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Radiative transfer models have long been used to characterize the foliar content at the leaf and canopy levels.
However, they still do not apply well to close-range imaging spectroscopy, especially because directional effects
are usually not taken into account. For this purpose, we introduce a physical approach to describe and simulate
the variation in leaf reflectance observed at this scale. Two parameters are thus introduced to represent (1) spec-
ular reflection at the leaf surface and (2) local leaf orientation. The model, called COSINE (ClOse-range Spectral
ImagiNg of lEaves), can be coupled with a directional–hemispherical reflectance model of leaf optical properties
to relate themeasured reflectance to the foliar content. In this study,we show that,when combiningCOSINEwith
the PROSPECT model, the overall PROCOSINE model allows for a robust submillimeter retrieval of foliar content
based on numerical inversion and pseudo-bidirectional reflectance factor hyperspectral measurements.
The relevance of the added parameters is first shown through a sensitivity analysis performed in the visible and
near-infrared (VNIR) and shortwave infrared (SWIR) ranges. PROCOSINE is then validated based on VNIR and
SWIR hyperspectral images of various leaf species exhibiting different surface properties. Introducing these
two parameters within the inversion allows us to obtain accurate maps of PROSPECT parameters, e.g., the chlo-
rophyll content in the VNIR range, and the equivalent water thickness and leaf mass per area in the SWIR
range. Through the estimation of light incident angle, the PROCOSINE inversion also provides information on
leaf orientation, which is a critical parameter in vegetation remote sensing.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Due to the strong interactions occurring between vegetation and the
incoming optical radiation through absorption and scattering processes,
hyperspectral remote sensing from satellites and aircrafts provides crit-
ical information to assess the spatial and temporal variabilities of vege-
tation status from local to global scales. This has led to a number of
agricultural, environmental and ecological applications such as the re-
trieval of leaf pigments (Ustin et al., 2009; Zarco-Tejada,Miller,Morales,
Berjón, & Aguera, 2004), the early detection of leaf diseases (Mahlein
et al., 2013) or the mapping of forest biodiversity (Féret & Asner,
2014). As hyperspectral cameras are now becoming more affordable,
close-range remote sensing data are also increasingly available to the
scientific community. Compared with air- and satellite-borne data,
ndoula@irstea.fr (R. Bendoula),
detection.fr (J.-B. Féret),
they generally offer a submillimeter or millimeter spatial resolution,
and they can be acquired at a higher temporal frequency, which is par-
ticularly interesting for precision agriculture. For example, these data
can beused to identify plant pigments (Blackburn, 2007), freezing stress
(Nicotra, Hofmann, Siebke, & Ball, 2003) or leaf diseases (Mahlein et al.,
2013), each ofwhich is of tremendous importance to followup the plant
physiological status. These images are generally processed by applying
statistically-basedmethods to estimate various leaf biochemical proper-
ties (Jay, Hadoux, Gorretta, & Rabatel, 2014; Ji-Yong et al., 2012; Nicotra
et al., 2003; Vigneau, Ecarnot, Rabatel, & Roumet, 2011). However, at
this scale, a proper physical interpretation based on radiative transfer
modeling is needed to describe the interactions between light and veg-
etation, especially for a spatially- and temporally-resolved quantifica-
tion of pigments (Blackburn, 2007).

Vegetation radiative transfer models are physically-based and simu-
late light propagation within leaves and/or canopies, e.g., as a function
of leaf biochemical constituents, leaf anatomy or canopy structure.
Whenever possible, model inversion allows for the retrieval of the var-
iables of interest, generally using iterative optimization, look-up tables,
statistical methods or machine learning algorithms.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2016.02.029&domain=pdf
mailto:nathalie.gorretta@irstea.fr
http://dx.doi.org/10.1016/j.rse.2016.02.029
www.elsevier.com/locate/rse


Table 1
Main parameters and acronyms.

Parameter Definition [unit]

bspec Specular term [unitless]
Cab Chlorophyll a + b content [μg·cm−2]
Cbp Brown pigment content [unitless]
Ccx Carotenoid content [μg·cm−2]
Cm Leaf mass per area [g·cm−2]
Cw Equivalent water thickness [cm]
E Spectral irradiance [W·m−2·nm−1]
fr Bidirectional reflectance distribution function (BRDF) [sr−1]
L Spectral radiance [W·sr−1·m−2·nm−1]
λ Wavelength [nm]
N Leaf structure parameter [unitless]
φl Difference between illumination and leaf normal azimuth angles [°]
φv Difference between illumination and viewing azimuth angles [°]
R Bidirectional reflectance factor (BRF) [unitless]
Rhsi Pseudo-bidirectional reflectance factor [unitless]
ρ Directional–hemispherical reflectance (DHR) [unitless]
θi Light incident angle (angle between the light source and the normal to

the leaf) [°]
θl, θv, θs Leaf normal, viewing and illumination zenith angles [°]
ϑ PROCOSINE parameters
ϑdhr Parameters of the leaf DHR model
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At the leaf level, these models range from simple plate models, to
ray-tracing, radiosity and stochastic models that are computationally
more difficult to invert (Dorigo et al., 2007). For instance, PROSPECT
(Jacquemoud & Baret, 1990) is based on the generalized plate model,
and is particularly well suited to estimate leaf biochemical constituents
(e.g., chlorophyll content, water content and leaf mass per area) based
on spectral measurements in the optical domain. The main reasons for
the popularity of PROSPECT are its accuracy, its computational efficiency
(resulting in fast iterative model inversion) and free distribution.

At the canopy level, various approaches of different complexities
have been developed for radiative transfer modeling, e.g., turbid
medium approaches (Verhoef, 1984), geometrical approaches (Chen &
Leblanc, 1997) or the combination of both (Gastellu-Etchegorry,
Demarez, Pinel, & Zagolski, 1996). Most of these models allow the can-
opy reflectance to be modeled as a function of parameters related to
canopy structure (such as leaf area index or leaf inclination distribution
function), leaf optical properties and sun-sensor geometry.

However, leaf and canopy radiative transfer models do not apply
well to close-range imaging spectroscopy. For example, at the leaf
level, the directional–hemispherical reflectance and transmittance sim-
ulated by PROSPECT (Jacquemoud & Baret, 1990) are usually measured
with an integrating sphere,whose implementation is difficult (if not im-
possible) for every single pixel of hyperspectral images. As a result,
PROSPECT cannot be inverted based on directional reflectance data as
retrieved by a close-range hyperspectral camera, unless it is assumed
that leaves are Lambertian (Buddenbaum&Hill, 2015) and in fully hor-
izontal position, which is an unrealistic hypothesis. Indeed, in most
cases, leaf reflectance exhibits some anisotropy (Bousquet, Lachérade,
Jacquemoud, &Moya, 2005; Comar et al., 2012) and thus varies with re-
spect to illumination and viewing angles. Furthermore, variation in leaf
orientation prevent from achieving a proper reflectance correction for
every pixel, because the reference surface used for reflectance correc-
tion is generally not submitted to the same local illumination conditions
than leaf material.

At the canopy level, most radiative transfer models have to be ap-
plied to mixed pixels (containing both soil and leaf materials), for
which effects of leaf composition, canopy structure, soil properties and
viewing/illumination angles are integrated into a single spectrum. Can-
opy models are thus well suited for ground-based spectroradiometric
measurements, as well as for air- and satellite-borne hyperspectral
measurements, all of them being usually characterized by a spatial res-
olution coarser than onemeter (Colombo et al., 2008; Schlemmer et al.,
2013; Zarco-Tejada, Rueda, & Ustin, 2003). However, most canopy
models are not suitable for simulating hyperspectral data characterized
by a higher spatial resolution (up to submillimeter level) for which the
assumption of mixed pixel does not hold.

In this study, we propose a physically-based model, called COSINE
(ClOse-range Spectral ImagiNg of lEaves), that describes the additional
spectral variability induced by directional effects and variation in leaf
orientation. Combining COSINE with a leaf directional–hemispherical
reflectancemodel such as PROSPECT allows the simulation of leaf reflec-
tance according to our experimental conditions: submillimetric spatial
resolution and a single light source assumed to be directional.When ap-
plied in inverse mode to close-range hyperspectral images, the overall
PROCOSINE model enables the simultaneous retrieval of PROSPECT pa-
rameters (e.g., chlorophyll and water contents), bidirectional effects
and leaf angle with respect to the light source.

