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Abstract—Hyperspectral satellite imagery provides highly-
resolved spectral information for large areas and can provide
vital information. However, only a few imaging spectrometer
missions are currently in operation. Aiming to generate synthetic
satellite-based hyperspectral imagery potentially covering any
region, we explored the possibility of applying statistical learning,
i.e. emulation. Based on the relationship of a Sentinel-2 (S2)
scene and a hyperspectral HyPlant airborne image, this work
demonstrates the possibility to emulate a hyperspectral S2-like
image. We tested the role of different machine learning regression
algorithms (MLRA) and varied the image-extracted training
dataset size. We found superior performance of Neural Network
(NN) as opposed to the other algorithms when trained with
large datasets (up to 100’000 samples). The developed emulator
was then applied to the L2A (bottom-of-atmosphere reflectance)
S2 subset, and the obtained S2-like hyperspectral reflectance
scene was evaluated. The validation of emulated against reference
spectra demonstrated the potential of the technique. R2 values
between 0.75-0.9 and NRMSE between 2-5% across the full 402-
2356 nm range were obtained. Moreover, epistemic uncertainty
is obtained using the dropout technique, revealing spatial fidelity
of the emulated scene. We obtained highest SD values of 0.05
(CV of 8%) in clouds and values below 0.01 (CV of 7%) in
vegetation land covers. Finally, the emulator was applied to an
entire S2 tile (5490x5490 pixels) to generate a hyperspectral
reflectance datacube with the texture of S2 (60Gb, at a speed
of 0.14sec/10000pixels). As the emulator can convert any S2 tile
into a hyperspectral image, such scenes give perspectives how
future satellite imaging spectroscopy will look like.

Index Terms—Emulation, Neural Networks, Hyperspectral,
Sentinel-2, HyPlant

I. INTRODUCTION

IMAGING spectroscopy provides unprecedented spectral
information for the evaluation of environmental conditions

in soil, vegetation, agricultural and forestry areas [1], [2].
The use of imaging spectroscopy sensors and data is growing
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to maturity with research activities focused on proximal,
UAV, airborne and spaceborne hyperspectral observations [3].
Although only a few hyperspectral satellite missions are
presently in operation, space agencies are aiming to launch
new-generation imagining spectrometer missions in the near
future [4]–[6]. In preparation of this upcoming era of satel-
lite imaging spectroscopy, it demands for accessibility and
manageability of such dense data stream. In anticipation of
such data requirement, a substitute approach would be to
approximate such hyperspectral images through synthetic data.
Moving along this line, earlier studies suggested that the
production of synthetic hyperspectral data can be achieved
through emulation [7], [8]. The principle of emulation is
approximating the input-output relationships by means of a
statistical learning model, also referred to as emulator [9]–
[12]. Essentially, an emulator is a trained machine learning
regression algorithm (MLRA) based on statistical learning
principles that use a data set made up of input–output pairs
for model training. When an accurate emulator is developed,
it can then approximate the original model at a tiny fraction of
the original speed [11], [13], [14]. In this way, the emulator is
able to infer the statistical relationships between pairs of data
and process it at a low computational cost. These data pairs
would ideally cover most of the multidimensional input space
[9].

Emulation recently emerged as an appealing acceleration
technique in processing tedious imaging spectroscopy appli-
cations such as generation of synthetic scenes [7] and in
atmospheric correction routines [15], [16]. The core idea is
that once the emulator is trained, it allows generating synthetic
hyperspectral images consistent with an input multispectral
signal and this at a tremendous gain in processing speed. Em-
ulators have the potential to reconstruct hyperspectral images
with high accuracy [8]. However, emulating a synthetic hy-
perspectral image from multi-spectral data is challenging be-
cause of its one-to-many input-output spectral correspondence.
Nevertheless, when combining with dimensionality reduction
techniques that take advantage of the spectral redundancy,
the emulator is capable of relating the output hyperspectral
patterns that can be consistent with the input spectra [17], [18].
As such, emulators allow finding statistically the non-linear
relationships between the low resolution and high spectral
resolution data, and thus can learn the most common patterns
in the dataset. As a result, the emulator can reconstruct the
spectral signature with a high level of detail, and obtain
information on some narrow bands that otherwise would not
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be represented in the original multispectral resolution [19],
[20].

To optimize the predictive power of the emulator, it is
important to evaluate the different options that MLRAs offer,
since some algorithms adapt better than others to a large
amount of training data. In case of datasets smaller than
3000 samples, kernel-based MLRAs have reached good results
in previous studies [8], [21]. Yet, these methods are limited
because they are not able to deal with large training datasets;
kernel-based methods have a complexity of O(n3) due to
the need to invert an n × n matrix [22], [23]. In contrast,
Neural Networks (NN) are usually based on stochastic decent
gradient techniques. As one of those techniques the Adam
optimizer provides good results at low computational costs
[24]. NNs calibrated with small training data sets normally
have poor model performances. Fortunately, they can easily
handle large amounts of training data and thus produce models
with high accuracy. NNs are particularly useful in problems
with large datasets, in which complex non-linear relationships
are present. NNs are also useful in dealing with complex and
time-consuming training procedures [25], [26]. Standard NN,
however, are unable to handle uncertainty quantification. A
comprehensive Bayesian treatment of uncertainty for emula-
tion is computationally expensive and sometimes unfeasible
in real applications, but uncertainty estimation is strictly
necessary for validation procedures. We propose using dropout
for NNs, which reduces overfitting during the training phase
[27] and is known as Monte Carlo (MC) dropout when used
in the test phase. Under specific presumptions, this method
can be seen as a Bayesian approximation to measure model
epistemic uncertainty [28]. In this way, we can evaluate the
transferability of the model and have a measure of confidence
for the values obtained for locations not included in model
calibration. Altogether, the main objective of this study is
to develop and optimize an emulator that is able to produce
synthetic but realistic hyperspectral reflectance datacubes. A
secondary objective for the NN emulator is to evaluate the
spatial fidelity by inspecting associated uncertainty estimates.
For this purpose, we make use of experimental training data
recorded by the hyperspectral airborne sensor HyPlant and
multispectral satellite Sentinel-2 (S2).

