension 
(1 × 10  cells/mL) of Pseudomonas syringae pv. tomato DC 3000 (Pst), and the last group 
with a suspension (1 × 10  cells/mL) of Xanthomonas euvesicatoria (Xeu), following a pre-
viously developed protocol [19] (Figure 1). Plant phenotypical observations were per-
formed daily to assess symptom development for 10 days (Table 1). 

The success of artificial bacterial inoculation was assessed by the performance of a 
viability assay and through a colony polymerase chain reaction (PCR), as stated in [19]. 
PCR analyses were performed at 48, 72, and 96 h after bacterial inoculation, as well as in 
the last assay date. The growth of Pst and Xeu in their appropriate selective (KB and YDC, 
respectively) media demonstrated that bacteria were viable at the moment of inoculation. 
PCR results proved the infection success, where the formation of bacteria-specific bands 
for each pathogen species, namely a 200-base pair (bp) fragment for Pst and a 713 bp frag-
ment for Xeu, were observed. No PCR amplification was observed from samples collected 
from Control samples, assuring they were healthy until after the last spectral measure-
ment. The first macroscopic lesions were detected in Pst-inoculated samples 3 days after 
inoculation (DAI) and in Xeu-inoculated samples at 8 DAI. 
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Hyperspectral transmittance point-of-measurement (POM) data were captured in-
side a walk-in chamber using a setup composed of a mini spectrometer (Hamamatsu Pho-
tonics K.K. TM Series C11697MB) with a wavelength range of 200–1100 nm, and a spectral 
resolution of 0.6 nm. This setup includes a transmission optical fiber bundle (FCR-
7UVIR200-2-45-BX, Avantes, Eerbeek, The Netherlands), a laptop for data storage and 
processing, and a white LED spanning from 390 to 800 nm. A specialized evaluation soft-
ware (SpecEvaluationUSB2.exe, Hamamatsu Photonics K.K., Hamamatsu, Japan) was 
used for data acquisition. Further details about the setup can be found in previous work 
[19] (Figure 1). Subsequently, a resampling technique of approximately 10 nm was em-
ployed to minimize data redundancy. A dataset comprising 2346 samples (spectral obser-
vations) encompassing 51 wavelength features (spectral variables) was selected for subse-
quent analysis. The spectral measurements were later classified according to the leaflets’ 
plant treatment group, including the classes: (i) Control (healthy); (ii) inoculated with Pst; 
and (iii) inoculated with Xeu (Table 1). This dataset can be found in [20]. 

Table 1. Spectral data characterization of the measurements randomly performed on tomato leaflets 
(walk-in chamber—controlled conditions, transmittance) and kiwi leaves (in-field conditions, reflec-
tance), showing the number of assessment dates, plants, and observations (classified according to 
visual phenotyping observations). 

 N° Dates N° Plants * N° NS N° S Total 
Walk-in assay 

Tomato 8 9 1365 981 2346 
Con  3 809 --- 809 
Pst  3 93 634 727 
Xeu  3 463 347 810 

In-field assay (2 sites) 
Kiwi 9 20 281 223 504 

Control (healthy), Pst—Inoculated with Pseudomonas syringae pv. tomato, Xeu—Inoculated with Xan-
thomonas euvesicatoria, NS—nonsymptomatic, S—symptomatic. * Several measurements were taken 
over time on different leaflets on each plant. 

 
Figure 1. Experimental setup of the bacterial inoculation assay performed on tomato leaves (walk-
in experimental conditions), and in kiwi leaves (field experimental conditions). In both cases, spec-
tral measurements were performed on the adaxial side of the leaves. In the tomato case study, they 
were, furthermore, performed on the 4th, 5th, and 6th leaves of the assay plants, in a dark room, 
using a spectrometer (measuring transmittance data) combined with an optical fiber bundle with a 
reflection probe. A white LED was placed beneath each leaflet. In kiwi, spectra collection was per-
formed in random points of leaves casually selected, using a passive spectroradiometer (measuring 
reflectance data). 
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2.1.2. Kiwi Bacterial Diseased—Field Assay 
An assay was performed in field conditions in commercial orchards of kiwi (Actinidia 

deliciosa) of the cultivar ‘Bo.Erika’, located in Guimarães, Portugal. Macroscopic signs (i.e., 
symptoms visual to the human eye) of bacterial canker caused by Pseudomonas syringae 
pv. actinidiae (Psa) were assessed in feminine plants. Plant visual phenotyping was per-
formed, classifying leaves into nonsymptomatic (NS, when no macroscopic visual symp-
toms were present) or symptomatic (S, when macroscopic symptoms were visible), as de-
scribed in [21] (Table 1). The detection of Psa in Kiwi samples was carried out by dedicated 
PCR following the EPPO guideline [22], as detailed by Mariz-Ponte et al. [23]. These sam-
ples were collected before the spectral assay and proved the presence of the bacteria in 
study in the orchards under study. 

Hyperspectral reflectance measurements were collected in situ, in vivo leaves, using 
a portable spectroradiometer (ASD FieldSpec® HandHeld 2, ASD Instruments, Boulder, 
CO, USA) with a wavelength range of 325 to 1075 nm, spectral resolution of 1 nm, and 
field-of-view conical angle of 25° (Figure 1). The detailed procedures followed during the 
spectral acquisition assay can be found in previous research [21]. In brief, three leaves 
were chosen per plant, and their spectral signatures were collected at different time points, 
resulting in 504 samples (spectral observations) and 751 spectral features (spectral varia-
bles). Binary classification of leaves’ spectra was made according to the phenotype of the 
leaves resulting in the binary classes NS and S (Table 1). This dataset can be found in [24]. 

2.2. Modeling Approaches 
Parametric Approach—Vegetation Indices (VIs) 

Hyperspectral data, including both transmittance and reflectance spectra, usually 
have an overlapping nature and multi-scale interference [25]. To address this issue, a se-
lection of 33 spectral VIs, encompassing 42 distinct wavelength combinations, was com-
puted to identify the most relevant wavelengths or bands for discriminating healthy and 
diseased biological tissues (Table 2) (Figure 2). This selection process aimed to integrate 
VI formulations commonly used to assess different crop traits as well as crops’ physiolog-
ical conditions. The variables used in each formula corresponded to default values explic-
itly mentioned in the formula (Table 2) or values chosen by the authors, namely: 450 nm 
(representing the blue region of the electromagnetic spectrum), 550 nm (green), 680 nm 
(red), 700 nm (red edge), and 800 nm (NIR). The feature representing the blue region was 
elected due to being related to pigment absorption features (~450 nm, e.g., chlorophylls 
and carotenoids) [26,27] and a blue fluorescence maximum [28]. The 550 nm wavelength 
was selected because reflectance data correspond to the green peak (or green edge), where 
reflectance values can be more than twice the surrounding wavelengths [29,30]. This value 
is also sensitive to chlorophyll content and has been explored to detect plant stress-in-
duced changes and pigment content variations [31,32]. Instead, 680 nm was chosen be-
cause it corresponds to the reflectance minimum in the Red region [29,30]. The red-edge 
value (700 nm) was used because it is highly sensitive to changes in chlorophyll-a absorp-
tion and is used to detect subtle changes related to plant physiological status and growth 
stage transitions [31,33]. The 800 nm spectral feature was chosen because it is related to 
the influence of changes in leaf structure and density, but it is not sensitive to pigment 
level changes [34]. Furthermore, all these wavelengths have been extensively used in for-
mulating multiple VIs, as seen in Index Data Base (IDB), a database for remote sensing 
indices [35,36]. 
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Figure 2. Conceptual framework for the predictive modeling approaches of bacterial diseases of 
tomato and kiwi. 