The COSINE theory is described in Section 2. After recalling the nec-
essary radiometric definitions, we develop a physically-based analytic
expression of the reflectance quantity retrieved using close-range imag-
ing spectroscopy. This expression is then related to PROSPECT to explain
variations in leaf biochemistry and leaf anatomy. In Section 3, we pres-
ent the data sets used in this article as well as details about model vali-
dation and sensitivity analysis. Results are presented and discussed in
Section 4, and we finally draw some conclusions and perspectives in
Section 5.
2. Theory

2.1. Radiometric considerations

2.1.1. Definitions
The definitions and notations of themain physical quantities used in

this article and summarized in Table 1, are based on the initial terminol-
ogy of Nicodemus, Richmond, Hsia, Ginsberg, and Limperis (1977),
which has later been reviewed by Schaepman-Strub, Schaepman,
Painter, Dangel, and Martonchik (2006).

The spectral radiance L is the radiant flux in a beam per unit wave-
length, per unit area and per unit solid angle, and is expressed in the
SI unit [W·sr−1·m−2·nm−1]. This is the physical quantity measured
by a hyperspectral imaging sensor after spectral calibration. The spectral
irradiance E is the radiant flux in a beam per unit wavelength and per
unit area and is expressed in [W·m−2·nm−1].

One of the main physical quantities used to describe angular
patterns of reflected light is the bidirectional reflectance distribution
function (BRDF) expressed in [sr−1]. It describes how a parallel beam
of incident light from one direction in the hemisphere is reflected into
another direction in the hemisphere:

f r θs; θv;φv;λð Þ ¼ dLr θs; θv;φv;λð Þ
dEi θs;λð Þ ð1Þ

where subscripts i and r refer to incoming and reflected lights re-
spectively, θs and θv are respectively the illumination and viewing zenith
angles, and φv is the viewing azimuth angle relatively to the illumina-
tion azimuth angle (see Fig. 1 for angle representation). The BRDF
being the ratio of two infinitesimal quantities, it cannot theoretically
be measured. However, its integration over the corresponding solid
angles allows the derivation of many other measurable physical
quantities.

Usually, the reflectance correction process does not consist in retriev-
ing directly the reflectance (defined as the ratio of the leaving radiant
exitance to the incident irradiance), but rather follows the definition of
a reflectance factor. In the specific case of single illumination and viewing
directions, the bidirectional reflectance factor (BRF, denoted by R) is given
by the ratio of the radiant flux dLr reflected from the area element dA to
the radiant flux dLr

id reflected from an ideal and diffuse surface of the
same area dA under identical illumination and viewing geometries. It is



Fig. 1. Angle representation.
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unitless and, as developed by Schaepman-Strub et al. (2006), it can be
expressed as follows:

R θs; θv;φv;λð Þ ¼ dLr θs; θv;φv;λð Þ
dLidr θs;λð Þ

ð2Þ

where dLr
id does not depend on viewing angles because of the

Lambertian nature of the reference surface.
The BRDF of an ideal and diffuse surface being (1/π), the BRF of any

surface is therefore related to its BRDF by:

R θs; θv;φv;λð Þ ¼ π f r θs; θv;φv;λð Þ: ð3Þ

Let us finally define the directional–hemispherical reflectance
(DHR) as the integration of BRDF over the whole viewing hemisphere.
The DHR is unitless and is given by:

ρ θs;2π;λð Þ ¼
Z 2π

0

Z π=2

0
f r θs; θv;φv;λð Þ cosθv sinθvdθvdφv: ð4Þ

In the following, the spectral dependence will be omitted for more
clarity in notation. Similarly, spectral radiance and spectral irradiance
will be simply referred to as radiance and irradiance.

2.1.2. Radiometric expression of close-range hyperspectral measurement
The solid angles corresponding to incident and reflected light beams

are never purely directional, so rigorously, sensor measurements only
allow the retrieval of a biconical reflectance factor (Schaepman-Strub
et al., 2006). However, a close approximation of bidirectional reflec-
tance can be obtained under specific experimental and instrumental
conditions, e.g., using a collimated light beam and a small sensor field
of view (FOV) provided by a push-broom hyperspectral camera. In
this case, the leaf BRF R is approximated as follows:

R θs; θv;φvð Þ≈ Lr θs; θv;φvð Þ
Lidr θsð Þ

ð5Þ

where Lr and Lr
id are the radiances respectively measured on the leaf

and on the reference surface with a hyperspectral camera.
Importantly, Eq. (5) requires the leaf and reference surface to be

under identical illumination geometry (i.e., same θs values). However,
at the pixel level, the leaf position and leaf local orientation can make
the irradiances received by the leaf and reference surface strongly dif-
ferent. Indeed, considering a directional light source, the irradiance re-
ceived by an area element is proportional to the cosine of the incident
angle θi, i.e., the angle between the light source and the normal to this
element:

Ei θið Þ ¼ E0 cos θi ð6Þ

where E0 is the irradiance received by an area element perpendicular
to the light source direction, and cosθi= cosθscosθl+ sinθssinθlcosφl

where θl and φl characterize the normal to this area element (Bousquet
et al., 2005; Comar et al., 2014).

Therefore, we define two illumination geometries corresponding to
either the leaf or the reference surface. The irradiance received by the
leaf is:

Eli θli
� �

¼ E0 cosθli ð7Þ

whereas the one received by the ideal and diffuse reference surface
is:

Eidi θidi
� �

¼ E0 cosθidi : ð8Þ

The reference surface is usually positioned horizontally so, in the fol-
lowing, we note θiid=θs and θil=θi.

Similarly to Eq. (5), at each pixel, the physical quantity Rhsi retrieved
using a hyperspectral camera is given by:

Rhsi θs; θi; θv;φvð Þ≈ Lr θi; θv;φvð Þ
Lidr θsð Þ

: ð9Þ

Assuming the light source is directional and the pixel FOV is small,
combining Eqs. (1) and (9) leads to the following equation:

Rhsi θs; θi; θv;φvð Þ≈ f r θi; θv;φvð ÞEli θið Þ
1=πð ÞEidi θsð Þ

: ð10Þ

Using Eqs. (3), (7) and (8), Rhsi can finally be expressed as follows:

Rhsi θs; θi; θv;φvð Þ≈R θi; θv;φvð Þ cosθi
cosθs

: ð11Þ

Eq. (11) reveals that the physical reflectance quantity retrieved from
a small FOV sensor in presence of a directional light source does not cor-
respond to the leaf BRF if the leaf and reference surface are differently
tilted with respect to the light source. In the following, we call “leaf
pseudo-BRF” the leaf BRF weighted by the ratio of the cosine of the
angle between the light source and the normal to the leaf, to the cosine
of illumination zenith angle.

Therefore, Eq. (11) relates themeasured leaf pseudo-BRF to the illu-
mination zenith angle, the incident angle (related to local leaf angles
and illumination zenith angle) and the leaf BRF. To relate the latter to
the foliar content, it is then necessary to take into account leaf surface
properties as described in the next section.

2.2. COSINE: a model for ClOse-range Spectral ImagiNg of lEaves

In this study, we propose to adapt a leaf DHR model (such as
PROSPECT (Jacquemoud & Baret, 1990)) or LIBERTY (Dawson, Curran,
& Plummer, 1998)) to the close-range case. Indeed,with the perspective
of comparing leaf optical measurements to DHR simulations, proper ex-
perimental acquisitions require using an integrating sphere in order to
match with the hemispherical simulations. As a result, leaf DHRmodels
cannot directly be applied to hyperspectral remote sensing observations
of vegetation that are affected by variable bidirectional effects (or BRDF
effects) depending on illumination and viewing geometries. An impor-
tant prerequisite before using these models for close-range imaging
spectroscopy, is therefore to relate the leaf DHR to the leaf BRDF.
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2.2.1. Relationship between leaf BRDF and DHR
It is generally admitted that the leaf BRDF is the sum of a diffuse

component fr ,diff and a directional component fr ,spec (Bousquet et al.,
2005; Comar et al., 2014):

f r θi; θv;φvð Þ ¼ f r;spec θi; θv;φvð Þ þ f r;diff θi; θv;φvð Þ: ð12Þ

The diffuse component fr ,diff characterizes absorption and scattering
processes within the leaf volume and thus depends on optically-active
biochemical and biophysical parameters. The directional component
fr ,spec characterizes leaf surface properties and describes how light is
reflected at the surface. While fr ,diff is strongly wavelength-dependent,
fr ,spec is assumed to be nearly wavelength-independent in the visible
and near-infrared (VNIR) range (between 400 and 1000 nm)
(Bousquet et al., 2005; Comar et al., 2014). In the shortwave infrared
(SWIR) range (between 1000 and 2500 nm), this assumption does not
hold because the leaf refractive index actually depends on wavelength
(Féret et al., 2008; Vanderbilt & Grant, 1985), especially due to the
non-negligible influence of water absorption.

