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Abstract—An accurate estimation of biophysical variables is
the key to monitor our Planet. Leaf chlorophyll content helps
in interpreting the chlorophyll fluorescence signal from space,
whereas oceanic chlorophyll concentration allows us to quantify
the healthiness of the oceans. Recently, the family of Bayesian
nonparametric methods has provided excellent results in these
situations. A particularly useful method in this framework is
the Gaussian process regression (GPR). However, standard GPR
assumes that the variance of the noise process is independent of
the signal, which does not hold in most of the problems. In this
letter, we propose a nonstandard variational approximation that
allows accurate inference in signal-dependent noise scenarios. We
show that the so-called variational heteroscedastic GPR (VHGPR)
is an excellent alternative to standard GPR in two relevant Earth
observation examples, namely, Chl vegetation retrieval from hy-
perspectral images and oceanic Chl concentration estimation from
in situ measured reflectances. The proposed VHGPR outperforms
the tested empirical approaches, as well as statistical linear re-
gression (both least squares and least absolute shrinkage and
selection operator), neural nets, and kernel ridge regression, and
the homoscedastic GPR, in terms of accuracy and bias, and proves
more robust when a low number of examples is available.

Index Terms—Biophysical parameter retrieval, Gaussian pro-
cesses (GPs), heteroscedastic models, retrieval.

I. INTRODUCTION

THE main goal of remote sensing is to monitor the Earth
and its interaction with the atmosphere. The analysis can

be done at local or global scales by looking at biogeochemical
cycles, atmospheric situations, and vegetation dynamics [1],
[2]. All these complex interactions can be studied through the
definition of physical parameters either representing different
properties for land (e.g., surface temperature, crop yield, de-
foliation, biomass, and leaf area coverage), water (e.g., yellow
substance, ocean color, suspended matter, or chlorophyll con-
centration), or the atmosphere (e.g., temperature and moisture
profiles at different altitudes). The field of physical parameter
estimation constitutes an intermediate modeling step necessary
to transform the measurements into useful estimates [3].
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The problem of physical parameter estimation has been
approached with either statistical, physical, or hybrid methods
[4]. In this letter, we will focus on the statistical approximation.
Statistical models can be either parametric or nonparametric.
Parametric models rely on physical knowledge of the problem
and build explicit parametrized expressions that relate a few
spectral channels with the biogeophysical parameter of interest.
A plethora of vegetation indexes have been introduced, for in-
stance, to study the vegetation status by estimating chlorophyll
content and other leaf pigments [5]. Many of these indexes
have been derived from high-resolution spectrometers, which
include many (up to more than 200) hyperspectral bands. The
simple calculation of these indexes has made possible deriving
reasonable maps of vegetation properties in a quick and easy
way. Nevertheless, the majority of the indexes only use up
to five bands, thus under-exploiting the full potential of the
hyperspectral datacube [6]. The same happens for oceanic or
atmospheric parametric models.

Alternatively, nonparametric models are adjusted to predict
a variable of interest using a training data set of input–output
data pairs, which come from concurrent measurements of the
parameter and the corresponding reflectance/radiance observa-
tion. Several nonparametric approaches have been introduced
for physical parameter retrieval. Partial least squares regression
has been, for instance, used for mapping canopy nitrogen [7],
and a nonlinear extension has been introduced via kernels
in [8] for chlorophyll content prediction. The support vector
regression [9] has yielded good results in modeling oceanic
chlorophyll [10].

Recently, the family of Bayesian nonparametric methods
has provided excellent results. The relevance vector machine
(RVM) [11] was used for the sparse approximation of oceanic
chlorophyll [12]. To avoid problems of over-sparsification of
the solution given by the RVM, a particularly useful method
in this framework is Gaussian process regression (GPR) [13],
which has been used in remote sensing problems [14]–[16].
GPR is simpler and generally more robust than other statistical
regression tools. In addition to the good numerical performance
and stability, GPR requires a relatively small training data set,
it can adopt very flexible kernel functions, it identifies the
relevant bands and observations in establishing relationships
with a variable, and finally it provides confidence intervals for
the predictions.