A Flexible Discriminant Analysis (FDA), which applied predictive modeling with a 
built-in Feature Selection (FS), was then performed to evaluate the most significant VIs 
used to discriminate between spectral data measured in (i) healthy tomato tissues (Con-
trol, Con), diseased tomato tissues inoculated with Pst, and diseased tomato tissues in-
fected with Xeu; and (ii) nonsymptomatic (i.e., without macroscopic lesions, NS) and 
symptomatic (S) kiwi tissues (Figure 2). The datasets, encompassing both tomato and kiwi 
cases, were split according to the holdout method [37], which involved partitioning into a 
training set comprising 70% of the data and a testing set with the remaining 30% of the 
observations [38]. 

Model evaluation was employed through a resampling strategy involving repeated 
10-fold cross-validation to estimate accuracy. A more detailed explanation can be found 
in [37–39]. Model performance was then evaluated by assessing different classification 
model metrics, including the confusion Matrix (CM), accuracy score, kappa coefficient, 
and F1-score [19]. 

The CM is a 2D-matrix representation of the actual classes of the collected spectral 
samples in one dimension and the predicted class values in the other. When the predicted 
class values are equal to the actual value, they are considered correct classifications and 
localized in the CM’s diagonal. The remaining matrix cells correspond to incorrect classi-
fication predictions, where the predicted value is not coincident with the actual value. The 
class of interest is considered positive, while the other(s) are considered negative. When 
the predicted class is correctly classified as the class of interest, it is considered a true pos-
itive (TP) case. When the predicted class is accurately classified as not belonging to the 
class of interest, it is called a true negative (TN). When the predicted class is wrongly 
classified as the class of interest, it is called a false positive (FP), and when incorrectly 
classified as not fitting the class of interest, it is classified as a false negative (FN). 

The accuracy score (also known as Success Rate) corresponds to the number of right-
fully classified prediction cases divided by the total number of predictions (Equation (1)): 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  (1)

The kappa coefficient (also called Cohen’s kappa) amends the accuracy score by con-
sidering the probability of an accurate prediction occurring by chance alone [37] (Equation 
(2)). Its value can range from zero, indicating an imperfect agreement, to one, the perfect 
agreement between models’ predictions and true values. Kappa values (in percentage) can 
be interpreted as follows: when less than 20%, it is considered a poor agreement; 20% to 
40%, a fair agreement; 40% to 60%, a moderate agreement; 60% to 80%, a good agreement; 
and 80% to 100%, a very good agreement [37]. The kappa coefficient can be estimated 
through the following formula, where Pr(a) represents the proportion of actual agreement 
and Pr(e) refers to the expected agreement between the classifier and the true values, un-
der the hypothesis that they were chosen randomly (Equation (2)): 𝐾𝑎𝑝𝑝𝑎 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑃𝑟(𝑎) − 𝑃𝑟(𝑒)1 − 𝑃𝑟(𝑒)   (2)

The F1-score (also called F-measured) combines the proportion of positive cases that 
are truly positive (Precision) with the number of TP over the total number of positives 
(Recall, which measures how complete the results are) into a single number using the har-
monic mean (Equation (3)): 𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁  (3)

Sensitivity was evaluated, indicating the models’ ability to predict the TP of each 
available class (Equation (4)): 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁  (4)

The Specificity metric was also calculated, since it indicates the models’ suitability for 
predicting TN of each available class (Equation (5)): 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃  (5)

All these computation analyses were made in the software R [40] (v. 4.2.1) using the 
packages ‘caret’ [41] and ‘earth’ [42]. The previous formulae can also be found in [41]. 

Table 2. List of the Spectral Vegetation Indices (VIs) computed in this work, mentioning their for-
mula and reference (when available). 

Vegetation Indices Formula Ref. 
Ashburn Vegetation Index (AVI) 2.0 × 𝑁𝐼𝑅 − 𝑅𝐸𝐷 [43,44] 

Anthocyanin reflectance index (ARI) 
1𝐺𝑅𝐸𝐸𝑁 − 1𝑅𝐸𝐷 [45] 

Blue Green Pigment Index (BGI) 
𝐵𝐿𝑈𝐸𝐺𝑅𝐸𝐸𝑁 - 

Browning Reflectance Index (BRI) 
1𝐺𝑅𝐸𝐸𝑁 − 1𝑅𝐸𝐷𝑁𝐼𝑅  [46] 

Blue/Red Pigment Index (BRI2) 450 nm690 nm [47] 

Canopy Chlorophyll Content Index (CCI) 
𝑁𝐼𝑅 − 𝑅𝐸𝐷 𝐸𝐷𝐺𝐸𝑁𝐼𝑅 + 𝑅𝐸𝐷 𝐸𝐷𝐺𝐸𝑁𝐼𝑅 − 𝑅𝐸𝐷𝑁𝐼𝑅 + 𝑅𝐸𝐷  [48–53] 

Chlorophyll Green (Chlgreen) 𝑁𝐼𝑅𝐺𝑅𝐸𝐸𝑁 ( )
 [54] 

Coloration Index (CI) 
𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸𝑅𝐸𝐷  [55] 
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Chlorophyll Index Green (CIgreen) 
𝑁𝐼𝑅𝐺𝑅𝐸𝐸𝑁 − 1 [56–58] 

Chlorophyll Index Red Edge (CIrededge) 
𝑁𝐼𝑅𝑅𝐸𝐷 𝐸𝐷𝐺𝐸 − 1 [56–58] 

Chlorophyll vegetation index (CVI) 𝑁𝐼𝑅  𝑅𝐸𝐷𝐺𝑅𝐸𝐸𝑁  [59] 

Double Difference Index (DD) (749 nm − 720 nm) − (701 nm − 672 nm) [60,61] 

Enhanced Vegetation Index (EVI) 2.5 × 𝑁𝐼𝑅 − 𝑅𝐸𝐷(𝑁𝐼𝑅 + 6𝑅𝐸𝐷 − 7.5𝐵𝐿𝑈𝐸) + 1 [58,62] 

Green atmospherically resistant vegetation in-
dex (GARI) 

𝑁𝐼𝑅 − (𝐺𝑅𝐸𝐸𝑁 − (𝐵𝐿𝑈𝐸 − 𝑅𝐸𝐷)𝑁𝐼𝑅 − (𝐺𝑅𝐸𝐸𝑁 + (𝐵𝐿𝑈𝐸 − 𝑅𝐸𝐷) [57,63] 

Green-Blue NDVI (GBNDVI) 
𝑁𝐼𝑅 − (𝐺𝑅𝐸𝐸𝑁 + 𝐵𝐿𝑈𝐸)𝑁𝐼𝑅 + (𝐺𝑅𝐸𝐸𝑁 + 𝐵𝐿𝑈𝐸) [64] 

Global Environment Monitoring Index (GEMI) 
𝑛 × (1 − 0.25𝑛) − 𝑅𝐸𝐷 − 0.1251 − 𝑅𝐸𝐷  𝑛 = 2 × (𝑁𝐼𝑅 − 𝑅𝐸𝐷 ) + 1.5 × 𝑁𝐼𝑅 + 0.5 × 𝑅𝐸𝐷𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5  

[65] 

Simple Ratio Greenness Index (GI) 
𝐺𝑅𝐸𝐸𝑁𝑅𝐸𝐷  [61,66] 

Green Normalized Difference Vegetation In-
dex (GNDVI) 

𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁 [56,58] 

Tasseled Cap—vegetation (GVI) −0.2848 × 𝐵𝑙𝑢𝑒 − 0.2435 × 𝐺𝑟𝑒𝑒𝑛 − 0.5436 × 𝑅𝑒𝑑 +0.7243 × 𝑁𝐼𝑅 + 0.0840 × 𝑆𝑊𝐼𝑅 − 0.1800 × 𝑆𝑊𝐼𝑅  [67,68] 

Infrared percentage vegetation index (IPVI) 
𝑁𝐼𝑅𝑁𝐼𝑅 + 𝑅𝐸𝐷2 × (𝑁𝐷𝑉𝐼 + 1) [69,70] 

Log Ratio (LogR) 𝑙𝑜𝑔 𝑁𝐼𝑅𝑅𝐸𝐷  - 

Misra Green Vegetation Index (MGVI) −0.386 × 𝐺𝑅𝐸𝐸𝑁 − 0.530 × 𝑅𝐸𝐷 + 0.535 × 𝑅𝐸𝐷𝐸𝐷𝐺𝐸+ 0.532 × 𝑁𝐼𝑅 [44,71] 

Modified NDVI (mNDVI) 
𝑁𝐼𝑅 − 𝑅𝐸𝐷𝑁𝐼𝑅 + 𝑅𝐸𝐷 − 2 × 𝐵𝐿𝑈𝐸 [61,72] 

Modified Simple Ratio (mSR) 
𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸 [61,70] 

Modified Simple Ratio 2 (mSR2) 
𝑁𝐼𝑅𝑅𝐸𝐷 − 1𝑁𝐼𝑅𝑅𝐸𝐷 + 1 [73] 

Normalized Difference NIR/Red Normalized 
Difference Vegetation Index (NDVI) 

𝑁𝐼𝑅 − 𝑅𝐸𝐷𝑁𝐼𝑅 + 𝑅𝐸𝐷 [74,75] 

Normalized Green (NG) 
𝐺𝑅𝐸𝐸𝑁𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐺𝑅𝐸𝐸𝑁 [68] 

Normalized Near Infrared (NNIR) 
𝑁𝐼𝑅𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐺𝑅𝐸𝐸𝑁 [68] 

Hyperspectral perpendicular VI (PVIhyp) 
𝑁𝐼𝑅 − 𝑎 × 807 − 𝑏(1 + 𝑎 ) .  𝑎 = 1.17, 𝑏 = 3.37 

[68] 

Plant Senescence Reflectance Index (PSRI) 
𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸𝑁𝐼𝑅  [76,77] 

Reflectance at the inflection point (Rre) 
𝑅𝐸𝐷 + 𝑁𝐼𝑅2  [78] 

Red-Edge Stress Vegetation Index (RVSI) 
718 + 7482 − 733 - 

Structure Intensive Pigment Index (SIPI) 
𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸𝑁𝐼𝑅 − 𝑅𝐸𝐷  [60,66] 

Simple Ratio (SR) NIR/RED  
𝑁𝐼𝑅𝑅𝐸𝐷 - 
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2.3. ARTMO Software 
The Automated Radiative Transfer Models Operator (ARTMO) is a modular 

MATLAB GUI toolbox initially developed for automating the simulation of radiative 
transfer models (RTMs) [79]. This comprehensive toolbox integrates various leaf and can-
opy RTMs alongside essential tools for semi-automated retrieval of biophysical and bio-
chemical variables. ARTMO (v. 3.31) is connected to a relational SQL database manage-
ment system (MySQL, version 5.5 or 5.6; local installation required) for storing all gener-
ated data (i.e., simulations and statistical results) and trained models along with metadata, 
enabling the re-execution of earlier models or simulations. An initial version of the ma-
chine learning classification algorithm (MLCA) toolbox was introduced in version 3.29, 
and this functionality has been expanded in subsequent releases. 

The current official version (v.1.02) of the MLCA toolbox incorporates 20 supervised 
MLCAs belonging to the principal families of supervised classifiers, predominantly affil-
iated with machine learning methodologies. Note that this initial version is limited to 
pixel-based classifiers, implying that object-based subpixel-based or scene-based deep 
learning classifiers have not been incorporated. Nevertheless, pixel-based classifiers ena-
ble the learning and characterization of intricate spectra. 

Supervised classifiers are traditionally classified into parametric and nonparametric 
methods. Parametric methods are grounded in probabilistic theories, modeling the deci-
sion boundaries between classes from a fixed number of parameters, independent of the 
number of samples, employing global criteria for classification [80]. By contrast, nonpar-
ametric methods guide the class grouping based on the digital number (single band/im-
age) or spectral data (multi- and hyperspectral reflectance or transmittance). The spectral 
value distribution is independent and focused on the local data structure, requiring a sub-
stantial set of samples for the classification process [81]. 

Arguably, one of the most promising nonparametric classifiers is the Gaussian pro-
cess (GP) classification. GPs are stochastic processes where each random variable follows 
a multivariate normal distribution [82]. The goal of GP classification is to learn a mapping 
from the input data (e.g., spectral reflectance or transmittance values) to their correspond-
ing classification label (e.g., plant health group type), which can then be used on new, 
unseen spectral measurements (Figure 2). When the GP is developed with kernel methods 
[83], it allows mapping the original data into a possibly infinite-dimensional space [84]. In 
this space, the input–output relationship can be better estimated as the GP can consider 
more complex and flexible functions than the linear models. This enables the GP to cap-
ture intricate relationships between the spectral data and the health crop phenotype, lead-
ing to more accurate classification results. Due to its probabilistic framework, the GP pro-
vides uncertainty estimation per sample. This means that for each spectral measurement, 
the GP can provide a measure of how confident it is in its classification prediction. This 
uncertainty information can inform decision making, allowing users to be more or less 
confident with the inferred classification label (e.g., see [15]). 

Machine Learning Approaches—Gaussian Process Classification (GPC-BAT) 
The GP has another advantage of being capable of using more sophisticated kernel 

functions than the standard linear kernel or the radial basis function (RBF) kernel equation 
(Equation (6)), which can be optimally tuned through likelihood maximization: 

𝑘 𝑥 , 𝑥 =  𝑒𝑥𝑝 − 𝑥 − 𝑥2𝜎   (6)

where 𝑥  and 𝑥  represent two spectra, σ is the variance, and 𝑥 − 𝑥  is the Euclidean 
distance between the two spectra 𝑥  and 𝑥  [18,82]. 

In the classification case, the output values of 𝑘  are discrete (±1); this causes the 
likelihood function to be non-Gaussian, and then some approximations should be per-
formed [85]. We chose the Laplace approximation which performs well and is robust. One 
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notable kernel function is the automatic relevance determination (ARD) kernel equation 
(Equation (7)): 𝐾 𝑥 , 𝑥 =  exp − 12 𝑥 , 𝑥 𝑥 , 𝑥  (7)

where Σ is a diagonal matrix, whose diagonal tries are constituted by 𝜎 , … , 𝜎  param-
eters to weight each input dimension [18,82]. This kernel covariance function requires one 
parameter per input feature; it can be optimized under that framework, and it allows 
providing a band ranking based on their optimal values. 

Following the rationale as presented in Verrelst et al. (2016) [18] for GP regression, a 
GPC-based band ranking feature has been implemented into a so-called band analysis 
tool (i.e., GPC-BAT). In short, we employ a simplified and general iterative backward 
greedy algorithm to identify the most informative bands. This algorithm assesses the im-
pact of each band on the prediction error in the context of the remaining bands. At each 
iteration, the algorithm removes the band with the highest uncertainty σb, thereby re-
training the GPC model with the remaining bands. This is referred to as sequential back-
ward band removal (SBBR). The SBBR algorithm is analogous to recursive feature elimi-
nation (RFE), a technique earlier presented with support vector machines or random for-
ests. In RFE, the feature with the lowest ranking score is eliminated, iteratively removing 
insignificant features until only the most relevant ones remain (e.g., [86–89]). This SBBR 
approach allows us to pinpoint the bands that most strongly influence the prediction of 
our target classes. These bands provide valuable insights into the spectral characteristics 
that best capture the sensitivity of the classes of interest, e.g., healthy and diseased groups. 