As a first approximation, fr ,diff can be expressed as the ratio of leaf
mesophyll Lambert coefficient kl to π (Bousquet et al., 2005). To take
into account the two-layer leaf structure (i.e. composed of an upper
wax layer and a bottom leaf mesophyll layer), one should also consider
the fraction of light that is reflected by the first wax layer and that does
not reach the bottom layer (Ashikmin, Premože, & Shirley, 2000;
Stuckens, Somers, Delalieux, Verstraeten, & Coppin, 2009). The diffuse
component is then expressed as a function of leaf mesophyll Lambert
coefficient kl and wax DHR ρspec (Stuckens et al., 2009):

f r;diff θið Þ ¼ kl
π

1−ρspec θi;2πð Þ
� �

ð13Þ

where fr ,diff does not depend on viewing angles and kl only depends
on wavelength.

As defined by Eq. (4), the total DHR can then be obtained combining
Eqs. (12) and (13):

ρ θi;2πð Þ ¼
Z 2π

0

Z π=2

0
f r;spec θi; θv;φvð Þ cosθv sinθvdθvdφv

þ kl
π

1−ρspec θi;2πð Þ
� �Z 2π

0

Z π=2

0
cosθv sinθvdθvdφv

ð14Þ

which can be rewritten as follows:

ρ θi;2πð Þ ¼ ρspec θi;2πð Þ þ kl 1−ρspec θi;2πð Þ
� �

: ð15Þ

This equation provides thenecessary basis to relate a leafDHRmodel
to the leaf BRDF (through the Lambert coefficient).

2.2.2. The COSINE model
Assuming nadir illumination, a leaf DHR model expresses the DHR

ρ(0;2π) as a function of leaf biochemical and biophysical contents char-
acterized by the vector of input parameters ϑdhr. Following Eq. (15), the
modeled Lambert coefficient can be expressed as a function of
ρspec(0;2π) and DHR model ~ρðϑdhrÞ as:

ekl ϑdhrð Þ ¼
~ρ ϑdhrð Þ−ρspec 0;2πð Þ

1−ρspec 0;2πð Þ ð16Þ

where ~ refers to modeled quantities.
The leaf BRDF can then be modeled as a function of leaf parameters
ϑdhr by combining Eqs. (12), (13) and (16):

ef r θi; θv;φv;ϑdhrð Þ ¼ f r;spec θi; θv;φvð Þ

þ 1
π

1−ρspec θi;2πð Þ
1−ρspec 0;2πð Þ

 !
~ρ ϑdhrð Þ−ρspec 0;2πð Þ
� �

:
ð17Þ

In order to estimate ϑdhr from the pseudo-BRF Rhsi retrieved using a
hyperspectral camera, Eqs. (3), (11) and (17) are combined to obtain
the pseudo-BRF based COSINE model:

gRhsi θs; θi; θv;φv;ϑdhrð Þ ¼ cosθi
cosθs

� �
1−ρspec θi;2πð Þ
1−ρspec 0;2πð Þ

 !
~ρ ϑdhrð Þ

"

þπ f r;spec θi; θv;φvð Þ−ρspec 0;2πð Þ 1−ρspec θi;2πð Þ
1−ρspec 0; 2πð Þ

 !#
ð18Þ

where only the first term of the sum is related to the leaf DHRmodel.
Note that fr ,spec and ρspec could potentially be modeled using the leaf

BRDF model developed by Bousquet et al. (2005) that expresses the
directional component as a function of illumination and viewing
geometries as well as on the wax refractive index and a surface rough-
ness parameter. Unfortunately, the resulting model becomes over-
parameterized so its inversion is an ill-posed problem and leads to
poor estimation results (not shown).

2.2.3. A simplified COSINE model for the VNIR range
In the VNIR range, the second term in Eq. (18) is assumed to be

wavelength-independent. Omitting its dependence in viewing angles,
Eq. (18) can then be simplified as:

gRhsi θs; θi;ϑdhr ; bspec
� � ¼ cosθi

cosθs

� �
1−ρspec θi;2πð Þ
1−ρspec 0;2πð Þ

 !
~ρ ϑdhrð Þ þ bspec

" #
ð19Þ

where bspec ¼ bspecðθi; θv;φvÞ ¼ π f r;specðθi; θv;φvÞ−ρspecð0;2πÞð1−ρspecðθi ;2πÞ
1−ρspecð0;2πÞÞ.

Assuming that the fraction 1−ρspecðθi ;2πÞ
1−ρspecð0;2πÞ is nearly one (especially true

for low incident angles), Eq. (19) can be approximated by:

gRhsi θs; θi;ϑdhr ; bspec
� � ¼ cosθi

cosθs

� �
~ρ ϑdhrð Þ þ bspec
� 	

: ð20Þ

COSINE therefore simulates the pseudo-BRF as a function of incident
angle θi, illumination zenith angle θs, foliar content through the DHR
model parameters ϑdhr and BRDF effect bspec. Importantly, this model
is presumably only well suited for low incident angles. In high

incidence, the fraction 1−ρspecðθi ;2πÞ
1−ρspecð0;2πÞ may differ from one, which could

lead to an incorrect estimation of θi when inverting the model.
Finally, in order to model directly radiance measurements, a

radiance-based COSINE model can be derived from Eq. (9) as:

eLr θs; θi;ϑdhr; bspec
� � ¼ cosθi

cosθs

� �
~ρ ϑdhrð Þ þ bspec
� 	

Lidr θsð Þ ð21Þ

where Lr
id(θs) is the radiance measured on the reference surface.

3. Material and methods

3.1. Data acquisition

3.1.1. Spectral measurements
The COSINEmodelwas tested using close-range hyperspectral images

acquired under laboratory conditions. Two push-broom hyperspectral
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cameras were used, i.e., a HySpex VNIR-1600 camera (Norsk Elektro
Optikk, Norway) and a HySpex SWIR-320m-e camera (Norsk Elektro
Optikk, Norway). The HySpex VNIR-1600 camera acquired successive
lines of 1600 pixels and 160 spectral bands ranging from 415 to 994 nm
with a 3.7 nm spectral sampling interval. The pixel FOV was 0.18 and
0.36 mrad across- and along-track respectively.

Even if COSINE is theoretically onlywell suited for the VNIR range for
which the directional BRDF component is assumed to be wavelength-
independent, we also tested this model on SWIR images in order to
see how this assumption was affecting the estimation results. The
HySpex SWIR-320m-e camera acquired successive lines of 320 pixels
and 256 spectral bands ranging from 960 to 2490 nmwith a 6 nm spec-
tral sampling interval. The pixel FOV was 0.75 mrad across- and along-
track.

As shown in Fig. 2, in both cases, the camera was facing towards
nadir at 30 cm above the imaged leaf, thus leading to across-track
pixel FOV of 0.23 mm for the SWIR camera, and 0.11 mm for the VNIR
camera (after an appropriate subsampling in the across-track direction
so as to obtain square pixels). Both cameras were positioned thirty cen-
timeters apart. The lighting was provided by two halogen sources (one
for each camera) positioned close to the cameras. These light sources
were collimated and positioned so that each source was illuminating
the same line than the line imaged by the corresponding camera. The il-
lumination zenith angles were set to θs=20° and θs=30° for the VNIR
camera and the SWIR camera respectively. The incominghalogen irradi-
ance was estimated on a line-by-line basis by using a reference surface
(Spectralon, Labsphere) horizontally placed next to the imaged leaf. In
order to limit saturation on the reference surface while obtaining a
low noise level in the strong absorption regions, we chose a Spectralon
whose diffuse reflectance was approximately 40% between 400 and
2500 nm. After acquisition, VNIR and SWIR imageswere finally calibrat-
ed to spectral radiance.