II. MATERIAL & METHODS

A. Used data

To achieve the main objective, we trained MLRAs using
experimental data coming from subsets of two simultaneously
recorded image data sets. Spectra from the S2 multi-spectral
spaceborne image was used as input for generating the emu-
lator, while spectra from the HyPlant airborne hyperspectral
image was used as output [29]. The images were recorded
on 26th and 27th June 2018, respectively, and were acquired
around the city of Jülich in the western part of Germany. The
S2 image provides multispectral information in 13 spectral
bands covering the range from 430 to 2280 nm. The used
tile was acquired by the MSI sensor of S2A and provided
bottom-of-atmosphere (BOA) reflectance data (L2A) with tile
ID: T32ULB. The HyPlant DUAL image provides contiguous
spectral information from 402 to 2356 nm with a spectral

resolution of 3-10 nm in the VIS/NIR and 10 nm in the SWIR
spectral range with a total of 511 spectral bands. We used the
BOA reflectance product of 9 HyPlant flight lines mosaiced
to one image and compared it with the S2 scene (see Fig. 1).

Fig. 1: (a) Study area (red point) located in the western part of
Germany. (b) RGB composite (639.7-550.35-459.86 nm) of the
HyPlant DUAL mosaic consisting of nine single flight lines. The
study area was divided in a Test (red box) and Training area (blue
box).

B. Machine Learning Regression Algorithms

We evaluated the prediction performance of emulators built
with three distinct types of MLRAs to reconstruct hyperspec-
tral reflectance data. Specifically, we explored (1) the kernel-
based methods Gaussian Processes Regression (GPR) [23]
and Kernel Ridge Regression (KRR) [22], (2) the tree-based
algorithm eXtreme Gradient Boosting (XGB) [30], and (3)
feedforward Neural Networks (NN) [26]. Their principles are
briefly outlined below.

1) Kernel methods: Kernel methods are a type of machine
learning algorithm that exploit the use of kernel functions.
A kernel is a function that takes two inputs, x and x’, and
produces a scalar output. The kernel allows to operate in a
high-dimensional implicit feature space without computing the
coordinates of the data in that space, but simply computing
the inner products between the images of all pairs of data in
the feature space. More formally, if we have data x,x′ ∈ X
and a map φ : X −→ H then k(x,x′) = 〈φ(x), φ(x′)〉H is a
kernel function. This makes the algorithm more efficient when
working with noisy or incomplete data sets.

a) Kernel Ridge Regression: In particular, Kernel Ridge
Regression (KRR) is of interest, being the nonlinear version of
ridge regression trough kernel functions [22], [31]. Because of
its simplicity, KRR is very fast in training and running while
maintaining competitive emulation performances [8]. KRR is
therefore used as benchmark algorithm in further analysis.

b) Gaussian Processes: Gaussian Processes Regression
(GPR) is a non-parametric Bayesian regression approach often
used in the area of machine learning. GPR has several ben-
efits, for instance, hyperparameter tuning is obtained through
likelihood optimization and it has the ability to provide uncer-
tainty measurements on the predictions due to its probabilistic
formulation [23].
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2) Extreme Gradient Boosting: Extreme Gradient Boost-
ing [30] (XGB) has recently gained popularity in both re-
gression and classification applications [32]. It provides a
prediction model in form of an ensemble of decision tree-
like weak prediction models. XGB is a distributed gradient
boosting library. It uses the Gradient Boosting framework to
construct machine learning algorithms.

3) Feedforward Neural Networks: Regression NNs have
the ability of learning nonlinear functions, which have demon-
strated good performance in regression tasks [33]. In particu-
lar, they are usually defined through a feedforward structure
together with a final regression output layer.

Feedforward NNs are formed by a hierarchical structure of
fundamental operating units (or neurons) arranged in layers
with a final regression output layer [25], [26]. Each layer is
made of several artificial neurons connected to another and
have an associated weight and threshold. During the training
phase, the weights and biases are tuned until they reach the
minimum value of a cost function. Once trained, NN models
may be swiftly applied to new unseen test data and pro-
vide output predictions. Prediction just requires a few matrix
multiplications, summations, and data transformations, and
they are simple to construct, scale, and run. We can manage
complexity and prevent overfitting with the help of current
training methods and regularization techniques like dropout
or weight decay [27]. One of the limitations of standard NN
models are the uncertainty estimation of model predictions.
Here, we have included a measure of NN’s uncertainty through
a model perturbation based on the dropout technique in the
test phase. It allows NNs to provide epistemic uncertainty
estimation [28] (see further Section II-D).