A principal application of GPC-BAT is that the algorithm identifies how many bands 
are minimally needed in order to retain robust results and informs us about the most sen-
sitive wavelengths. Accordingly, the output GUI delivers the following band analysis out-
puts: (1) overall accuracy (OA) statistics as a function of #bands plotted over the sequen-
tially removed bands until only two bands are left and (2) associated wavelengths selected 
by the tool (Figure 3). 

 
Figure 3. Schematic flow diagram of GPC-BAT within ARTMO’s MLCA toolbox, adapted from [18]. 

3. Experimental Results 
3.1. Spectral Vegetation Indices—Parametric Approach 

This section presents the predictive classification results of the approach combining 
the calculation of different VIs (Table 3) followed by the computation of the FDA model, 
which allowed (i) the classification of tomato leaflet spectral samples collected on healthy 
(Control, Con) and both inoculated diseased tissues with Pst and Xeu bacteria; and (ii) the 
classification of kiwi leaf spectral samples measured on nonsymptomatic (NS) and symp-
tomatic (S) diseased tissues. 
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Table 3. Cross-validation statistics of the Flexible Discriminant Analysis (FDA) using the validation 
set of the Vegetation Indices (VIs) computed in the hyperspectral data collected on tomato leaflet 
tissues (transmittance) and kiwi leaf tissues (reflectance). Model metrics by class are also provided. 

 Overall classes Metrics per class 
Class Accuracy (%) Kappa (%) Precision (%) Sensitivity (%) Specificity (%) F1 (%) 
Tomato (703 observations)    
Con 

63.33 
44.77 63.67 76.03 77.22 69.30 

Pst  75.66 65.60 90.52 70.27 
Xeu  52.44 48.56 76.74 50.43 
Kiwi (504 observations)     
NS/S 71.33 41.73 67.69 66.67 75.00 67.18 

Con—Control (healthy), Pst—Inoculated with Pseudomonas syringae pv. tomato, Xeu—Inoculated 
with Xanthomonas euvesicatoria, NS—nonsymptomatic, S—symptomatic. 

3.1.1. Tomato Disease in Walk-In Chamber 
Table 2 presents the results of an overall accuracy of 63.30% (proportion of correctly 

classified instances) and a kappa coefficient of 44.70 (which indicates agreement between 
the predicted and actual classes beyond random occurrence) for the validation dataset 
(Table 3, detailed information about the training results is present in Appendix A Table 
A1). The model metric analysis per class revealed that samples inoculated with Pst bacte-
ria presented good precision (75.66%), sensitivity (65.60%), specificity (90.52%), and F1-
score (70.27%) (Table 3). These metrics indicate the model’s suitability for accurately per-
forming correct predictions for both classes (healthy vs. inoculated), correctly identifying 
instances of these classes, distinguishing samples that do not belong to these classes, and 
a good balance in capturing true positives and avoiding false positives (Table 3). The con-
trol class presented a higher sensitivity, highlighting the model’s efficiency in correctly 
identifying healthy samples. In contrast, the Xeu class had a reduced precision (52.44%), 
sensitivity (48.56%), and F1-score (50.43%), which translates into a higher likelihood of 
false positives in Xeu prediction, a more probable miss of a considerable proportion of 
positive instances of this class, and an imbalance in assessing true positives and avoiding 
false positives (Table 3). Therefore, although the FDA model exhibits good capabilities in 
differentiating samples measured in healthy (Control) and Pst-diseased tissues, there is 
potential for improving the identification of spectra captured on Xeu-inoculated tissues 
(Table 3). 

A fraction of these false positives may be accounted for by the sensitivity gap between 
digital and visual phenotyping methods. These results are based on visual phenotyping, 
which only allows samples with visible symptoms to be identified. However, Xeu-inocu-
lated plants may present early changes in their optical properties long before the appear-
ance of symptoms, which could justify some of the false positive cases recorded. 

CM results indicate that predictions of samples collected on tissues inoculated with 
Xeu were more challenging to the model when compared to the healthy and inoculated 
with Pst ones, presenting a higher number of wrong classifications than in the remaining 
classes studied (Table 4, for both training and validation sets). In fact, the model only cor-
rectly identified 49.63% of the total Xeu samples. The majority of the remaining Xeu sam-
ples were wrongly inputted to the Control class. This can be related to the fact that mac-
roscopic symptoms only appeared 8 DAI, resulting in a high number of nonsymptomatic 
samples (presenting a phenotype similar to the healthy ones), whose spectral signature is 
more similar to healthy samples than Pst-diseased ones. In contrast, approximately 
74.17% of the total healthy (Control) samples were accurately classified and 67.13% of the 
total number of samples inoculated with Pst (Table 4). 
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Table 4. Confusion Matrix results of the Flexible Discriminant Analysis (FDA) using the Vegetation 
Indices (VIs) computed in the hyperspectral data collected on tomato leaflet tissues (transmittance) 
and kiwi leaf tissues (reflectance). The predicted samples of each class (column) that were correctly 
classified for each true class (row) for the spectral data collected on tomato leaflets tissues (left) and 
kiwi leaf tissues (right) are shown. The classes used in the tomato case study were control samples 
(healthy, Con), samples inoculated with Pseudomonas syringae pv. tomato (Pst), and samples inocu-
lated with Xanthomonas euvesicatoria (Xeu). In turn, the binary classes nonsymptomatic (NS) and 
symptomatic (S) were applied to the kiwi case study. 

  Predicted Class—Tomato  Predicted Class—Kiwi 

  Training Validation  Training Validation 

  Con Pst Xeu Con Pst Xeu  NS S NS S 

Tr
ue

 
C

la
ss

 Con 416 10 141 184 4 54 NS 157 40 63 21 
Pst 52 345 112 22 143 53 S 50 107 22 44 
Xeu 193 90 284 83 42 118      

3.1.2. Kiwi Bacterial Canker Disease in the Field 
In turn, when the IVs-based modeling approach was applied in the binary classifica-

tion of nonsymptomatic (NS in Table 3) and symptomatic (S in Table 3) samples of the 
validation set taken on kiwi leaves in field conditions, the overall accuracy achieved was 
71.33%. The kappa value of 41.73% demonstrates the model’s effectiveness in classifying 
the two classes (results for the training set can be seen in Supplementary Materials Table 
S1). The model metrics for the spectra collected in nonsymptomatic and symptomatic tis-
sue’s spectra revealed that the model acceptably identifies a significant proportion of true 
positive samples of these classes, classifies samples belonging to both classes, and has a 
good ability to correctly identify instances that do not belong to the class in analysis, along 
with a good balance between finding positive cases and avoiding false positives (Table 3). 

The CM values show that the model has less difficulty predicting nonsymptomatic 
samples correctly classifying 78.28% of the total samples compared to the symptomatic 
samples (67.71%) (Table 4). 

3.2. GPC-BAT Performance with Original Training Data and Further Validation 
This section presents the predictive classification results of the approach using the 

ARTMO GPC-BAT tools, which also allowed (i) the classification of tomato leaflet spectral 
samples collected on healthy (Control, Con), Pst-inoculated, and Xeu-inoculated tissues 
and (ii) the classification of kiwi leaf spectral samples measured on nonsymptomatic (NS) 
and symptomatic (S) tissues. 