Themain data set contains leaves from five species commonly found
in the French Mediterranean region, namely bamboo (Phyllostachys
aurea), ivy (Hedera helix), laurestine (Viburnum tinus), bay laurel
(Laurus nobilis) and holly (Ilex aquifolium). Some of these leaves exhib-
ited strong (resp. weak) non-Lambertian behavior, e.g., bay laurel and
holly (resp. bamboo). Also, some of them had regular (resp. non-
regular) surfaces, e.g., bay laurel (resp. ivy and holly). All of these leaves
were harvested in March, 2015 and selected on a color basis, ranging
from dark green for leaves with a high chlorophyll content, to yellow
for senescent leaves. As illustrated in Fig. 2, each leaf was placed on a
Fig. 2. Experimental setup for the horizontal (a) and tilted (b–c) configurations. For the VNIR c
SWIR camera, the corresponding average incident angles θi are 30° (a), 10° (b) and 50° (c).
translation stage and was imaged in three positions using a 20° tilted
stand. As a result, the average incident angles θi were 0°, 20° and 40°
for VNIR camera, and 10°, 30° and 50° for SWIR camera. Note that the
translation stage had low reflectivity so we assumed that, after being
transmitted through the leaf, the light reflected from the translation
stage and re-transmitted through the leaf was negligible.

In addition, a SWIR image of a sugar beet leaf (Beta vulgaris) was ac-
quired, especially because this species shows interesting features in this
spectral range, i.e., very high equivalent water thickness (CwN0.02 cm)
and low leaf mass per area (Cmb0.005 g ⋅cm−2), as well as a strongly
non-Lambertian and non-regular surface, thereby illustrating well the
relevance of ourmodel. This leaf was only imaged in horizontal position,
its surface being already highly non-regular.

3.1.2. Reference measurements
For each leaf, after spectral measurements, several leaf disks (from

two to seven disks depending on leaf size) of known area were sampled
using a cork borer. Each disk position was then recorded for further ref-
erence. A Dualex scientific+ (Force-A, Orsay, France), hereafter called
Dualex, was used to measure the chlorophyll a + b content Cab in
every disk. This leafclip allows non-destructive transmittance-based
Cab measurements characterized by an accuracy of around 5 μg·cm−2

(Cerovic, Masdoumier, Ghozlen, & Latouche, 2012). Compared with
the well known SPAD-502 (Minolta, Japan), the Dualex uses a higher
Cab-sensitive wavelength (710 nm) that allows it to have a nearly linear
response to variation in Cab for Cabb40 μg ⋅cm−2. However, for dicotyle-
dons, saturation occurring beyond 40 μg·cm−2 leads the Dualex to un-
derestimate such Cab values (Cerovic et al., 2012). The higher Cab, the
greater the underestimation.

Leaf disks were then weighted and placed in a drying oven at 75 °C
for 48 h. Subsequently, their dry mass was measured to obtain the
equivalent water thickness Cw (in cm) and leaf mass per area Cm (in
g·cm−2) as follows:

Cw ¼ FW−DW
A

� dw ð22Þ

Cm ¼ DW
A

ð23Þ

where FW andDW are the fresh and dryweights of leaf disks respec-
tively, A is the total disk area, and dw=1 g ⋅cm−3 is the water density.
amera, the corresponding average incident angles θi are 20° (a), 40° (b) and 0° (c). For the



Table 3
Lower bounds, upper bounds and initial values of the optimization problem.

Parameter Lower bound Upper bound Initial value

N 1 3.5 1.5
Cab [μg·cm−2] 0 100 50
Ccx [μg·cm−2] 0 30 10
Cbp 0 5 0
Cw [cm] 0.00005 0.1 0.01
Cm [g·cm−2] 0.001 0.03 0.01
θi [°] 0 90 20
bspec −0.2 0.6 0
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Therefore, for each leaf, several measurements of Cab and one mea-
surement of Cw and Cm were available. The ranges of Cab, Cw and Cm
for the main data set are reported in Table 2 and were similar to those
found in the literature (Danson & Bowyer, 2004; Féret et al., 2008).

3.2. Retrieval of leaf parameters from model inversion

In this study, we used the PROSPECT (Leaf Optical Properties Spec-
tra) model to simulate the leaf DHR from 400 to 2500 nm as a function
of the leaf biochemistry and structure. The original version developed
by Jacquemoud & Baret (1990) has been successively improved over
the years to take into account other biochemical components and a
broader spectral range (Baret & Fourty, 1997a; Féret et al., 2008;
Gerber et al., 2011; Jacquemoud, Bacour, Poilv, & Frangi, 2000;
Jacquemoud et al., 1996). The considered PROSPECT 5b version was de-
veloped by Féret et al. (2008) (available at http://teledetection.ipgp.
jussieu.fr/prosail/) and simulates the leaf DHR as a function of the leaf
structure parameter N, chlorophyll a + b content Cab, carotenoid con-
tent Ccx, brown pigment content Cbp, equivalent water thickness Cw
and leaf mass per area Cm.

In the following, leaf parameters were retrieved based on model in-
version. The parameters that were only affecting the reflected radiation
in theVNIR range (resp. the SWIR range),were kept constantwhen con-
sidering the SWIR range (resp. the VNIR range) so as to reduce the esti-
mation uncertainty. Therefore, because water absorption is weak in the
VNIR range and only occurs around 970 nm (Curran, 1989), the VNIR
range was reduced to 410–900 nm (i.e., 135 bands) and Cw was fixed
to the default value 0.01 cm. The vector of input PROSPECT parameters
was thus ϑdhr=[N,Cab,Ccx,Cbp,Cm]t. Similarly, foliar pigments do not af-
fect the SWIR reflectance so Cab, Ccx and Cbp were fixed to the default
values 30 μg·cm−2, 10 μg·cm−2 and 0 respectively. In the SWIR
range, the vector of input PROSPECT parameters was ϑdhr=[N,Cw,Cm]t.

For each pixel, the combined pseudo-BRF based PROSPECT+ COSINE
model (named PROCOSINE hereafter) was numerically inverted by opti-
mizing the following least square merit function:

ϑpseudo‐brf ¼ argmin
ϑ

X
λi

Rhsi λið Þ−gRhsiðλi;ϑÞ
h i2

ð24Þ

where ϑ=[ϑdhr,θi,bspec]t, Rhsi is the measured pseudo-BRF retrieved

using Eq. (9) andgRhsi is the pseudo-BRF based PROCOSINE model given
by Eq. (20).

Similarly, the radiance-based PROCOSINE model was inverted by
solving the following optimization problem:

ϑradiance ¼ argmin
ϑ

X
λi

Lr λið Þ−eLrðλi;ϑÞ
h i2

ð25Þ

where Lr is the measured spectral radiance and eLr is the radiance-
based PROCOSINE model given by Eq. (21).

To reduce the number of solutions to the inverse problem, the
estimation range was restricted using lower and upper bounds. These
bounds as well as initial values are provided in Table 3. Note that Cbp
and Cw upper bounds are higher than those found in the literature be-
cause, at the submillimeter level, Cbp and Cw can be very high in necrotic
regions and veins respectively.
Table 2
Characteristics of reference measurements for the main data set.

Parameter Number of
samples

Mean Min/max Standard
deviation

Cab [μg·cm−2] 93 29.4 5.2/54.6 11.1
Cw [cm] 22 0.0104 0.0049/0.0164 0.0040
Cm [g·cm−2] 22 0.0091 0.0052/0.0129 0.0023
Optimization of Eqs. (24) and (25) was performed using the trust-
region reflective algorithm implemented in MATLAB (version 8.0.0, The
MathWorks Inc., Natick, MA, 2012) within the “lsqcurvefit” function.

3.3. PROCOSINE sensitivity analysis

Before assessing PROCOSINE in terms of estimation results, we per-
formed a global sensitivity analysis in order to study the relative contri-
bution of each parameter to the modeled pseudo-BRF as a function of
wavelength. Global sensitivity analysis informs us on which variation
in themodel output is produced by variation in themodel input param-
eters, both individually and collectively through their interactions with
each other.When studied as a function of wavelength, it provides inter-
esting insights regarding the optimal spectral bands that can be used to
retrieve model parameters.