Without loss of generality and to simplify the exposition,
we consider a one hidden layer NN. We denote as ŷ the output
of a Neural Network model given an input sample x, such that
it represents a shallow network with a single hidden layer:

ŷk = g

 h∑
j=1

vjkf

(
d∑

i=1

wijx
i + aj

)
+ bk

 (1)

where the input vector is x = [x1, x2, ..., xd] and xi is the
i-th input dimension, wij is the weight connecting the i-th
input with the j-th node in the hidden layer, aj is the bias
term of the j-th node, d is the number of input dimensions
and f is the transfer function of the neurons in the hidden
layer. vjk are the weights between the j-th hidden node and
the k-th output node, bk is the bias term of the k-th output
node and h is the number of neurons in the hidden layer, and g
is the transfer function of the outputs node. The output vector
is ŷ = [y1, y2, ..., yD] where yk is the k-th output dimension
and D is the number of output dimensions. In our case, we
used ReLU activation function, f(z) = max(0, z), for the
hidden layer and linear regression function, g(z) = z for the
output layer [34].

We consider the loss function E(·, ·) as the Euclidean loss
(squared loss), and by yi the i-th observed output correspond-
ing to the input xi, resulting in a minimization objective,

L =
1

n

n∑
i=1

E(yi, ŷi) + λ
(
‖W‖22 + ‖b‖22

)
, (2)

where W is the matrix formed by all the weights wij , and λ
is some weight decay factor. Furthermore, we used dropout
with probability 0 ≤ p ≤ 1, as regularization technique in
the training phase. It consists on remove temporally some
neurons of the NN with a probability p from a Bernoulli
distribution in each iteration, in this way, in each iteration
different neurons are dropped and the NN develop redundancy
connections between neurons to be more robust and avoid
overfitting.

For optimizing the network biases and weights, we em-
ployed the Adam algorithm, a very effective technique that
offers state-of-the-art performance [24]. We evaluated different
NN architectures and proposed to assess a rather shallow fully
connected NN composed of one hidden layer with ReLU
activation and β = 10% dropout which worked well for all
spectra tested. The network was trained with 5-fold cross-
validation, we used the least squares error as a loss function
and a total of 1000 epochs for training. ReLU activation is
a piecewise linear function that directly outputs the input in
case of positive values, while negative values are set to zero,
f(z) = max(0, z) [34]. This works well with reflectance data
solely consisting of positive values. Dropout is a regularization
method to reduce the overfitting [27]. For the number of
neurons in the single hidden layer, we applied an optimization
search of a single-variable function on a fixed interval to obtain
the optimal number of neurons that minimized the RMSE of
the model and we achieved the best results using 196 neurons.
The algorithm is based on golden section search and parabolic
interpolation and we found that 10 iterations are enough to
obtain the minimum. We chose this architecture because after
conducting a systematic evaluation, it led to the best results
(Fig. 2).

Fig. 2: NN structure used to process data. 10 neurons in the input
layer, 196 neurons in one single hidden layer and 100 neurons at
the output layer. The hidden layer has ReLU function activation and
dropout with β = 10%.

a) Deep Learning: Deep Neural Networks (DNN) is a
subtype of neural networks (NN) that makes use of compu-
tational architectures that enable multiple and iterative non-
linear data transformations in an effort to represent high-level
abstractions in data [33], [35]. Basically, a DNN is a NN that
stack a large number of hidden layers that allows to solve
complex tasks. The use of numerous layers and the com-
plexity of the network structure are the primary distinctions
between deep and shallow neural networks. In deep learning

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3231380

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. Y, MONTH Z 2022 4

the multiple layers can also be heterogeneous for the sake
of efficiency, trainability and understandability. Deep neural
networks have been used in a broad range of fields with high
complexity, where the DNN outperform other techniques in
terms of accuracy [36]. To create the Deep Learning networks,
we replicated the layer structure mentioned in Fig. 2 and
multiplied the number of layers. We evaluated from 1 to 20
hidden layers (1, 2, 3, 5, 10, 20).

b) Uncertainty estimation through dropout: Having ac-
cess to output uncertainties is a crucial condition of our emula-
tion concept. We provide a comprehensive approach to dealing
with uncertainty, focusing on epistemic uncertainty (model
uncertainty), which is related to parameter selection and the
training dataset. It provides the level of confidence a model
has in its predictions. Although Bayesian models like GPR or
Bayesian NNs provide a mathematically framework to obtain
variances of the predictions using the predictive posterior
distribution [23], [37], they are typically too computation in-
tensive and thus often impractical for real-world applications.
As an alternative, Gal and Ghahramani [28] instead created
a theoretical paradigm that views dropout training in deep
NNs as approximating Bayesian inference in deep Gaussian
processes. This method can be applied to estimate uncertainties
in NN’s using the dropout technique by collecting data from
perturbed models. Thus, uncertainties can be obtained in deep
learning without compromising model accuracy or increasing
computational complexity. The potential of the dropout tech-
nique was also demonstrated in [38], [39]. We used the Monte
Carlo (MC) dropout estimation to quantify model uncertainty.
MC dropout was proposed in [28], where authors established
the mathematical equivalence between a NN with dropout and
an approximation to the probabilistic deep Gaussian processes.
Under that equivalence, it is allowed to consider the deep
GP predictive distribution q(y∗, x∗) =

∫
p(y∗|x∗, ω)q(ω)dω.