However, standard GPR assumes that the variance of the
noise process is independent of the signal, which does not hold
in most of the problems (see Fig. 1). This strong assumption
of homoscedasticity is generally broken in many biophysical
retrieval problems because the acquisition process is typi-
cally affected by noise in different amounts depending on
the measured range of the variable. In order to deal with
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Fig. 1. Illustration of a heteroscedastic relation between the measured re-
flectance (at 412 nm) and the chlorophyll concentration in the SeaBAM data
set used in the experiments. The left plot shows a clear heteroscedastic and
nonlinear relationship between the independent (reflectance) and dependent
(chlorophyll) variables. The right plot reveals that, even after marginal uni-
formization of the input (based on the cumulative density function of the
marginal probability density function), the relation is still heteroscedastic.

input-dependent noise conditions, heteroscedastic models need
to be designed; however, their tractability is not easy. In this
letter, we propose a nonstandard variational approximation that
allows accurate inference in signal-dependent noise scenarios.
We show that the so-called variational heteroscedastic GPR
(VHGPR) is an excellent alternative to standard GPR and
generally outperforms other parametric and nonparametric ap-
proaches such as neural networks (NNs) and kernel regression.

The remainder of the letter is outlined as follows: Section II
briefly reviews the theory of standard GPR. Section III intro-
duces the proposed VHGPR for parameter retrieval. Section IV
illustrates the performance of VHGPR in two relevant Earth ob-
servation examples: Chl vegetation retrieval from hyperspectral
images, and oceanic Chl concentration estimation from in situ
measured reflectances. We conclude the letter and outline future
research lines in Section V.

II. GPR

Gaussian processes (GPs) are a well-established powerful
nonparametric framework for nonlinear regression (see [13] for
a thorough treatment). As it is common in most regression
approaches, GPR models the observations (often referred to
as outputs) {yn}Nn=1 as the sum of some unknown latent
function f(x) of the inputs {xnR

D}Nn=1 plus constant power
(homoscedastic) Gaussian noise, i.e.,

yn = f(xn) + εn, εn ∼ N (0, σ2).

However, instead of proposing a parametric form for f(x)
and learning its parameters, in order to fit the observed data
well, GPR proceeds in a Bayesian nonparametric form. A zero-
mean1 GP prior is placed on the latent function f(x) and a
Gaussian prior is used for each latent noise term εn

f(x) ∼ GP (0, kθ(x,x
′)) ; εn ∼ N (0, σ2) (1)

where kθ(x,x
′) is a covariance function parameterized by θ,

and σ2 is a hyperparameter that specifies the noise power.
A GP is a stochastic process whose marginals are distributed

as a multivariate Gaussian. In particular, given priors (1), sam-
ples drawn from f(x) at the set of locations {xn}Nn=1 follow
a joint multivariate Gaussian with zero mean and a covariance
matrix Kff with [Kff ]ij = kθ(xi,xj).

1It is customary to subtract the sample mean to data {yn}Nn=1 and then to
assume a zero mean model.

If we consider a test location x∗ with corresponding output
y∗, priors (1) induce the following joint prior distribution be-
tween the observations y ≡ {yn}Nn=1 and y∗:[

y
y∗

]
∼ N

(
0,

[
Kff + σ2In kf∗

k�
f∗ k∗∗ + σ2

])
.

Collecting available data in D ≡ {xn, yn|n = 1, . . . , N}, it
is possible to analytically compute the posterior distribution
over the unknown output y∗

p(y∗|x∗,D) =N
(
y∗|μGP∗, σ

2
GP∗

)
μGP∗ =k�

f∗(Kff + σ2In)
−1y

σ2
GP∗ =σ2 + k∗∗ − k�

f∗(Kff + σ2In)
−1kf∗.

The corresponding hyperparameters {θ, σ} are typically
selected by type-II maximum likelihood, using the marginal
likelihood (also called evidence) of the observations, which is
also analytical (now explicitly conditioning on θ and σ):

log p(y|θ, σ) = logN (y|0,Kff + σ2I). (2)

When the derivatives of (2) are also analytical, which is often
the case, conjugated gradient ascent is typically used for opti-
mization. The full training process takes O(N3) time.

This illustrates a number of advantages of GPs: First, since
they yield a full posterior predictive distribution over y∗, it is
possible to obtain not only the mean predictions for test data
but also the so-called “error-bars,” assessing the uncertainty
of the mean prediction. Second, the whole procedure only
depends on a very small set of hyperparameters, which renders
it virtually overfitting free. Apart from noise power σ2, it is
typical to only use two additional hyperparameters, defining
signal power and smoothness, globally collected in θ. Third,
the tuning of such hyperparameters can be performed using
continuous optimization of the evidence, as opposed to the
nonderivable grid search performed during cross-validation in
other regression approaches.