In this paper, we implemented the EFAST (Extended Fourier Ampli-
tude Sensitivity Transform) method (Saltelli, Tarantola, & Chan, 1999)
that was already applied to PROSAIL and PROGEOSAIL models by
Bowyer & Danson (2004). EFAST is a quantitative variance-basedmeth-
od, i.e., it allows the derivation of sensitivity indices from the decompo-
sition of the total variance of the model output into variance terms
induced by every input parameter. In this paper, we only used the
first-order index Si that represents the percentage of output variance
explained by the ith parameter alone. The remaining percentage of var-
iance is explained by interactions between parameters and is given by
Sint ¼ 1−∑

i
Si . Si (and Sint) ranges from 0 to 1, and the higher Si, the

more sensitive the model output is to the ith parameter.
In this study, 5000 combinations of model parameters were ran-

domly generated using appropriate probability distributions because
the latter strongly affects the results of sensitivity analysis (Bowyer &
Danson, 2004; Wallach, Makowski, Jones, & Brun, 2014). The distribu-
tions of PROSPECT parameters were estimated from seventeen inde-
pendent data sets made available by Féret et al. (2011); Féret,
personal communication. They include a wide range of leaf spectral,
chemical, and structural properties, i.e., 1417 leaves corresponding to
about 120 different species from various growing conditions and devel-
opmental stages. Note that Cab, Ccx, Cw and Cm data were obtained in a
destructive way, whereas N data were obtained from PROSPECT inver-
sion on DHR data. It can be shown that these data are well described
by Gamma distributions (p b 0.001). Using such distributions (instead
of normal ones) prevented us from generating samples with negative
content values. Regarding brown pigments, we assumed that leaves
under study were green so Cbpwas set to zero. Finally, θi and bspec distri-
butions were retrieved from the estimation results presented in
Section 4 using a Gamma distribution for θi and a normal distribution
for bspec (not shown). The characteristics of all of these distributions
are presented in Table 4, where the shape parameterα and the scale pa-
rameter β of the Gamma distribution were given by their maximum
likelihood estimates. Note that two bspec distributions were used for
the two spectral domains. Importantly, the covariance between param-
eters could not be considered when generating the samples. Conse-
quently, the actual influences of Cab and Ccx are likely to be slightly
different, both parameters being highly correlated (Féret et al., 2008).

http://teledetection.ipgp.jussieu.fr/prosail/
http://teledetection.ipgp.jussieu.fr/prosail/


Table 4
Estimated parameter distributions (μ: mean; σ: standard deviation; α: shape parameter;
β: scale parameter).

Parameter Distribution μ σ α β

N Gamma 1.52 0.23 47.50 0.032
Cab [μg·cm−2] Gamma 32.8 18.87 1.99 16.45
Ccx [μg·cm−2] Gamma 8.51 3.92 3.83 2.22
Cw [cm] Gamma 0.0122 0.0061 6.45 0.0019
Cm [g·cm−2] Gamma 0.0078 0.0036 4.20 0.0018
θi [°] Gamma 25 10 6.25 4
bspec (VNIR) Normal −0.009 0.0375 – –
bspec (SWIR) Normal 0.0346 0.0403 – –
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For each EFAST run, 5000 leaf reflectance spectra were therefore
simulated using PROSPECT and PROCOSINE (Eq. (20)) so as to compute
first-order indices and interactions. Average indices were finally com-
puted over 15 runs.

4. Results and discussion

4.1. Sensitivity analysis

In Fig. 3, we compare the first-order indices and interactions obtained
with PROSPECT and PROCOSINE over the VNIR and SWIR ranges. Fig. 3a
and b reveals the same features already observed in previous studies
using other methods and/or models (Bacour, Jacquemoud, Tourbier,
Dechambre, & Frangi, 2002; Bacour et al., 2001; Bowyer & Danson,
2004; Jacquemoud & Baret, 1990; Jacquemoud et al., 2009). In the visible
range (400–730 nm), photosynthetic pigments (i.e., chlorophyll and ca-
rotenoids) drive most of the reflectance variability. Between 400 and
525 nm where the carotenoid absorption is the strongest (Féret et al.,
2008), the contributions of Cab and Ccx are similar in magnitude and
range from 20 to 40%. Between 525 and 730 nm, reflectance mainly de-
pends on Cab, its contribution ranging from 40 to 90%. The influence of
interactions is higher in strong absorption regions, which means that
the effects of other parameters depend on Cab and Ccx values. For exam-
ple, the relative increase in reflectance due an increase in N (reflecting
higher scattering within the leaf internal structure) will be high in case
of low absorption and low in case of strong absorption.

In the NIR plateau, variation in reflectance is mainly produced by
variation in leaf structure (80%) and leaf mass per area (14%) through
scattering processes (Knyazikhin et al., 2013). In the SWIR range, only
leaf structure, equivalent water thickness and leaf mass per area have
significant contributions. In particular, Cw strongly influences reflec-
tance in the water absorption peaks located around 1450 and
1950 nm (about 75%), whereas variation in Cm has a significant contri-
bution around 1720 and 2250 nm (resp. 24% and 30%).

Taking into account BRDF effects and leaf orientation through the
bspec and θi parameters within the PROCOSINE model modifies the re-
flectance sensitivity as shown in Fig. 3c and d. Compared with
PROSPECT sensitivity analysis, the overall contributions of PROSPECT
parameters are mostly similar in shape but still, they decrease to ac-
count for variance in bspec and θi. For example, the Cab contribution at
around 550 nm decreases from 90 to 70%.

The contributions of bspec and θi are quite different. Overall, variance
in bspec highly influences reflectance in strong absorption regions (both
due to Cab and Cw), accounting for up to 90% near 400 nm and 75% near
1930 and 2500 nm. In these regions, the diffuse part of reflectance is
very low so the influence of the surface-reflected flux (that does not in-
teract with the leaf volume) dominates. Interestingly, an analogy can
be made with high-resolution water remote sensing, in that the sun
glint (i.e., the amount of flux directly reflected at the water surface)
is usually estimated in the NIR region, where the water-leaving signal
is negligible because of strong water absorption (Hochberg,
Andrefouet, & Tyler, 2003). Overall, the bspec contribution is always
greater than 15% between 400 and 2500 nm, thereby indicating that
this parameter should not be neglected when dealing with close-
range hyperspectral images.

The contribution of the incident angle θi significantly varies over the
whole spectral domain. It mostly affects reflectance in the NIR plateau,
accounting for about 30% of the variance of the PROCOSINE output. Con-
versely, its influence is muchweaker in the visible range, where its con-
tribution does not exceed 5%, as well as in water absorption regions.
Generally, because it affects the model through a multiplicative term
(see Eqs. (20) and (21)), the spectral profile of its contribution is similar
to a common leaf spectral signature: the higher the reflectance, the
higher its contribution. Interestingly, this profile is also similar to the
contribution of the average leaf angle (ALA) to the PROSAIL model
(Jacquemoud et al., 2009). In the latter case, ALA has more influence
at weakly absorbingwavelengths because the effect of multiple scatter-
ing within the canopy is stronger (Knyazikhin et al., 2013).

To summarize, this sensitivity analysis shows that both bspec and θi
significantly affect the measured signal and definitively have to be
taken into account in the case of close-range imaging spectroscopy.

4.2. Quantitative assessment of model inversion

The performances of model inversion were quantitatively assessed
both in terms of spectral fitting and parameter retrieval. Note that we
had only reference measurements integrated over one (for Cab) or sev-
eral (for Cw and Cm) leaf disk(s) of a few square centimeters. As a result,
in this section, the means and standard deviations of Cab, Cw and Cm es-
timated values were computed from the values estimated within the
corresponding leaf disk(s).

4.2.1. PROCOSINE spectral accuracy
We first quantified how accurate was PROCOSINE in fitting the

pseudo-BRF and radiance measurements retrieved at the pixel level. In
Fig. 4, we show some fitting results obtained with an ivy leaf both for
the VNIR and SWIR ranges, this leaf surface being non-Lambertian and
non-regular.

Overall, strong agreements were obtained between measured and
simulated spectra in the two ranges (RMSEb4%). As expected, high
bspec values were retrieved in areas affected by specular reflection,
and high θi values were retrieved where the light incident angle was
high. Compared with the VNIR range, the obtained RMSE were about
twice higher for the SWIR range. This is in agreement with the
mismodeling of specular reflection in the SWIR range mentioned in
Section 2.2.1 and discussed further in Section 4.2.4. These results
thus demonstrate the accuracy of PROCOSINE in accounting for the
spectral variability induced by BRDF effects and leaf orientation, espe-
cially in the VNIR range.

4.2.2. Results of parameter retrievals in the VNIR range
As recalled by the sensitivity analysis, the VNIR reflectance is mainly

driven by the chlorophyll a + b content. In Fig. 5, we show the means
and standard deviations of Cab estimation obtained for each leaf disk
with leaves in horizontal position (Fig. 5a–c) and tilted position (Fig.
5d–i). We compare the results obtained with PROSPECT (in blue), the
pseudo-BRF based PROCOSINE model (in orange) and the radiance-
based PROCOSINEmodel (in green). Because of the saturation in the ref-
erence measurement (see Section 3.1.2), the RMSE and R2 values were
computed from samples for which the measured Cab values were
lower than 40 μg·cm−2.