MC dropout allows to estimate the first two moments of
the predictive distribution empirically by sampling T sets of
vectors of realisations from the Bernoulli distribution

Eq((y
∗)>(y∗)) ≈ 1

T

T∑
t=1

ŷ∗(x∗,W ). (3)

In practice, this is equivalent to performing T stochastic
forward passes through the network and averaging the results.
This result has been presented before by [27] as model aver-
aging. Under the same scheme, it is possible to approximate
the model’s predictive variance as

Varq(y∗) ≈ τ−1In +
1

T

T∑
t=1

ŷ∗(x∗,W )>ŷ∗(x∗,W )

− Eq(y
∗)>Eq(y

∗)>(y∗),

(4)

which is equivalent to the sample variance of T stochastic
forward passes through the NN plus the inverse model preci-
sion [28]. We sampled binary variables for every network unit
in the layer. Each binary variable takes the values 1 with a
probability of 70%. A unit is dropped for a given input when
its corresponding binary variable has a value of 0 drawn from
a Bernoulli distribution. The prediction module is composed
of 100 sub-models each with a different neurons dropped.

C. PCA dimensionality reduction

Regarding the emulation of hyperspectral data, predicting
outputs for hundreds of bands can be challenging. For this
reason, we converted the high-dimensional spectral data to
a lower-dimensional feature space using a dimensionality
reduction (DR) technique [40]. Principal component analysis
(PCA) is a linear DR technique that is used to reduce the
number of variables in a dataset [17]. PCA is the most popular
DR method and has shown its applicability to reconstruct
satellite data and reduce the computational cost of single-
output MLRA [12], [41], [42]. PCA reduces the dataset
projecting the original spectra into a set of vectors, or principal
components, that account for the largest amounts of variation
in the data set. This is done by obtaining the eigenvectors
and eigenvalues of the estimated covariance matrix of the
spectral inputs X. The eigenvectors matrix, U, is then used
as a projection matrix that allows to obtain the so-called X-
scores, simply by W = UX. As U is an orthogonal matrix
the reconstruction of X providing the scores is obtained by
X = U>W . Hence, the spectra is reconstructed. The first
principal component (PC1) is the most important factor in the
data set and accounts for the largest amount of variation. The
remaining principal components (PC2, PC3, and so on) have
lower factors that account for smaller amounts of variation.
In this way, we only need to consider the first PCs to reduce
the dimensionality of the input data while preserving the main
spectral features. Therefore, in the here pursued strategy, the
trained model first predicts the PCs and then the data is
transformed back from the PCA to the hyperspectral domain
(inverse PCA), in which the output spectra are reconstructed at
the expense of some loss in accuracy. [12]–[14]. A conceptual
illustration of the developed emulation scheme is shown in
Figure 3.

Fig. 3: Diagram showing the procedure of emulating hyper- from
multispectral data using a MLRA in combination with a dimension-
ality reduction technique.

D. Epistemic uncertainty estimation and error propagation

In previous section we described the dropout method to
obtain epistemic uncertainty from NN. However, commonly
emulation has a high dimensional output and DR techniques
like PCA at output are needed. In this case, the model output
is transformed from PCs to a high dimensional space and
we will need a process to transform also the uncertainties
to the hyperspectral data domain. As illustrated in Fig. 3,
MLRA first predicts the PCs with associated uncertainties and
then, in order to reconstruct the output spectra, the data is
transformed back from the PC domain to the hyperspectral
data domain. To additionally transform the PC uncertainties
to the hyperspectral data domain, we applied an uncertainty
propagation using the variance equation (5):
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εY =

√√√√ N∑
i=1

(
∂Y

∂PCi

)2

ε2PCi
(5)

where εY represents the standard deviation of the function
Y , εPCi represents the standard deviation of input PCi in
the i-th component and N is the number of PCs. In the
equation used to invert the PCs (Y = YPCA

−1), Y represents
the reflectance values in the hyperspectral data domain, YPC

represents the values of the PCs and A−1 is the inverse matrix
obtained from the PCA transformation. Applying the error
propagation (5) in the PCA model inversion, we obtain the
following standard deviation relations (6):

εY =

√
ε2PC(A

−1)
2 (6)

where εY represents the standard deviation of reflectance
values in hyperspectral emulated data domain, εYPC

represents
the SD values of the PCs and A−1 is the inverse matrix of the
PCA model.

When PCA inversion is applied, two error sources can be
considered at the output. First, PCA loss in accuracy caused by
choose a number of PCs lower than the original dimensionalty.
Second, the uncertainty obtained using the predictive posterior
distribution of the MLRA. We decided to keep most of the
PCs (100PCs) to be sure that the PCA aleatoric uncertainty
is negligible front MLRA epistemic uncertainty. Finally, with
this error propagation we can obtain emulated spectra with
error estimations for all bands.