III. HETEROSCEDASTIC GP

As we pointed out in the previous section, standard GPR is
homoscedastic, i.e., assumes constant noise power σ2 for all
observations. This assumption can be too restrictive for some
problems. Heteroscedastic GPs, on the other hand, let noise
power vary smoothly throughout input space, by changing the
prior over εn to

εn ∼ N (0, eg(xn))

and placing a GP prior over g(x) ∼ GP(μ01, kθg (x,x
′)). Note

that the exponential is needed2 in order to describe the nonnega-
tive variance. The hyperparameters of the covariance functions
of both GPs are collected in θf and θg , accounting for the signal
and noise relations, respectively.

Relaxing the homoscedasticity assumption into hetero-
scedasticity yields a richer and more flexible model that con-
tains the standard GP as a particular case corresponding to
a constant g(x). Unfortunately, this also hampers analytical
tractability; hence, approximate methods must be used to obtain
posterior distributions for f(x) and g(x), which are, in turn,
required to compute the predictive distribution over y∗. Next,
we summarize previous approaches to deal with the problem
and the proposed variational alternative.

2Of course, other transformations are possible, just not as convenient.
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A. Previous Approaches

The heteroscedastic GP (HGP) model was first described in
[17], where an expensive Markov chain Monte Carlo (MCMC)
procedure was used in order to implement full Bayesian infer-
ence. A faster but more limited method is presented in [18],
in order to perform maximum a posteriori (MAP) estimation.
These approaches have certain limitations: MCMC is hundreds
of times slower, whereas MAP estimation does not integrate out
all latent variables and is prone to overfitting.

B. Proposed Variational Heteroscedastic GP

Variational techniques allow to approximate intractable in-
tegrals arising in Bayesian inference and machine learning
in general. They are typically used to 1) provide analytical
approximations to the posterior probability of the unobserved
variables and, hence, do statistical inference over these vari-
ables and 2) derive a lower bound for the marginal likelihood
(or “evidence”) of the observed data, which allows model
selection because higher marginal likelihoods relate to greater
probabilities of a model generating the data.

In order to overcome the aforementioned problems, a
sophisticated variational approximation called Marginalized
Variational (MV) approximation has been recently intro-
duced in [19]. The MV approximation renders (approximate)
Bayesian inference in the HGP model both fast and accurate.
In [19], an analytical expression for the Kullback–Leibler di-
vergence between a proposal distribution and the true posterior
distribution of f(x) and g(x) (up to a constant) was provided.
Minimizing this quantity, with regard to both the proposal dis-
tribution and the hyperparameters, yields an accurate estimation
of the true posterior, while simultaneously performing model
selection. Furthermore, the expression of the approximate mean
and variance of the posterior of y∗ (i.e., predictions) can be
computed in closed form. We will refer to this variational
approximation for heteroscedastic GPR as VHGPR.

1) MV Approximation: The standard variational approxima-
tion defines a lower bound on the evidence of the model

F (q(f), q(g)) = log p(y)−KL (q(f)q(g)‖p(f ,g|y)) (3)

by subtracting the Kullback–Leibler divergence (which is al-
ways nonnegative) from it. Since the value of log p(y) is
independent of the variational densities q(f) and q(g), selecting
them to maximize this bound is equivalent to minimizing
KL(q(f)q(g)‖p(f ,g|y)), i.e., obtaining the best possible fac-
torized approximation to the posterior in the KL sense.

As it stands, F depends on the two N -dimensional varia-
tional distributions q(f) and q(g). It is possible to obtain a sim-
pler and tighter bound, by optimally removing its dependence
w.r.t. q(f). This new bound is known as the MV bound and can
be expressed as

F (q(g)) = logZ (q(g))−KL (q(g)‖p(g)) (4)

with Z(q(g)) =
∫
e
∫

q(g) log p(y|f ,g)dgp(f)df (see [19]).
The MV bound (4) upper bounds the standard variational

bound (3) and (since it is the particular case of it) also
lower bounds the evidence. Hence, log p(y) ≥ F (q(g)) =
F (q∗(f), q(g)) ≥ F (q(f), q(g)).