3.2.1. Tomato Diseases in Walk-in Chamber 
For the selected 23 wavelengths (from the 51 available) for the tomato case study and 

577 wavelengths (from the 611) for the kiwi case study, the models presented the best 
classification metrics (Table 5). The prediction for discriminating the different classes de-
fined for the tomato dataset achieved a maximum overall accuracy of 70.46% and kappa 
of 55.60%. Furthermore, metric evaluation per class provides insights into the model’s 
performance in distinguishing between healthy (Con in Table 5) and diseased instances 
(Pst and Xeu in Table 5). In terms of Precision (80.72 vs. 75.24%), Specificity (88.75 vs. 
89.14%), and F1-values (73.87 vs. 77.31%), the Control and Pst-inoculated classes pre-
sented good metric levels. These results highlight the model’s accuracy in identifying pos-
itive predictions for both classes, distinguishing samples that do not belong to these re-
spective classes and achieving a good balance in capturing true positives and avoiding 
false positives (Table 5). The Xeu-inoculated class, compared with Pst, showed lower val-
ues of Precision (55.93 vs. 75.24%) and F1-score (60.04 vs. 71.31%), indicating a higher like-
lihood of false positives in their prediction and an imbalance in assessing true positives 
and avoiding false positives. This class had a good Specificity value, similar to the other 
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two, suggesting the model’s performance in distinguishing spectral measurements that 
do not belong to it (Table 5). Regarding Sensitivity, the Pst class presented the higher level, 
indicating the model’s effectiveness in correctly identifying instances of this class. How-
ever, the values for the two remaining classes were lower, implying that the model may 
miss a notable proportion of positive instances in the Control and Xeu classes (Table 5). 

The CM also demonstrates that 81% of the healthy and 75% of Pst-inoculated samples 
were correctly classified. Similar to the previous approach (based on VIs), the GPC-BAT 
also faced more difficulty in accurately classifying the inoculated Xeu samples, with only 
predicting 56% of the cases correctly (Table 6). Hence, while the model demonstrates 
strong capabilities in distinguishing samples collected in Control (healthy) tissues and 
those measured on Pst-diseased tissues, it needs to be enhanced to accurately identify 
spectra collected on Xeu-diseased tissues (Table 5). 

Table 5. Cross-validation statistics of the Gaussian Process Classification (GPC) models developed 
using hyperspectral data collected on tomato leaflet tissues (transmittance) and kiwi leaf tissues 
(reflectance). 

 Overall Classes Metrics Per Class 
Class Accuracy (%) Kappa (%) Precision (%) Sensitivity (%) Specificity (%) F1 (%) 

Tomato      
Con 

70.46 
55.60 80.72 68.09 88.75 73.87 

Pst  75.24 79.51 89.14 77.31 
Xeu  55.93 64.81 78.32 60.04 

Kiwi      
NS 75.40 49.95 79.36 77.16 73.02 78.25 
S 70.40 73.02 77.16 71.69 

Con—Control (healthy), Pst—Inoculated with Pseudomonas syringae pv. tomato, Xeu—Inoculated 
with Xanthomonas euvesicatoria, NS—nonsymptomatic, S—symptomatic. 

Table 6. Confusion Matrix of the GPC model results show the predicted samples of each class (col-
umn) correctly classified for each true class (row) for the spectral data collected on tomato leaflets’ 
tissues and kiwi leaf tissues. The classes used in the tomato case study were Control samples 
(healthy, Con), samples inoculated with Pseudomonas syringae pv. tomato (Pst), and samples inocu-
lated with Xanthomonas euvesicatoria (Xeu). The binary class nonsymptomatic (NS) and symptomatic 
(S) were applied to the kiwi case study. 

  Predicted Class—Tomato  Predicted Class—Kiwi 

  Training Validation  Training Validation 

  Con Pst Xeu Con Pst Xeu  NS S NS S 

Tr
ue

 
C

la
ss

 Con 595 48 221 653 52 254 NS 232 32 223 66 
Pst 31 512 89 38 547 103 S 21 169 58 157 
Xeu 102 95 419 118 128 453      

3.2.2. Kiwi Bacterial Canker Disease in the Field 
The binary classification performed for the kiwi leaves hyperspectral reflectance 

measurements achieved a maximum overall accuracy of 75.40% and a kappa of 49.95%. 
The model proved effective in both class predictions, allowing the distinction between 
nonsymptomatic (NS in Table 5) and symptomatic (S in Table 5) assessments collected in 
kiwi leaves in field conditions. The model metrics for the spectra collected in nonsympto-
matic and symptomatic tissue’s spectra revealed that the model effectively identifies a 
significant proportion of true positive samples of these classes, a good ability to classify 
instances that do not belong to them correctly, and a well-balanced between identifying 
positive instances and avoiding false positives (Table 5). 

The CM demonstrates that 79% of the nonsymptomatic samples were accurately clas-
sified, along with 70% of the symptomatic samples (Table 6). 
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The GPC model did not perform best for both case studies when all the spectral bands 
were applied. In the tomato case study, the overall accuracy and kappa values when all 
spectral features were used were lower, reaching 69.06% and 53.48%, respectively. Like-
wise, the kiwi case study’s values were 61.90% and 22.50% for accuracy and kappa, re-
spectively. Furthermore, for the kiwi case study, the outcomes were more unstable when 
compared to the model developed with the wavelengths chosen by BAT, presenting a 
higher standard deviation (SD) and processing time (Table 7). In the tomato case study, 
the SD value was lower when all the features were used, but the processing time was al-
most 40% superior (Table 7). 

In terms of selected sensitive wavelengths, when the spectral data collected on kiwi 
were used, GPC profusely selected wavelengths greater than 800 nm (26 of 34 wave-
lengths), these wavelengths (>800 nm) did not prove to be important in the construction 
of the selected VIs. Only PVIhyp (800, 1000 nm) selected wavelengths at 800 nm, but this 
VI has a very modest representation (24.46%) in the distinction between the nonsympto-
matic and symptomatic classes. 

Table 7. Cross-validation statistics of the GPC models developed using hyperspectral data collected 
on tomato leaflet tissues (transmittance) and kiwi leaf tissues (reflectance) were used. 

SD Time (s) FS Wavelengths (nm) 
Tomato 
2.75 819.20 51 All wavelengths (300.09 to 800.34 nm) 

3.32 491.08 23 
430.00, 440.21, 450.04, 460.31, 490.04, 500.00, 510.41, 520.00, 
550.20, 560.31, 570.03, 620.21, 640.35, 650.24, 660.15, 670.08, 
680.02, 690.42, 700.41, 710.41, 740.09, 750.17, 760.26 

Kiwi 
4.49 171.86 611 All wavelengths (400 to 1010 nm) 

3.23 14.80 34 
544, 597, 754, 771, 790, 791, 795, 825, 835, 839, 845, 850, 851, 
860, 864, 866, 869, 881, 883, 888, 893, 902, 905, 906, 928, 932, 
939, 945, 947, 973, 980, 993, 999, 1006 

FS—Feature Selection, SD—Standard Deviation. 