E. Experimental setup to generate a synthetic hyperspectral
data cube

We trained emulators following the methodology as de-
scribed in [8]. First, we collected random samples from corre-
sponding locations in the S2 and HyPlant image data. This data
set was then used to evaluate multiple emulation strategies, i.e.,
bands selection, spatial resolution resampling, analyzing the
role of MLRAs and size of training data. The generated data
sets consisting of S2 spectra as input and HyPlant spectra as
output were divided into 5 equal-sized subsets used for cross-
validation. The S2 bands 1, 9 and 10 having 60 m spatial
resolution are used to estimate aerosols, water vapour an
cirrus clouds, respectively. These bands cover spectral regions
highly affected by the atmosphere. For this reason, we evaluate
the importance of including those bands in our predictive
model. The S2 images are composed of twelve bands with
different spatial resolutions of 10, 20 or 60 m. To make use
of all S2 spectral bands, we resampled them to the 10 m
spatial resolution using the bilinear resampling technique. This
resampling method preserves the image heterogeneity with the
disadvantage of interpolating pixel values of the originally
lower resolution bands, which may affect model performance.
In contrast, resampling all bands to 20 m resolution would
lead to a loss in heterogeneity but do not interpolate any
value, only average the around values. The HyPlant image was
subsequently aggregated to the spatial resolutions of 10 and

20 m to match it with the S2 subset. Afterwards, the model
performance was investigated given two spatial resolutions (10
or 20 m GSD) and excluding the 60 m aerosol and water
vapour bands using a dataset consisting of 1000 samples. We
restricted this analysis to KRR due to its reliability and great
speed.

Next, the role of sampling size was evaluated given the four
MLRAs. The size of the randomly sampled data set used for
model training was gradually increased from 250 to 200.000
samples to evaluate the performance of the trained models. In
this case, we also performed 5-fold cross-validation to obtain
reliable values with their confidence range. We recorded the
training and testing time and evaluated the capability of the
algorithms to deal with large training datasets.

Finally, we developed the NN emulator using 100,000 sam-
ples from the training image and the most optimal parameters.
Once trained, the emulator was applied to the S2 test subset
and evaluated the performance comparing the results with
HyPlant test subset as reference. The used PC to process all the
data has the following characteristics: Windows 10 Enterprise
v.19041.572 64-bits OS, Intel i7-9700K CPI 3.60 GHz, 32
GB RAM. All processing and evaluation steps were conducted
within the in-house developed ARTMO (Automated Radiative
Transfer Models Operator) software framework [43]. ARTMO
is a scientific modular package developed in Matlab that
provides tools and toolboxes for running a suite of leaf, canopy
and atmosphere RTMs and for post-processing applications
such as the emulator toolbox [13]. As part of the ARTMO
software package, the Emulator toolbox enables the evaluation
of MLRAs on their capability to approximate RTM outputs as
a function of input variables [11], [13]. The ARTMO toolboxes
are freely downloadable at www.artmotoolbox.com

F. Multispectral sensor capability to emulate hyperspectral
data

For running the hyperspectral emulator, we used a S2
image that was recorded one day before the HyPlant data
acquisition covering the same area. At the same time, it is
of interest to evaluate the emulator’s performance given the
band settings of other common satellite imagery. To do so,
firstly, the HyPlant image needs to be resampled to the spectral
characteristics of a specific multispectral satellite sensor using
its spectral response function. Following, an emulator can be
built for this multispectral sensor and subsequently applied to
the corresponding resampled multispectral image to generate
a synthetic hyperspectral image cube. Finally, the emulated
synthetic hyperspectral image has to be compared to the
original HyPlant image data to determine the accuracy of
the emulation result. In the present study, we resampled the
HyPlant training data to the spectral characteristics of Sentinel-
2 (S2), Sentinel-3 (S3), Landsat-8 (L8) and MODIS.

III. RESULTS

The influence of the selected S2 bands (10 vs 12) and
spatial resolution resampling (10 vs 20 m) were first evaluated
using KRR as emulator. For training, 5-fold cross-validation
and dimensionality reduction was applied to the output data
(100 PCs). This procedure was repeated for ten randomly
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sampled datasets of 1000 samples to obtain the average and
NRMSE quantile statistics results are shown in Table I. The
analysis revealed that the KRR emulator trained by 20 m
spatial resolution data led to systematic lower NRMSEs than
the 10 m resolution data. Also, the 60 m bands did not to
affect the performance of the emulator. Therefore, we decided
to restrict the S2 data to ten bands at 20 m resolution as input
to develop emulators in further analysis.

TABLE I: NRMSE (%) for different resampling techniques applied
and different numbers of band included in MLRA model calibration.

Bands Spatial
resolution (m)

Min Q1 Mean Median Q3 Max

12 10 4.23 4.60 4.68 4.63 4.79 5.28
20 3.57 3.67 3.96 4.00 4.09 4.45

10 10 4.40 4.42 4.68 4.63 4.85 5.22
20 3.50 3.61 3.93 3.93 4.13 4.37

Following, GPR, KRR, XGB and NN models were eval-
uated to identify the best performing emulator and their
response given an increasing number of training samples (Fig.
4). Also training and testing time is recorded. As the figure
reveals, emulators built with kernel-based MLRAs (GPR,
KRR) perform accurate and fast when trained with only a low
number of samples (up to a few thousands). Instead, when
more samples enter into model training, kernel-based MLRAs
become computationally costly as the number of samples
scales cubically with processing time due to matrix inversion
of the training and validation data set. The performance of
XGB is less accurate compared to that of the kernel-based
methods but XGB processing time is less depend on the
number of samples. XGB shows a less steep increase in
required time for model training with an increasing number of
samples than the kernel-methods. Model running time seems
to be independent from the training sample size, since testing
time remains constant. Meanwhile, NN training time grows
gradually while always providing high model quality with an
increase in sample size until reaching the maximum number of
samples (200.000). Similar to XGB the training computational
cost hardly grows with increasing sample size and the testing
time remains constant. Overall, NN ended up the fastest
algorithm with a constant processing speed of 3.77·10−6s/pix.