2) MV Bound for the HGP Model: For the HGP likelihood
and priors, the MV bound can be computed in closed form if

we restrict q(g) = N (g|μ,Σ), i.e., to be a multivariate normal
distribution. Note that we do not need to impose any constraint
on q(f) because the MV bound does not depend on it. Using
Kff and Kgg to name the covariance matrices resulting from
evaluating covariance functions of f(x) and g(x) at the inputs
respectively, (4) becomes

F (μ,Σ) = log

∫
e
∫

N (g|μ,Σ) log p(y|f ,g)dgN (f |0,Kff )df

−KL (N (g|μ,Σ)‖N (g|μ01,Kgg))

= logN (y|0,Kff +R)− 1

4
trace(Σ)

−KL (N (g|μ,Σ)‖N (g|μ01,Kgg)) (5)

where R is a diagonal matrix with elements [R]ii =
e[μ]i−[Σ]ii/2. Observe the correspondence between the first
term of the MV bound in (5) and the evidence of a standard
homoscedastic GP in (2). Optimizing this bound w.r.t. μ, Σ,
and hyperparameters θf and θg , we simultaneously perform
model selection and find an approximate posterior distribution
for g, i.e., N (μ,Σ). With this information, finding the posterior
distributions for f and y∗ is immediate (see details in [19]). The
full training process takes O(N3) time, just as a standard GP
(although the multiplicative constant is larger), thus enabling
fast and accurate inference for heteroscedastic models.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed VHGPR
recently presented in [19] and compare it with classical para-
metric models based on vegetation indexes and statistical re-
gression methods in machine learning, such as least squares
linear regression (LR), least absolute shrinkage and selection
operator (LASSO), regression trees (TREE), kernel ridge re-
gression (KRR), and GPs. Code for running all the statistical
methods is provided at http://www.uv.es/gcamps/code/simpleR.
html.

The method’s performance is assessed in terms of accuracy
[root-mean-square error (RMSE), mean absolute error (MAE)],
bias (mean error, ME), and goodness-of-fit (Pearson’s corre-
lation coefficient, R). We did a one-way analysis of variance
(ANOVA) to compare the means and squared errors of the
models. In all the experiments, the available data were ran-
domly split into two half-sets: 50% samples for training and
50% samples for testing performance. This experiment was
repeated 100 times, and the average results are provided. We
optimized the parameters through a threefold cross-validation
in the training set and then show the performance for the test
set. The minimum RMSE was taken as the selection criterion
for all methods, except for GPR and VHGPR where the maxi-
mum marginal was the chosen optimizing criterion. In order to
meet the positivity constraint of the dependent variable, before
training, we transformed the data logarithmically, as proposed
elsewhere.3

3While the interpretation of the model parameters cannot be made in terms of
the original response, after transforming back the predictions, one can perfectly
compute the accuracy and bias of the model’s prediction. Alternatives to such
convenient procedure may consider learning the warping transformation of the
output variable [20] or including a multivariate Gaussianization transformation
in the formulation [21].

http://www.uv.es/gcamps/code/simpleR.html
http://www.uv.es/gcamps/code/simpleR.html
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TABLE I
ABSOLUTE |ME|, RMSE, MAE, AND CORRELATION COEFFICIENT

BETWEEN THE ACTUAL AND ESTIMATED CHL CONCENTRATION (R)
OF MODELS IN THE TEST SET. BEST RESULTS ARE HIGHLIGHTED

IN BOLD AND THE SECOND BEST IN ITALICS

A. Experiment 1: Oceanic Chlorophyll Concentration

We used the SeaBAM data set [22], which gathers 919
in situ measurements of chlorophyll concentration around the
United States and Europe. The data set contains coincident
in situ chlorophyll concentration and remote sensing reflectance
measurements Rrs(λ)[sr

−1] at some wavelengths (412, 443,
490, 510, and 555 nm) that are present in the SeaWiFS ocean
color satellite sensor. The chlorophyll concentration values
range from 0.019 to 32.79 mg/m and shows nonlinear and
heteroscedastic relations (cf. Fig. 1). Smart ways to “linearize”
the problem consist of computing (ad hoc) spectral ratios.
However, in this letter, we aim to work directly with the original
(untransformed) data. More information about the data can be
obtained at http://seabass.gsfc.nasa.gov/seabam/seabam.html.

Table I reports the obtained results for a set of empirical
(top) and statistical learning methods (bottom). The proposed
VHGPR outperforms the rest, in accuracy (RMSE, MAE) and
goodness-of-fit (R), and closely follows the decision tree in
bias (ME). VHGPR performs better than GPR in all quality
measures, particularly for bias (+27% in ME), but also for
the accuracy (+4.7% in RMSE), and slightly for correlation
(+0.3% in R). From the ANOVA, statistical differences be-
tween VHGPR and the rest of the models were observed for
both bias (F = 30.0, p < 0.01) and accuracy (F = 24.7, p <
0.001). However, in particular, VHGPR, GPR, and NN were
not statistically different in accuracy (F = 0.09, p = 0.688),
but they showed differences in bias (F = 10.0, p < 0.01).