3.3. Comparing the Performance of VIs and GPC-BAT 
3.3.1. Models’ Metric-Based Comparison 

The tested approach combining the VIs with the FDA model allowed the identifica-
tion of the most relevant VIs analyzed for class identification for both the tomato and kiwi 
case studies (Table 8). When the tomato spectral data were used, the selected wavelength 
combinations present in the computed VIs considered features in the blue region (450.04 
nm), green region (500.00, and 550.20 nm), red-edge region (680.02, 690.42, 700.41, 730.04, 
and 750.17), and NIR region (800.34 nm). Similar wavelengths were selected when the data 
collected on kiwi leaves were used and were mainly located in the blue region (400, and 
450 nm), green region (530, 553, and 554 nm), red-edge region (670, 677, 700, 705, 730, and 
750 nm), and NIR region (780, 800, 994, and 1000 nm) (Table 8). For both species, equal 
wavelengths were identified by the approach, such as 450 (blue), 550 (green), 700, 730, 750 
(red-edge), and 800 nm (NIR). 

For the tomato case study, the FDA selected five VIs whose formula integrated three 
wavelengths: PSRI, CCCI, EVI, SIPI, and GARI (Table 8). In contrast, in the kiwi case study, 
all the chosen VIs presented only two wavelengths (Table 8). 
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Table 8. Vegetation Index (VI) importance for classification according to Flexible Discriminant Anal-
ysis (FDA). The importance value corresponds to the t-statistic value scaled to the maximum. 

Case Study—Tomato Case Study—Kiwi 
VI Wavelengths (nm) Importance (a.u.) VI Wavelengths (nm) Importance (a.u.) 

mSR2 700.41, 750.17 100.00 Chlgreen 553, 800 100.00 
BRI2 450.04, 690.42 70.30 mSR2 705, 750 67.15 
GEMI 680.02, 800.34 42.92 CI 450, 700 52.94 
PSRI 550.20, 680.02, 750.17 31.69 GI 554, 677 44.45 
CCCI 550.20, 700.41, 800.34 27.59 BRI2 450, 690 40.55 
EVI 450.04, 680.02, 800.34 22.41 AVI 400, 994 33.71 
SIPI 450.04, 680.02, 800.34 16.50 PVIhyp 800,1000 24.46 
Chlgreen 550.20, 730.04 10.71 Chlgreen 530, 730 19.65 
SIPI 500.00, 690.42, 800.34 6.66 Rre 670, 780 16.46 

GARI 450.04, 550.20, 680.02, 
800.34 0.00    

AVI—Ashburn Vegetation Index, BRI2—Blue/Red Pigment Index, CCCI—Canopy Chlorophyll 
Content Index, Chlgreen—Chlorophyll Green, CI—Coloration Index, EVI—Enhanced Vegetation 
Index, GEMI—Global Environment Monitoring Index, GI—Simple Ratio Greenness Index, mSR2—
Modified Simple Ratio, PSRI—Plant Senescence Reflectance Index, PVIhyp—Hyperspectral perpen-
dicular Vegetation Index, Rre—Reflectance at the inflection point, and SIPI—Structure Intensive 
Pigment Index. 

The spectral wavelengths identified by GPC-BAT as the most sensitive for perform-
ing bacterial plant disease diagnosis in tomato (in controlled environmental conditions) 
were mainly located in the blue region (430.00, 440.21, 450.04, and 460.31 nm), green re-
gion (510.41, 520.00, 550.20, and 560.31 nm), red region (640.35, 650.24, and 660.15 nm), 
and red-edge region (670.08, 680.02, 690.42, 700.41, 710.41, 740.09, 750.17, and 760.26 nm) 
(Table 5, Figure 4). In turn, the model identified the most sensitive features for discrimi-
nating in field diseased kiwi leaves infected with bacterial canker (caused by Psa) as 
mainly occurring in the green region (544, and 597 nm), red-edge region (754 nm), and 
NIR region (771, 790, 791, 795, 825, 835, 839, 845, 850, 851, 860, 864, 866, 869, 881, 883, 888, 
893, 902, 905, 906, 928, 932, 939, 945, 947, 973, 980, 993, 999, and 1006 nm) (Table 5, Figure 
5). Similar features were only selected for the two species in the green (550.20 vs. 544 nm) 
and red-edge (750.17 vs. 754 nm) spectral regions. In contrast, the blue and red spectral 
regions were only considered in the tomato case study, and the NIR region was considered 
only in the kiwi case study (since only the spectral sensor used in this assay had wave-
lengths assessed in these regions) (Table 5). 
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Figure 4. Gaussian Process Classification sigma bands polar plot, representing the most significant 
wavelengths for each class in the study: Control samples (healthy, Con), samples inoculated with 
Pseudomonas syringae pv. tomato (Pst), and samples inoculated with Xanthomonas euvesicatoria (Xeu). 
The lower the sigma value, the greater the importance of the wavelength. 

Both approaches, the one using VIs and FDA and the one using the GPC-BAT, for the 
tomato case study, selected coincident wavelengths in the blue region (450.04 nm), green 
region (550.20 nm), and red-edge region (680.02, 690.42, 700.41, and 750.17 nm). The same 
consistency was not observed for the kiwi case study since different features were chosen. 
Nevertheless, these were similar in the red-edge region (750 vs. 754 nm) and NIR region 
(795 vs. 800 nm, 994 vs. 993 nm, and 999 vs. 1000 nm) (Table 5). 

In GPC-BAT, the predictive power of each wavelength for the target variable is eval-
uated by the index sigma (σ). Accordingly, the lower the sigma value, the more important 
the feature is. Thus, the contribution of each spectral feature can be ranked through the 
quantification of this property. In the tomato case study, for the selected spectral features, 
it is possible to observe in Figure 4 that for the identification of the Control (Con) class, 
440.21, 450.00, 460.31, 490.04, 510.41, 520.00, 640.35, 680.02, and 750.17 nm were the more 
relevant wavelengths, since they presented a lower sigma value (i.e., more weight in 
model), leading to a higher distance from the plots’ center (blue dots). The most significant 
features for predicting samples made on tomato leaflet tissues inoculated with Pst were 
440.21 and 450.04 nm (red dots). In classifying samples collected on leaflet tissues inocu-
lated with Xeu, the 440.21, 450.04, 660.15, and 680.02 nm wavelengths were the most sig-
nificant for prediction (orange dots). In turn, in the kiwi dataset, from the selected wave-
lengths, the identification of samples belonging to both classes was more influenced by 
the 597, 771, 791, 835, 869, 883, 902, and 999 nm features (Figure 5). The wavelengths se-
lected as relevant for the classification of nonsymptomatic samples are the same as those 
chosen to predict the opposing symptomatic class (Figure 5). This tendency was expected, 
since this is a binary classification task, where the differences between the two categories 
in the study are expected to occur in coincident spectral features. 
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Figure 5. Gaussian Process Classification sigma bands polar plot, representing the most significant 
wavelengths for the binary class in the study: nonsymptomatic (NS) and symptomatic (S). The lower 
the sigma value, the greater the importance of the wavelength. 

3.3.2. Biological Interpretation of Sensitive Wavelengths 
These wavelengths chosen in both case studies present an interesting biological sig-

nificance, since they coincide with the spectral absorption regions of several photosyn-
thetic pigments, namely: (i) chlorophylls, in the blue region around 430 to 480 nm, and the 
red region, from 640 to 680 nm; (ii) carotenoids, including xanthophylls, in the blue-green 
region nearby 400 to 550 nm; (iii) flavonoids, in the UV-blue wavelengths ranging from 
315 to 500 nm, including anthocyanins whose absorption band is from 500 to 550 nm, (iv) 
and pheophytins, whose absorption action is located in the blue (430 to 480 nm) and red 
(640 to 680 nm). Furthermore, the selected wavelength features also overlap the NIR spec-
tral range associated with interactions between light and leaf water content and between 
light and leaf structural components (such as cellulose and lignin). Thus, it is possible to 
determinate that all these pigments and structural components are affected by the action 
of Psa, Pst, and Xeu bacteria in kiwi and tomato leaves, respectively, due to the relevant 
spectral variance found in the wavelengths corresponding to their spectral absorption re-
gions among the different classes in study. 