Fig. 4: NRMSE (in %) for the different MLRA emulators (100 PCs
used for output) built with a varying number of training samples using
5-fold cross-validation and associated standard deviations (shadows)
(left). Required processing time for the training (solid line) and testing
(4·104 validation pixels, dashed line) of each emulator with increasing
training samples (right).

When evaluating the results by comparing the accuracy
versus training time (Fig. 5), it can be noted the curves

Fig. 5: NRMSE (in %) versus time of training for the different MLRA
emulators increasing number of training samples and using 5-fold
cross-validation and associated standard deviations (shadows).

converge asymptotically to a stable accuracy. By increasing
the number of samples, the NRMSE decrease and training
time increase in a convex curve. In contrast, the accuracy of
GPR hardly changes at the expense of increasing training time
with added samples. The accuracy of each MLRA stabilizes
when the number of samplings is high, with NN reaching the
lowest stable NRMSE value around 2.5± 0.4%.

As NN obtained the best results, hereafter we evaluated
Deep Neural Network (DNN) structures by varying the number
of layers in the NN. The obtained results are shown in Fig. 6.

Fig. 6: NRMSE (in %) for the different number of layers in the
NN structure (100 PCs used for output) built with a varying number
of training samples using 5-fold cross-validation. NN is the Neural
Network with one layer used previously and the number after DNN
indicates the number of layers.

It can be observed that the NN structure with only one
layer obtained superior results. This suggests that for trained
emulation, one layer is enough to cope with the complexity of
the relations between multispectral and hyperspectral spectral.
Also, the DNN with a low number of samples resulted into
overfitting, although by increasing the number of samples the
DNN became gradually more accurate, eventually converging
with the one layer NN.

Altogether, given the requirement of dense random sampling
over the S2 and corresponding HyPlant subset as output to
maximize capturing the spectral variability, it was evaluated
that the one layer NN led to the most optimal trade-off between
accuracy and training time to build a powerful emulator. Using
NN and applying 5-fold cross-validation, a final emulator was
developed based on a training data set composed of 100,000
samples to convert the multispectral S2 image into a synthetic
hyperspectral S2 image. The accuracy performance of the
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emulator for the entire spectral range including mean, standard
deviation, minimum and maximum is presented in Fig. 7

Fig. 7: R2 (left) and NRMSE in % (right) shown for the entire
spectral range achieved with the best performing NN emulator. While
the means are represented as blue lines, standard deviation and Min-
Max values are displayed as dark grey and light grey shadows,
respectively.

Once trained, the NN emulator was applied to the test
subset (red subset in Fig.1). The produced S2-like synthetic
hyperspectral datacube was successfully validated against the
reference test subset obtained by HyPlant. R2 and NRMSE
covering all spectral bands are illustrated in Fig.8 (left).

In the emulated image the spatial characteristics of the
landscape as shown in the original S2 data was preserved
and additionally the newly generated data set has the spectral
properties and quality of the original HyPlant hyperspectral
data. Furthermore, the NN emulator was also able to reproduce
spectral information with high accuracy in the synthetic S2
scene, even in spectral regions that were not covered by the
spectral range of the original S2 data (Fig. 8 middle). As can be
observed, the emulated mean reflectance spectrum (blue line)
perfectly matches the reference HyPlant reflectance spectrum
(red dashed line) and the standard deviation range of the
emulated test subset almost seamlessly overlaps with that one
of HyPlant. The S2 mean spectrum (green line) also shows
a good agreement with the emulated and real hyperspectral
spectra.

In order to evaluate the emulated hyperspectral datacube
test subset against reference HyPlant reflectance spectra, the
quartiles of relative error between both subsets across the
spectral range were determined and displayed in Fig. 8 (right).
Notably, the mean and median are close to zero along the
entire spectral range and the interquartile range varies between
-3.7 to 2.4 %. Only in the near infrared (NIR) the Whiskers
have slightly higher values of around ±10%, while the other
spectral regions covered provide relative errors below ±5%.

Finally, the NN emulator was applied to the complete
S2 tile to produce a hyperspectral datacube and evaluate
the computational cost when emulating an entire S2 scene
resampled to 20 m GSD. For the complete S2 tile, it took
seven minutes to generate the synthetic hyperspectral S2 scene
using a standard computer. This corresponds to a processing
speed of 0.14 sec/ 10000 pixels to emulate the spectral range
of HyPlant (402 to 2356 nm). As the final product an S2-like
hyperspectral datacube with a size of 60 GB was produced
(Fig. 9).