On average, when tested with horizontal leaves, the radiance-based
PROCOSINE model led to a higher accuracy (R2 = 0.92; RMSE=
3.23 μg ⋅cm−2) than the pseudo-BRF PROCOSINE model (R2=0.89;
RMSE=3.73 μg ⋅cm−2) and PROSPECT (R2=0.81; RMSE=
4.88 μg ⋅cm−2). Applying the samemodels to leaves in tilted position
decreased the estimation accuracy, however to a variable extent. For
θi ¼ 0� , the radiance-based PROCOSINE model (R2=0.93; RMSE=



Fig. 3. First-order sensitivity indices and interactions for (a) PROSPECT in the VNIR range, (b) PROSPECT in the SWIR range, (c) PROCOSINE in the VNIR range, and (d) PROCOSINE in the
SWIR range (θs=26°).
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4.44 μg ⋅ cm−2) still performed better than the pseudo-BRF based
PROCOSINE model (R2=0.92; RMSE=4.71 μg ⋅ cm−2) and
PROSPECT (R2=0.81; RMSE=6.45 μg ⋅cm−2). The same trend was
also observed for θi ¼ 40� , the radiance-based PROCOSINE model
leading to a better accuracy (R2=0.91; RMSE=3.65 μg ⋅ cm−2)
than the pseudo-BRF based PROCOSINE model (R2=0.86; RMSE=
4.63 μg ⋅cm−2) and PROSPECT (R2=0.87; RMSE=5.87 μg ⋅cm−2).

Overall, both PROCOSINE implementations obtained significantly
lower standard deviations of Cab estimation than PROSPECT.

Lastly, for Cab N 40 μg·cm−2, model inversion always provided
higher Cab values than those measured with the Dualex.

The incident angle estimation within the whole leaves is evaluated in
Fig. 6. The results are presented using histograms to account for within-
leaf variability of leaf orientation. For both model implementations, we
represent the distributions of θi values estimated for every pixel for the
three acquisition configurations (i.e., average incident angles θi of 0°,
20°, and 40°).

Surprisingly, strong differences were observed between both model
inversions. On the one hand, the pseudo-BRF based model gave poor
estimation results with estimated θi of 3.3°, 5.1° and 11.7° (and the
same estimated distribution mode, i.e., 2.4°) for θi ¼ 0�, θi ¼ 20�, and θi
¼ 40� respectively. On the other hand, the radiance-based model gave
better estimation results with estimated θi of 9.7°, 16.9° and 19.6°
(and estimated distributionmodes of 6.3°, 14.8° and 14.8°) forθi ¼ 0�,θi
¼ 20�, and θi ¼ 40� respectively.

It is worth noting that poorer angle estimation results were general-
ly obtained for bamboo leaves (results not shown) with estimated dis-
tribution modes of 15.4°, 28.6° and 28.6°) for θi ¼ 0� , θi ¼ 20� , and
θi ¼ 40� respectively.

4.2.3. Results of parameter retrievals in the SWIR range
Regarding PROSPECT original parameters, variation in SWIR reflec-

tance is mainly produced by variation in equivalent water thickness,
leaf mass per area and leaf structure.

In Fig. 7, we show the means and standard deviations of Cw estima-
tion obtained with leaves in horizontal position (Fig. 7a–c) and in tilted
position (Fig. 7d–i). For horizontal leaves, PROCOSINE performed better



Fig. 4. Fitting results obtained for the VNIR range (a–c) and the SWIR range (d–f) using the pseudo-BRFmodel (b, e) and the radiancemodel (c, f). Solid (resp. dashed) lines correspond to
measurements (resp. simulations). Blue curves correspond to areas strongly affected by specular reflection, while red curves correspond to areas characterized by a high incident angle.
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than PROSPECT in terms of R2 (R2=0.91 for PROSPECT, R2=0.93 for the
pseudo-BRF based PROCOSINE model and R2=0.94 for the radiance-
based PROCOSINE model), but worse in terms of RMSE (RMSE=
0.0016 cm, RMSE=0.0083 cm and RMSE=0.0025 cm resp.). Howev-
er, the PROCOSINE performances remained mostly unchanged when
applied to tilted leaves, while PROSPECT obtained poorer performances,
either forθi ¼ 10� (a 125% increase in RMSE) orθi ¼ 50� (a 15% decrease
in R2).

The RMSE values obtained with PROCOSINEwere primarily due to a
systematic bias, the R2 values being higher than 0.91 for the three acqui-
sition configurations. This bias was more pronounced for the pseudo-
BRF based model, and led to a systematic overestimation of Cw.



Fig. 5. Cab estimation results (mean± standard deviation) obtainedwith PROSPECT (blue), the pseudo-BRF based PROCOSINEmodel (orange), and the radiance-based PROCOSINEmodel
(green) and with θi ¼ 20� (a–c), θi ¼ 0� (d–f) and θi ¼ 40� (g–i). The R2 and RMSE values are computed for actual Cab values lower than 40 μg·cm−2 and are given in parentheses.

Fig. 6. Histograms of estimated θi values for every pixel for the VNIR range and the three acquisition configurations (θi ¼ 0� , θi ¼ 20� , and θi ¼ 40�): (a) pseudo-BRF based PROCOSINE
model, and (b) radiance-based PROCOSINE model.
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Fig. 7. Cw estimation results (mean± standard deviation) obtained with PROSPECT (blue), the pseudo-BRF based PROCOSINEmodel (orange), and the radiance-based PROCOSINEmodel
(green) and with θi ¼ 30� (a–c), θi ¼ 10� (d–f) and θi ¼ 50� (g–i). R2 and RMSE values are given in parentheses.
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Lastly, similarly to Cab estimation, PROCOSINE obtained lower stan-
dard deviations of Cw estimation than PROSPECT, especially for tilted
leaves.

The Cm retrieval results are presented in Fig. 8 in a similar fashion to
Cw. The radiance-based PROCOSINE model gave significantly lower
RMSE than the pseudo-BRF based PROCOSINE model and PROSPECT,
i.e., RMSE=0.0013 g ⋅cm−2, RMSE=0.0032 g ⋅cm−2, and RMSE=
0.0024 g ⋅cm−2 respectively on average for the three acquisition con-
figurations. The PROCOSINE performances weakly depended on leaf po-
sition, whereas the R2 dropped from 0.89 for θi ¼ 10� and θi ¼ 30� , to
0.30 for θi ¼ 50� when inverting only PROSPECT. For such high incident
angles, the uncertainty of Cm estimation was much higher with
PROSPECT than with PROCOSINE.

Lastly, Cm was generally underestimated by PROSPECT and
overestimated by the pseudo-BRF based PROCOSINE model.

The two PROCOSINE inversions were also compared based on θi es-
timation results in Fig. 9, in which we represent the histograms of esti-
mated θi distributions. As expected, in both cases, the highest (resp. the
lowest) angles were mostly retrieved from the θi ¼ 50� (resp. θi ¼ 10�)
configuration, the dispersions around the mean values being due to the
variation in leaf orientation. θi was more accurately predicted using the
radiance-basedmodel since the estimatedθi were 19.7°, 27.7° and 36.4°
for θi ¼ 10�, θi ¼ 30�, and θi ¼ 50� respectively. The pseudo-BRF based
model globally overestimated θi since the estimated θi were 38.0°,
47.2° and 53.0° for θi ¼ 10�, θi ¼ 30�, and θi ¼ 50� respectively.

Similarly to theVNIR range, poorer estimation resultswere generally
obtained for bamboo leaves (results not shown). For example, the
radiance-based model led to estimated θi of 38.0°, 43.4° and 47.0° for θi
¼ 10�, θi ¼ 30�, and θi ¼ 50� respectively.
4.2.4. Discussion about parameter retrievals

4.2.4.1. Estimation of chlorophyll content. In the VNIR range, both
PROCOSINE implementations performed better than PROSPECT in re-
trieving Cab. For leaves in horizontal position, the 34% improvement in
RMSE when using the radiance-based PROCOSINE model instead of
PROSPECT is likely to be due mainly to the modeling of BRDF effects.
Not taking them into account leads to a greater uncertainty as shown
through the estimation standard deviations computed within each leaf
disk. For example, as illustrated in Fig. 5a with the sample correspond-
ing to an actual mean value of 53 μg·cm−2, a local BRDF effect induces



Fig. 8. Cm estimation results (mean± standard deviation) obtainedwith PROSPECT (blue), the pseudo-BRF based PROCOSINEmodel (orange), and the radiance-based PROCOSINEmodel
(green) and with θi ¼ 30� (a–c), θi ¼ 10� (d–f) and θi ¼ 50� (g–i). R2 and RMSE values are given in parentheses.
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an overall increase in reflectance, which is misinterpreted by PROSPECT
as a decrease in Cab. This result confirms one of the conclusions drawn
from the sensitivity analysis, which has already showed that bspec signif-
icantly affects leaf close-range hyperspectral measurements.