4. Discussion 
This work analyzed two methodologies for performing bacterial disease classifica-

tion in tomato (assay performed in controlled environmental conditions, using a transmit-
tance-based sensor) and kiwi (assay made in the field, using a reflectance-based sensor) 
plants. One approach combines the calculation of different VIs described in the literature 
and a machine learning algorithm with a built-in FS method (FDA). Another approach 
uses the two distinct hyperspectral datasets combined through the ARTMO GPC-BAT. In 
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both approaches, the most relevant spectral wavelengths for class detection were identi-
fied and linked to their biological significance. The first approach uses VIs developed ac-
cording to the physiological information of plants. In contrast, the second approach con-
stitutes a data-driven approach. The tomato experiment (three classes: Control vs. Pst and 
Xeu), compared to the kiwi experiment (binary), represents a more complex classification 
model. The sensor used in the tomato experiment allows obtaining spectral information 
from the visible spectrum up to 800 nm, with wavelength resampling to 10 nm intervals 
(approximately), whereas the sensor used in the field experiment with kiwi allows data 
from the visible spectrum up to 1000 nm, with a more precise step of 1 nm wavelength. 

It is possible to observe that both approaches allowed the identification of the differ-
ent classes in the study, using the tomato and kiwi datasets. Nevertheless, the strategy 
involving the application of VIs as an FS technique showed lower classification metrics 
than the methodology that used the GPC-BAT, which may not be high enough to justify 
their future application. This may be related to the fact that the VIs used, despite being 
well established in the literature, were developed for specific plant traits and situations 
differing from the bacterial plant disease diagnosing problem in the study. Furthermore, 
since they are calculated using only available spectral features, they may not use all the 
information in spectral narrowband, high-dimensional hyperspectral data [5]. Hence, this 
modeling approach must be enhanced aiming at a more effective class discrimination. Ex-
ploring distinct wavelength combinations in the VIs, different FS models (e.g., Random 
Forest), and performing hyperparameter tunning are some of the strategies that may be 
performance. 

In contrast, GPC-BAT considered all the available spectral features and performed a 
selection according to their relevance for identifying the class in the study. 

The GPC-BAT, when applied to the analysis encompassing all wavelengths captured 
by the hyperspectral sensors, exhibited lower classification metrics than the VIs approach 
in both the tomato and kiwi case studies. For instance, in the kiwi study, where the hy-
perspectral data indicated a narrowband field of 1 nm, the model’s performance using all 
available features was as poor as when only three wavelengths were utilized (data not 
displayed). This may be related to hyperspectral data being super-imposed in the rec-
orded spectra at different interference scales [25], (i.e., the data collected corresponds to 
several structural and metabolic plant compounds present in the area measured) and to 
the significant amount of redundant information embedded in contiguous wavelengths. 
As a result, only a few specific spectral variables are relevant to identify diseased plant 
tissues [90,91]. 

In this regard, Feature Selection or spectral reduction techniques are, thus, recom-
mended to overcome this hurdle. In this work, two approaches were analyzed namely an 
FDA algorithm and the BAT of ARMO. Given the selected wavelengths, both studied strat-
egies (VI-based vs. GPC-BAT) presented comparable results for both case studies, notably 
when dealing with the more complex tomato dataset especially with the tomato dataset. 
Equivalent wavelengths were found in the blue (450 nm), green (550 nm), and red-edge 
regions (680, 690, 700, and 750 nm). VIs further highlighted the 800 nm wavelength in the 
NIR region. In the kiwi case study, the features selected by the two algorithms were sim-
ilar but not entirely coincident, namely in the green region (where VIs selected the 530, 
553, and 554 nm, and the GPC-BAT chosen the 544, 597 nm), red-edge region (Vis identi-
fied the 670, 677, 700, 705, 730, and 750 nm as relevant, and GPC-BAT only considered the 
754 nm), and NIR region (Vis picked a lower amount of wavelengths, namely 780, 800, 
994, and 1000 nm, when compared to the GPC-BAT which took into account the following 
wavelengths 771, 790, 791, 795, 825, 835, 839, 845, 850, 851, 860, 864, 866, 869, 881, 883, 888, 
893, 902, 905, 906, 928, 932, 939, 945, 947, 973, 980, 993, 999, and 1006 nm). Only the Vis 
presented features in the blue region 400 and 450 nm. Thus, it is important to address that 
despite the two modeling strategies applied to work with different types of spectra (re-
flectance vs. transmittance), having different spectral resolution (~10–10 nm vs. 1–1 nm) 
and presenting different pre-processing methods, they selected similar wavelengths. 
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These findings present biological significance, since the relationship between the 
plant host and the pathogen causes changes in photosynthetic pigment content, water lev-
els, and structural composition (e.g., cellulose and lignin levels) [92]. This ultimately leads 
to modifications in the tissues’ spectral behavior. In particular, the variance in spectral 
characteristics among diseased leaves infected by distinct bacteria could be linked to the 
generation of unique molecules by each pathogen, which may influence the spectral sig-
nature of the host. For instance, Pst bacteria produce a specific phytotoxin named corona-
tine that induces changes in chlorophyll fluorescence (by altering photosystem II—PSII), 
impacting tomato plant tissues’ absorption and scattering of light [93]. Moreover, the host 
tomato plant can activate diverse defense responses upon encountering a pathogen, initi-
ating a cascade of biochemical and molecular reactions that further contribute to spectral 
modifications in the visible wavelength ranges. Phytoalexins (e.g., flavonoids) serve as an 
example, with their production hypothesized to be linked to an increase in the spectral 
reflectance of plants in the VIS range [94]. 

Previous studies performed by our team also reported similar outcomes. In particu-
lar, that study developed a methodology for early diagnosing two bacterial diseases of 
tomato, caused by Pst and Xeu bacteria, using hyperspectral transmittance data and an 
applied predictive modeling approach [19]. A total of 3478 spectral measurements were 
normalized and subjected to a Linear Discriminant Analysis (LDA) aiming to reduce data 
dimensionality. This algorithm highlighted similar relevant wavelengths in the blue, 
green, and red spectral regions. Furthermore, a modeling approach using a Support Vec-
tor Machine was applied for spectral classification. It achieved an accuracy of 100% for 
samples measured on tissues inoculated with Pst and 74% for tissues inoculated with Xeu 
when samples collected before symptom appearance were used [19]. Likewise, another 
study performed on a kiwi orchard allowed the identification of hyperspectral reflectance 
samples collected on nonsymptomatic and symptomatic Psa disease leaf tissues. Several 
methodologies involving different Feature Selection techniques combined with different 
Machine Learning algorithms were explored, and the one combining a stepwise forward 
various selection (SFVS) approach followed by the computation of an SVM algorithm was 
selected, achieving an overall accuracy of 85%. Similar to the other strategies explored, the 
SFVS elected the blue region, green region, and NIR region as the most relevant for sample 
classification. 

Furthermore, other researchers reported similar classification findings to the ones 
found in the present work, namely when studying different tomato and kiwi diseases 
based on modeling hyperspectral spectroscopy data. The suitability of a portable hyper-
spectral spectrometer combined with various algorithms for FS and data modeling for 
early nondestructive diagnosis of tomato bacterial wilt disease (Erwinia tracheiphila) in 
leaves was explored [95]. The model presenting higher evaluation metrics (overall accu-
racy of 90.70%) applied Genetic Algorithms for FS and SVM to predict classification. The 
Simple Ratio Pigment Index (SRPI) was the VI and was found to have a higher contribu-
tion in the developed model. It considers 430 and 680 nm wavelengths and is sensitive to 
leaf nitrogen content and photosynthetic efficiency (and is similar to our findings) [95]. 