A. Evaluation of multispectral sensors to emulate hyperspec-
tral data

Having demonstrated the good performance of the devel-
oped NN emulator to produce synthetic hyperspectral image
data for an entire S2 scene, the next step was to analyse
the potential of other multispectral satellite sensors to be
used as input data for the emulatoion of hyperspectral data.
Firstly, the HyPlant training subset was resampled to the
spectral characteristics of Sentinel-2, Sentinel-3, Landsat-8
and MODIS. Based on these synthetic multispectral images,
we generated subsets each consisting of 100,000 synthetic
multispectral input and HyPlant hyperspectral output sample
pairs to develop NN emulators for the four multispectral
sensors. The subsets were each split into a training (70%)
and a test dataset (30%), and the test samples were then used
to calculate the validation statistics that are shown in Table II.

TABLE II: Goodness of fit measures obtained from the comparison
of emulated hyperspectral data based on synthetic Sentinel 2 and 3
(S2 & S3), Landsat 8 (L8) and MODIS input data with the original
HyPlant hyperspectral reference data.

Input bands MAE RMSE NRMSE
(%)

R2 Train
Time (s)

S2-like 0.005 0.007 0.71 0.99 129.58
S3-like 0.009 0.012 1.16 0.96 134.93
L8-like 0.005 0.008 0.95 0.99 125.66
MODIS-like 0.005 0.007 0.91 0.99 128.91

R2 and NRMSE values higher than 0.96 and lower than
1.2%, respectively, underline the potential of all tested mul-
tispectral sensor characteristics to emulate hyperspectral data.

Additionally, R2 and NRMSE values across the entire
spectral range are illustrated in Fig. 10. It can be clearly seen
that all multispectral sensor characteristics allowed to produce
accurate hyperspectral data across the observed spectral range
except S3, which provides a bad performance from 1200 to
2300 nm. For wavelengths lower than 1000 nm all multispec-
tral sensors sensors provided R2 values higher than 0.94 and
NRMSE values lower than 2%. For wavelengths larger 1000
nm it was not possible to emulate accurate hyperspectral data
from S3 multispectral information because S3 only provides
spectral information in the range from 400–1020 nm. Con-
sequently spectral ranges outside the spectral coverage of S3
cannot be emulated.

B. Uncertainty maps
Finally, we used the NN dropout technique to obtain un-

certainty values associated to the emulated spectra. With this
technique, we can obtain a hyperspectral image with 511 bands
and the corresponding uncertainty maps for each band. In this
way, we can evaluate the epistemic uncertainty response of
the NN dropout approximation both spectrally and spatially.
As such, we can evaluate the fidelity of the NN emulator, and
have a measure of confidence for the values obtained over the
full image for any band.

The spectral uncertainties covering the full spectral range
expressed as standard deviation (SD) for the entire image
are presented in Fig. 11. Overall, the reflectance SD remains
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Fig. 8: Left: Validation statistics for the reference test subset. Determined R2 (blue line) and NRMSE (in %) (orange line) of the NN
emulator covering the spectral range from 402 to 2356 nm. Centre wavelengths of the S2 spectral bands are displayed as vertical grey lines.
Middle: Mean spectra of S2 (solid green line), HyPlant (dashed red line) and the emulation result (solid blue line) for the area covered by
the test subset with corresponding standard deviations indicated by the faded colors. Right: Relative error (in %) of the emulation result
compared to the reference test subset with boxplot statistics: mean (blue line), median (orange line), quartiles Q1 (25%) and Q3 (75%) (grey
shaded areas), whiskers (black dashed lines) and centre wavelength of the S2 spectral bands (vertical grey lines).

Fig. 9: Emulated hyperspectral data cube with the spatial coverage
of an entire S2 tile, with the subset of the study area (red and blue
framed area).

Fig. 10: R2 (left) and NRMSE in % (right) shown for the entire
spectral range for all the resampling spectra analyzed.

relatively constant in the spectral domain. The lower and upper
quartiles indicate that the data distribution is asymmetric with
a reflectance median around 0.005 and the mean around 0.01.
When expressing as relative uncertainties (CV), we obtained
values below 10% from 500 to 2356 nm. Only in the visible
light, characterized by low reflectance values, we achieved
uncertainty values up to 20%.

In the uncertainty map shown in Fig. 12, we can inspect
the mean epistemic uncertainty expressed as SD with a zoom
into the area used for model validation. Clouds in the eastern
part of the scene led to the highest SD values. This is

Fig. 11: Spectral uncertainty obtained by NN Dropout for an entire
S2 tile. Left axis: Boxplot statistics of the Reflectance Standard
Deviation: mean (blue dashed line), median (blue solid line), quartiles
Q1 (25%) and Q3 (75%) (grey shaded areas). Right axis: Mean of
the Coefficient of Variation.

attributed to the fact that the image subset used for model
training was free of clouds. Hence, the NN emulator was not
trained for those conditions and consequently this led to high
uncertainties for areas covered with clouds. Looking at the
uncertainty map of the subset used for model validation, we
can clearly distinguish the boundaries of various agricultural
fields covered with different crop types. The variety of fields
consistency clearly shows that dropout technique’s uncertainty
is epistemic with higher values for the spectral signatures that
are farther from the training spectra. We can also observe that
forest areas have SD values between 0.004 to 0.006. On the
other hand, uncultivated fields of bare soil, have SD values of
around 0.006. Green fields led to varying SD values, implying
that, while these fields appear alike in the RGB picture, their
spectral response differ across the whole spectrum. Also, as
expected, the man-made surfaces caused high levels of SD
due to the spectral variability of these surfaces. Practically, it
suggests that likely not all these surfaces were equally well
represented in the training dataset.