As an alternative robustness test to assess differences among
models, we show in Fig. 2 (left) the evolution of RMSE for the
most accurate models as a function of the number of predictions
used. The curves are the result of averaging 100 realizations,
and for each realization, we computed the RMSE with a fixed

Fig. 2. Performance (RMSE) in the test set (averaged over 100 random
realizations of the training-test data splitting) for different nonlinear statistical
algorithms as a function of number of used predictions for (left) the SeaBAM
and (right) the Barrax site.

number of predictions chosen at random. In the limit, one
obtains the results in Table I. Interestingly, the VHGPR model
is consistently better than the rest of the methods and reveals
better convergence rates to a lower error bound.

B. Experiment 2: Vegetation Chlorophyll Concentration

Here, we aim to retrieve vegetation parameters using
in situ measurements and hyperspectral images. The data were
obtained in the SPARC-2003 (SPectra bARrax Campaign) and
SPARC-2004 campaigns in Barrax, La Mancha, Spain. The
region consists of approximately 65% dry land and 35% ir-
rigated land. The methodology applied to obtain the in situ
leaf-level Chl data consisted of measuring samples with a
calibrated CCM-200 chlorophyll content meter in the field.
Concurrently, we used Compact High Resolution Imaging
Spectrometer (CHRIS) images Mode 1 (62 spectral bands, 34-m
spatial resolution at nadir). The images were preprocessed,
i.e., geometrically and atmospherically corrected [15]. Sum-
marizing, a total of n = 135 datapoints in a 62-D space and
the measured chlorophyll concentration constitute the database.
Some very noisy bands were removed to improve the results.

Averaged results for the 100 realizations are shown for the
test set in Table II. It is clearly observed that nonparametric
methods show the best results, with both GPR and VHGPR
performing best of the tested methods. In particular, Table II
shows noticeable gains of +93.5% in ME, +33.5% in RMSE,
+46.44% in MAE, and +2% in correlation. The ANOVA con-
firmed the differences between VHGPR and the other models
for both bias (F = 7.3, p < 0.01) and accuracy (F = 52.1,
p < 0.001). These results are confirmed by looking at the evo-
lution of the RMSE as a function of the considered predictions
in Fig. 2 (right), which clearly shows how VHGPR outperforms
the other models.

The best VHGPR model was used for prediction on the
whole CHRIS image to generate a pixel-by-pixel map of Chl
and its confidence map (see Fig. 3). The maps clearly show
the irrigated crops (the circles in orange-red), the seminatural
areas (light blue), and the bare soil areas (dark blue). Although
these maps cannot be used as a validation per se, the confidence
maps allow us to draw conclusions on the performance of the
retrievals. For example, the high confidences (western part of
the image) were the fields sampled the most, whereas low
confidence predictions (center of the image) correspond to areas
particularly underrepresented in the training data, such as dry
barley, harvested barley, and bright bare soils. This product

http://seabass.gsfc.nasa.gov/seabam/seabam.html
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TABLE II
RESULTS OF NARROWBAND/BROADBAND INDEXES PROPOSED IN

RELEVANT LITERATURE TESTED IN THE PRESENT STUDY ALONG WITH

RECENT NONPARAMETRIC MODELS. BEST RESULTS ARE HIGHLIGHTED

IN BOLD AND THE SECOND BEST IN ITALICS

Fig. 3. (Left) Chlorophyll concentration prediction map and (right) predictive
standard deviation obtained with VHGPR on the CHRIS 12-07-2003 nadir
image.

may be used to set sensitivity margins of field instruments quite
intuitively. These results confirm the very good properties of
nonparametric models, in general, and VHGPR, in particular,
for the estimation of vegetation properties from space.

V. CONCLUSION

Most of the real problems in remote sensing biophysical pa-
rameters exhibit nonlinear and heteroscedastic relations. Even
with modern and sophisticated kernel methods, signal and
noise relations are commonly disregarded. We have proposed
the VHGPR for biophysical parameter retrieval. The model
revealed as an excellent alternative to standard GPR in two
relevant Earth observation estimation problems, in terms of
accuracy and bias. Future work will consider the issue of the
computational cost of the GP models via sparse-promoting
priors, ensembles of models, and the analysis of the learned
relations encoded in the kernel. In a more application side,

we plan to exploit statistical regression in combination with
radiative transfer models.
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