The difference betweenPROCOSINE and PROSPECTwas even greater
when considering leaves in tilted position, for which the modeling of
Fig. 9. Histograms of estimated θi values in every pixel for the SWIR range and the three acquis
model, and (b) radiance-based PROCOSINE model.
leaf inclination was more important. In particular, for the highest inci-
dent angle (θi ¼ 40�), both the modeling of BRDF effects and leaf orien-
tationwithin the radiance-based PROCOSINEmodel led to an actual 38%
improvement over PROSPECT. It is worth noting that taking θi into ac-
count improves the Cab estimation results even if Cab is mainly retrieved
between 400 and 750 nm, in which the effect of θi is lower (see Fig. 3c).
ition configurations (θi ¼ 10� , θi ¼ 30� , and θi ¼ 50�): (a) pseudo-BRF based PROCOSINE
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In fact, the difference in retrieval performance in VNIR between
PROSPECT and PROCOSINE is even greater forN leaf structure parameter
thatmainly affects reflectance in theNIR plateau,where both θi and bspec
have a strong influence on reflectance (N maps are only shown for the
SWIR range, see Fig. 12).

The PROCOSINE inversion performed well compared with the accu-
racy provided by the Dualex manufacturer, i.e., RMSE=5 μg ⋅cm−2

(Cerovic et al., 2012), especially considering that spectral measure-
ments are affected by extra variability and that the method is based
on reflectance, which is known to be less sensitive to Cab than transmit-
tance (Baret & Fourty, 1997b). Importantly, the apparent Cab overesti-
mation for CabN40 μg ⋅cm−2 was rather due to the saturation in the
reference measurement (see Section 3.1.2), as also suggested by the
similar trend observed for both PROSPECT and PROCOSINE. Further ex-
periments conducted on hyperspectral data associated with laboratory
extraction based measurements of pigment contents (including Ccx)
would, however, be interesting to fully characterize the pigment
retrieval.

The main difference between both PROCOSINE inversions arose for
high incident angles, since the RMSE decreased by 21% when using
the radiance-based model. This result confirms that this implementa-
tion better handles variation in leaf orientation as displayed in Fig. 6.
4.2.4.2. Estimation of equivalent water thickness and leaf mass per area.
Somewhat different observations could be made from the SWIR range.
In most cases, the retrievals of Cw and Cm resulted in lower RMSE
when using the radiance-based PROCOSINE model. In particular, the
Cm estimation was very accurate even if Cm is not the most influential
parameter in this spectral domain (see Fig. 3d). The poor R2 value and
very high standard deviations obtained with PROSPECT and θi ¼ 50�

again demonstrate the need for accounting for BRDF effects and leaf ori-
entation, especiallywhen the targeted parameter does not have a strong
influence on reflectance.

However, as recalled in Section 2.2.1, BRDF effects are not properly
taken into account for the SWIR range because, unlike the VNIR range,
bspec depends on wavelength. Indeed, the BRDF directional component
depends on the leaf refractive index (Bousquet et al., 2005), whose
imaginary part is proportional to absorption (Born &Wolf, 1980). Espe-
cially at the far end of the SWIR range, water absorption is so strong
Fig. 10. Estimatedmaps obtained using PROSPECT in the VNIR (a–c) and SWIR (d–f) ranges: (a
1458 nm, 2202 nm and 1662 nm), (e) Cw, (f) Cm.
(Hale & Querry, 1973) that the imaginary part of the leaf refractive
index is no longer negligible compared with the real part (Gerber
et al., 2011). This may explain why PROSPECT is more accurate than
PROCOSINE in retrieving Cw on leaves in horizontal position. Presum-
ably, PROCOSINE systematically overestimates Cw tomimic the decrease
of the leaf refractive index (Féret et al., 2008). The compensation be-
tween Cw and bspec allows the proposed models to be adjusted to the
SWIR range and to obtain better estimation results for other
PROSPECT parameters such as Cm. For leaves in tilted position, the influ-
ence of leaf orientation, whose modeling does not depend on wave-
length, again makes the radiance-based PROCOSINE model more
accurate than PROSPECT.

Importantly, the high R2 values obtainedwith PROCOSINE for Cw and
Cm retrievals make it possible to calibrate strong linear relationships be-
tween the actual values and the estimated values. Indeed, in every case,
the obtained RMSE is driven more by the estimation bias than by the
variance. As carried out by Cheng, Rivard, & Sanchez-Azofeifa (2011),
applying such an indirect retrieval could correct this bias and signifi-
cantly enhance the estimation results obtainedwith a given experimen-
tal setup.
4.2.4.3. Angle estimation. Both in the VNIR and SWIR ranges, the perfor-
mances of PROCOSINE weakly depended on leaf position. This tends to
prove that non-regular surfaces can be handled properly by introducing
the θi parameter. However, some clear differences arose between
pseudo-BRF and radiance inversions. Overall, inverting the radiance-
basedmodel provided the best results, the strongest difference between
both ranges lying in θi estimation, especially in theVNIR range. θiwas in-
deed better retrieved using radiance-based inversion, the θi underesti-
mation for high incident angles and both ranges being presumably

due to the assumption 1−ρspecðθi ;2πÞ
1−ρspecð0;2πÞ ≈1 in Eq. (20).

It could be shown that confounding effects between θi andN (aswell
as Cm in the VNIR range) were responsible for poor θi estimation results
obtained through pseudo-BRF inversion. For example, as observed in
Fig. 3, both θi and N have similar contributions to the model output.
However, they also have opposite effects, which leads the pseudo-BRF
inversion to misinterpret an increase in θi as a decrease in leaf structure
N. Therefore, in the VNIR (resp. SWIR) range, this model compensates θi
) true color composite image, (b) Cab, (c) Cbp, (d) false color composite image (using bands
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underestimation (overestimation) by N underestimation
(overestimation).

On the other hand, several assumptions can be made regarding the
good performances obtained by radiance-based inversion. First, this
may be due to the noise level in the spectral measurements: as the
ratio of two radiance spectra is noisier than both radiance spectra inde-
pendently, retrieved pseudo-BRF spectra thus have a lower signal-to-
noise ratio than originally measured radiance spectra. This problem is
critical near 400 nm and in the NIR plateau where the sensitivity of
the VNIR camera is lower compared with most of the visible range
(see Fig. 4). This emphasizes the necessity of acquiring spectral mea-
surements as clean as possible. Alternatively, such differences in the in-
version performances may be due to the numerical implementation of
the inversion process (e.g., through the considered cost function, opti-
mization algorithm or initialization). Further investigation is therefore
needed to fully optimize the PROCOSINE inversion.

Finally, the poorer angle estimation results obtained with bamboo
leaves were likely to be due to the azimuthally anisotropic roughness
properties ofmonocotyledon leaves, thatmainly originate from the lon-
gitudinal orientation of veins (Comar et al., 2012, 2014). Unlike regular
surfaces for which the BRF is azimuthally symmetric, such an organized
arrangement of the leaf surface leads the specular lobe not to be in the
principal plane (Miesch, Briottet, & Kerr, 2002). In this case, it may
seem inappropriate to represent the local leaf inclination at the pixel
Fig. 11. Estimated maps obtained using the radiance-based PROCOSINE model in the VNIR (a–
(f) false color composite image (using bands 1458 nm, 2202 nm and 1662 nm), (g) C

w
, (h) C

m

level using only a single mean angle, especially because the image spa-
tial resolution is comparable to the inter-vein distance for monocotyle-
dons, i.e., a few hundred micrometers (Comar et al., 2014). However,
other estimation results presented in this paper strongly suggest that
this does not affect the retrievals of leaf biochemical properties.
4.3. Leaf parameter mapping

Hyperspectral imaging allowed us to obtain high-resolutionmaps of
model parameters by inverting the model for each pixel. Compared
with the results obtained from estimated values averaged within one
or several leaf disk(s) (each of which contains several hundreds of
pixels), suchmaps provide a deeper insight in how these effects actually
affect the estimation process.