IV. DISCUSSION

Emulation is a statistical method for approximating deter-
ministic models with a large computational burden [9]. Earlier
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Fig. 12: Uncertainty estimation by NN Dropout with the spatial
coverage of an entire S2 tile, with the subset of the study area (red
and blue framed area) and zoom-in to the Test study area.

studies demonstrated that regression algorithms can reliably
serve as emulators to approximate RTMs [10]–[13], compu-
tationally expensive iterative methods [8], and approximate
Synthetic Scene Generation [7]. The presented work showed
the efficacy of emulation to produce synthetic hyperspectral S2
images based on multispectral input data, with the provision
of uncertainty estimation.

MLRAs are gaining popularity in the field of remote sensing
applications due to its lower computing cost while maintaining
a high precision that beats parametric and RTM-based tech-
niques [44]. However, the major issue with machine learning
methods is their low generalization capacity, due MLRAs
are very limited by the training dataset used. Therefore, the
values acquired when these approaches are applied to a feature
space that is very different from the one used for training
are unreliable and lose a large deal of accuracy. Hence, it
is critical that the emulator does not only produce accurate
results but also preserves acceptable transferability so that
it can be used over diverse types of land covers from the
training region. Additionally, we evaluated the possibility of
the emulator to apply it to imagery of other multispectral
sensors. Results suggested that retraining the emulator to the
spectral characteristics of other multispectral sensors preserves
the hyperspectral reconstruction accuracy, as long as the input
spectral bands are present along the full hyperspectral range
(NRMSE < 2%).

The MLRAs that obtain epistemic uncertainty along with
the predicted values such as GPR or Bayesian NN allow us
to assess the model’s transferability and acquire a sense of
confidence in the values produced in other locations [21],
[45]. When used on vast experimental data or high output di-

mensionalty, however, these techniques might be prohibitively
expensive in terms of computing. In addition, the volume of
data for training severely restricts GPR due to the complexity
of O(n3). The amount of data used for training the MLRA
models has been demonstrated to have the most influence on
their performance, according to prior studies [8]. Due to the
fact that the emulator’s accuracy is rather driven by the training
database size, it is essential that the MLRA models used can
manage large amounts of data, as is the case with for NN.
We had also tested NN architectures with multiple layers, yet
it did not lead to improvements as opposed to the single-
layer NN. We therefore conclude that one layer is enough to
cope with the complex relations between the multispectral and
hyperspectral spectra given the pursued design of pixel-based
sampling.

While obtaining uncertainty measures, the NN using the
dropout technique proves to be an excellent option that ad-
dresses the primary drawbacks of the various MLRAs [28].
Several studies have demonstrated the high accuracy and
reliability of the dropout uncertainty approach [38], [39].
As demonstrated in this paper, error propagation using DR
approaches acts as an elegant solution for dealing with high
output dimensionality. With the error propagation from prin-
cipal components domain to the the original data domain, we
may achieve uncertainties in multi-output models at a very low
computational cost.

The provision of uncertainty maps is a critical novelty
in emulation strategies. The difficulty in propagating mea-
surement uncertainty estimates in multi-output models has
until now been the main drawback. The usage of dropout
uncertainty in NN is one of the successful uncertainty es-
timation methods. However, several alternative uncertainty
strategies can be applied generically to any MLRA, such as
bootstrapping, Markov chains or other Monte Carlo methods
[46], [47]. Further efforts are foreseen in the direction of
generic uncertainty generation in future emulation studies so
that the fidelity of any emulated spectra can be traced.

V. CONCLUSIONS AND OUTLOOK

Emulation of spectral data through statistical learning opens
opportunities to fuse high spatial resolution multispectral im-
ages with high spectral resolution hyperspectral images. In
this work we evaluated the potential of emulators to generate
synthetic hyperspectral reflectance datacubes based on spectral
data coming from S2 images. After evaluating four MLRAs
regarding their trade-offs between accuracy and runtime, NNs
were identified to be best suited to create non-linear relations
between experimental S2 and hyperspectral HyPlant data. The
highest accuracy was achieved by using a fully connected
NN with one hidden layer with ReLU activation and 10% of
dropout to develop an emulator based on 100.000 randomly
sampled training pixels. The NN emulator was then applied
to an entire S2 tile which allowed to produce a realistic
hyperspectral S2-like datacube. The validation of emulated
data against reference HyPlant data demonstrated the potential
of the technique, which led to R2 values between 0.75 - 0.9
and NRMSE between 2 - 5% for the entire spectral range
from 402-2356nm. However, no perfect approximation was
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achieved for objects not included in model training such as
clouds. That is also revealed by the associated epistemic un-
certainty estimates, whereby clouds were flagged with highest
uncertainty. When zooming over the study site, uncertainties
are spatially consistent with the different types of crops
depending of their well representation in the training dataset.
Thanks to epistemic uncertainty estimations, we can evaluate
the transferability of the model when applying to other land
covers. Advances in machine learning and optimized training
sampling strategies are expected to further improve the quality
of emulation. Finally, it must be remarked that emulated
datacubes do not replace hyperspectral image data as recorded
by spaceborne sensors. However, since emulated hyperspectral
datacubes can be easily produced, they can serve for a diversity
of applications, e.g. in the preparation of future imaging
spectroscopy missions such as CHIME.
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