Another study using tomato plants explored the usage of a portable high-resolution 
spectroradiometer combined with VIs, Principal Component Analysis (PCA), and a clas-
sification model K-nearest neighbor (KNN) for the diagnosis of late blight (Phytophthora 
infestans), target (Corynespora cassiicola), and bacterial spot (Xanthomonas euvesicatoria) [96]. 
They successfully identified the spectral samples collected on detached tomato leaflets 
with an accuracy reaching the 100% level even in nonsymptomatic stages (Error Rate of 
9.50%), when the 15 VIs selected by PCA in the first principal component (PC) were con-
sidered. Interestingly, it is possible to observe that when 30 VIs selected by PCA and be-
longing to the first PC were used, the model showed a lower accuracy value (65.20%) and 
a higher error rate (28.6). In terms of VIs, the ones selected presented similar features to 
the ones found in our study (such as the 680 and 800 nm used in the Normalized difference 
index and the Simple Ratio, and structure-intensive pigment index, among others) [96]. 



Agronomy 2024, 14, 493 21 of 26 
 

 

Hyperspectral VIS-NIR spectroscopy was, moreover, used for the nondestructive 
early diagnosis of tomato chlorosis virus (ToCV) [97]. They used a Neighborhood compo-
nent analysis (NCA) for performing FS and for selecting the most relevant VIs in the study, 
along with two ML models for data modeling (XY-fusion network—XY-F—and Multi-
layer Perceptron with Automated Relevance Determination—MLP-ARD). The best overall 
accuracy (92.1% before outlier removal and 100% after outlier removal) was obtained us-
ing MLP-ARD. In terms of relevant VIs, is possible to observe that wavelengths such as 
550, 670, 700, 720, 740, and 800 nm, among others, were present in the most notable VIs 
formulae (such as Anthocyanin Reflectance Index—ARI, Pigment Specific Simple Ratio—
PSSR, Red Edge Inflection Point—REIP, Simple Ratio—SR, and Vogelmann Index—
VOG). In turn, from the 15 wavelengths selected by the NCA, these were mostly located 
in the blue (402.20 to 449.20 nm), green (556.40 to 566.40 nm), red-edge (676.40 to 726.30 
nm), and NIR regions (862.10 nm). These outcomes coincided with our observations [97]. 

The feasibility of multispectral data for predicting kiwifruit decline (probably caused 
by Phytophtora spp. and Phytopythium spp.) in diseased orchards was also tested [98]. Mul-
tispectral data included the 550, 660, and 790 nm spectral features, and when combined 
with K-means clustering allowed the determination of kiwi plants’ vigor affected or not 
by the disease with 73% (or more) Accuracy and 82% Precision. These results are, thus, in 
line with ours also identifying the green, red, and NIR regions as relevant for estimating 
plant biophysical traits [98]. 

The present outcomes demonstrate that hyperspectral transmittance and reflectance 
spectroscopy can identify healthy and diseased tissues, such as tomato (herbaceous) and 
kiwi (woody) crops, in laboratory or field conditions. Further research is advised to ex-
plore if specific host–pathogen interactions require customized modeling approaches to 
be predicted or if it is possible to elaborate a unified strategy that allows bacterial disease 
assessment. Nevertheless, it should be taken into consideration that model comparison 
may be challenging due to several factors: pathogen species in the study; the occurrence 
of specific host–pathogen interactions; the number of spectral points measured; the envi-
ronmental conditions where the data are collected; and the stage of the disease cycle 
where the spectral assessments are made, among others. Furthermore, hyperspectral spec-
troscopy sensors present a relatively low Technology Readiness Level (TRL), indicating 
that these sensors have a large margin to be improved. In this regard, developing and 
enhancing effective FS strategies or Dimensionality Reduction approaches may be con-
ducted to identify specific spectral regions valuable for performing plant disease diagno-
sis, which may be incorporated in multispectral sensors involving lower production and 
data processing costs. Moreover, the application of hyperspectral imaging sensors should 
also be explored in future studies, since it would offer a comprehensive spectral overview 
across spatial dimensions, allowing the capture of spectral signatures from several pixels 
in the image. This spatial information enables the identification of spatial variations in 
spectral features within the plant tissue sample, which can provide valuable insights into 
the spatial distribution of disease symptoms or other physiological changes. However, 
hyperspectral imaging typically requires more complex data processing and may involve 
higher equipment costs compared to point-measurement techniques, which must be taken 
into consideration in the technique development. 

5. Conclusions 
This study aimed to explore and compare two distinct modeling approaches, namely 

the parametric Spectral Vegetation Indices (VIs) and the Gaussian Process Classification 
based on an Automated Spectral Band Analysis Tool (GPC-BAT), for diagnosing bacterial 
diseases in plants using hyperspectral sensing. Our analysis covered two experimental 
conditions, namely controlled conditions where tomato plants were used and field condi-
tions where kiwi plants were analyzed, revealing insights into the performances of each 
approach. 
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Both the VI- and GPC-BAT-based approaches demonstrated potential for class dis-
crimination in both experiments. Nevertheless, the modeling strategy applying VIs 
showed moderate success in distinguishing healthy and Pst-inoculated tomato tissues, 
with accuracy values ranging from 63% to 71%. In turn, the GPC-BAT strategy exhibited 
enhanced accuracy in classifying healthy and diseased tissues, achieving overall accuracy 
values extending from 70% to 75% in the tomato and kiwi case studies. This approach also 
revealed greater potential for discriminating nonsymptomatic from symptomatic tissues 
in kiwi plants in field conditions. 

The identified spectral bands, particularly in the blue, green, red-edge, and NIR re-
gions, align with the absorption regions of several photosynthetic pigments and plant 
structural components. These spectral modifications correlate with bacterial infections, af-
fecting chlorophylls, carotenoids, flavonoids, pheophytins, and water content in plant 
leaves. 

Hence, while VIs offer a simplistic yet moderately effective means of disease diagno-
sis, GPC-BAT, with feature reduction, shows promise in improving accuracy. However, 
further refinements are necessary, especially for the early-stage diagnosis of specific bac-
terial infections. 

The identified wavelengths hold biological significance, suggesting a correlation be-
tween bacterial infections and alterations in photosynthetic pigments and leaf structural 
components. Future research could focus on refining and integrating these approaches to 
develop more robust and accurate diagnostic tools for various plant–pathogen interac-
tions, thereby aiding in early disease detection and management in diverse agricultural 
settings. 
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Appendix A 

Table A1. Cross-validation statistics of the Flexible Discriminant Analysis (FDA) for the training 
hyperspectral dataset collected on tomato leaflet tissues (transmittance) and kiwi leaf tissues (reflec-
tance). 

Class Accuracy (%) Kappa Precision (%) Sensitivity (%) Specificity (%) F1 (%) 
Tomato (1643 observations)     
Con 

63.60 
45.22 52.93 73.37 77.23 67.75 

Pst  77.53 67.78 91.18 72.33 
Xeu  52.89 50.09 76.49 51.45 
Kiwi (354 observations)     
NS/S 74.58 48.16 72.79 68.15 79.70 70.39 

Con—Control (healthy), Pst—Inoculated with Pseudomonas syringae pv. tomato, Xeu—Inoculated 
with Xanthomonas euvesicatoria, NS—nonsymptomatic, S—symptomatic. 
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