In Figs. 10 and 11, we show some estimated maps obtained using
PROSPECT and the radiance-based PROCOSINE model respectively, the
radiance-based inversion performing better than the pseudo-BRF inver-
sion as seen in Section 4.2. The considered bay laurel leaf was chosen
due to its strong non-Lambertian behavior and to the presence of a
large range of Cab and Cbp values. The actual chlorophyll content in the
greenest area was close to 40 μg·cm−2, while the equivalent water
thickness and leaf mass per area were 0.0088 cm and 0.0099 g·cm−2

respectively.
e) and SWIR (f–j) ranges: (a) true color composite image, (b) C
ab
, (c) C

bp
, (d) b

spec
, (e) θ

i
,

, (i) b
spec

, (j) θ
i
.



Fig. 12. Estimated maps obtained in the SWIR range using the radiance-based PROCOSINE model (b–f) and PROSPECT (g–i): (a) false color composite image (using bands 1458 nm,
2202 nm and 1662 nm), (b) bspec, (c) θi, (d) N, (e) Cw, (f) Cm, (g) N, (h) Cw, (i) Cm.
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On the one hand, as observed in Fig. 10, PROSPECT estimation was
strongly affected by BRDF effects both in the VNIR and SWIR ranges.
This increase in reflectance is not taken into account by PROSPECT,
which resulted in some compensationsduring the inversion, here corre-
sponding to an increase in Cbp and decreases in Cab (as already men-
tioned in Section 4.2.2), Cw and Cm. On the other hand, in Fig. 11, we
show that these BRDF effects were correctly interpreted as local in-
creases in bspec within the PROCOSINE inversion. Accurate descriptions
of the actual regular leaf orientation were also obtained through homo-
geneous θi maps and average θi of 15° and 30° for the VNIR and SWIR
ranges respectively.

Modeling such extra variability therefore allowed us to obtain con-
sistent maps of foliar content. In the VNIR range, the highest Cab values
were obtained in the greenest parts with values close to 40 μg·cm−2,
while very low chlorophyll contents were retrieved in senescent parts,
especially in the necrotic area on the top (Fig. 11b). This latter area
was also exhibiting a high content in brown pigments as shown in
Fig. 11c, thereby proving the reliability of PROSPECT for retrieving
pigments.

Consistentmapswere obtained in the SWIR range aswell. As expect-
ed, veins were found to contain a lot of water, unlike the upper part
where necrosis was causing a strong water loss (Fig. 11g). Although
being a bit more affected than Cw by mismodeled BRDF effects, Cm was
estimated more accurately than Cw since both Cw and Cm average esti-
mated values were close to 0.011 g·cm−2.

In particular, thesemaps are very appealing for identifying plant dis-
eases at leaf scale. As described by Mahlein et al. (2013), different dis-
eases may lead to different symptoms that can be characterized by
local changes in optical properties, e.g., a higher chlorophyll/carotenoid
ratio for sugar beet rust, or necrosis for Cercospora leaf spot. Therefore,
inverting the radiance-based PROCOSINE model from VNIR and SWIR
hyperspectral images of the same leaf offers very interesting perspec-
tives for early detection of many plant diseases.

Finally, in Fig. 12, we provide a last example that again demonstrates
the potential of PROCOSINE in the SWIR rangewhen testedwith a sugar
beet leaf characterized by high Cw (Cw=0.0355 cm) and low Cm (Cm=
0.0040 g ⋅cm−2) values, and by a strongly non-regular and non-
Lambertian leaf surface. Even if PROSPECT obtained better results
when considering estimated values averaged over the five sampled
leaf disks (Cw ¼ 0:0370 cm;Cm ¼ 0:0032 g � cm−2), it also led to highly
heterogeneous and inconsistent maps, whose variances obviously did
not reflect the actual ones but rather expressed unmodelled variability.
Conversely, the PROCOSINE inversion led to homogeneous and consis-
tent maps, either for leaf structure (N ¼ 1:30; to compare with the
mean value of 1.225 provided by Jacquemoud et al. (1996) for the
same species), equivalent water thickness (Cw ¼ 0:042 cm) and leaf



Fig. 13. Use of the PROCOSINE model for image pretreatment in the VNIR (a–c) range: (a) DHR image reconstructed with PROSPECT and estimated parameters, (b) SBRI map (Mahlein
et al., 2013) obtained with the original image, and (c) SBRI map (Mahlein et al., 2013) obtained with the reconstructed image.
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mass per area (Cm ¼ 0:0052 g � cm−2). In particular, the strongly non-
regular leaf orientation was greatly retrieved through the estimated θi
map (Fig. 12c): regions with low estimated θi were indeed facing the
light source while regions with high estimated θi were facing the oppo-
site side (note that shadows were interpreted as high θi values). Inter-
estingly, most imaging techniques allowing the retrieval of leaf (or
even plant) orientation are either based on depth imaging systems
(Chéné et al., 2012) or on 3D models built frommulti-angular observa-
tions using stereovision (Lati, Filin, & Eizenberg, 2013) or photogram-
metry (Jay, Rabatel, Hadoux, Moura, & Gorretta, 2015). In comparison,
it is worth noting that in this study, the retrieval of leaf orientation
only necessitates a single-angular observation and is based on spectral
information only.

5. Conclusions and perspectives

In this study, we propose a physically-based model that allows for
applying rigorously a DHR model of leaf optical properties to pseudo-
BRF hyperspectral (or multispectral) images acquired with close-range
imaging spectroscopy. The proposed COSINE model describes the spec-
tral variability caused by variable BRDF effects and leaf orientation, that,
depending on leaf surface, canmake the acquired pseudo-BRFmeasure-
ments very different from DHR measurements. In this paper, COSINE is
coupled with PROSPECT and the numerical inversion of the resulting
PROCOSINE model led to accurate leaf-level mappings of foliar content
and above leaf surface properties, both in the VNIR and SWIR ranges.

Besides avoiding theneed for hemisphericalmeasurements, thepro-
posed approach allows the non-destructive biochemical characteriza-
tion of small leaves thanks to the submillimeter resolution of
hyperspectral images. Potentially, it could represent a practical solution
for optical characterization of needles, whose optical properties were
found to be well described by PROSPECT (Moorthy, Miller, & Noland,
2008) (usual needle optical measurements involving using complex ex-
perimental setups to handle irregularities in size, shape and curvature).
As previously mentioned, it can also be combined with other leaf DHR
models such as LIBERTY (Dawson et al., 1998).

The accurate retrieval of Cm makes it possible to derive mass-based
quantities from surface-based quantities. In particular, strong correla-
tions (R2N0.85) were obtained for the estimation of Gravimetric
Water Content (being expressed as Cw/Cm), which is an important indi-
cator for fire risk modeling (Chuvieco et al., 2004).

Potential applications also include the use of PROCOSINE as a pre-
treatment for further processing. To illustrate, in Fig. 13a, we show a
DHR image reconstructed by running PROSPECT in a forward mode
with parameters previously estimated with the radiance-based
PROCOSINE model (the original image is presented in Fig. 10). For ex-
ample, computing spectral indices designed for plant disease identifica-
tion based on this cleaned image is much more reliable to detect these
diseases at early infection stages, especially when these indices are
based on wavelengths strongly affected by BRDF effects, e.g., the SBRI
(Mahlein et al., 2013). Alternatively, PROCOSINE could allow the design
of spectral indices adapted to close-range imaging spectroscopy, simi-
larly to Féret et al. (2011).

Further investigation is however needed to properly model the spec-
ular component in the SWIR range. In this case, the effect of water ab-
sorption on leaf refractive index should be considered to reliably model
the wavelength-dependency of bspec parameter. Also, confounding ef-
fects between PROCOSINE parameters (e.g., N, θi and Cm in the VNIR
range) should be studied more deeply by optimizing the numerical im-
plementation of the iterative optimization or by considering regulariza-
tion strategies as reviewed by Baret & Buis (2008) and Verrelst et al.
(2015), e.g., by using prior knowledge to constrain somemodel variables,
or by generating a look-up table and averaging the N best solutions. As
noted in the discussion, a more exhaustive assessment of PROCOSINE
should also be performed over a larger data set encompassing a wider
range of pigment, water and dry matter contents properly measured
using laboratory extraction methods. This would allow us to fully vali-
date the proposed model. Lastly, it is worth mentioning that the use of
COSINE based on images acquired under outdoor conditions requires as-
suming that diffuse illumination (coming from either the sky and/or the
surrounding terrain) is negligible compared with direct sunlight. We are
currently working towards an improvement of COSINE to account for
these influences within the modeling, thus transforming the BRF-based
model into a hemispherical-directional reflectance factor based model.
This would allow processing spatially-resolved data acquired from
near-ground remote sensing, e.g., from a tower or low flying unmanned
aerial vehicle.
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