

APPROXIMATING EXPERIMENTAL VEGETATION SPECTROSCOPY DATA THROUGH EMULATION

Jochem Verrelst, Juan Pablo Rivera, Jorge Vicent, Pablo Morcillo & Jose Moreno

df المعالمة المعامة المعام معامة المعامة محمامة محمامة

Hyperspectral image (subset Barrax)

R

Any difference? Which model would you choose?

SCOPE

Emulator

(emulated SCOPE)

Emulation of RTMs

<u>Emulators</u> are statistical models that approximate the processing (input-output) of a physical model (e.g. RTM) - at a fraction of the computational cost:

making a statistical model from a physical model

RTM

Machine learning

Emulator

Processing steps emulation

Emulator toolbox

With ARTMO's emulation processing chain any RTM can be converted into an emulator.

Emulation of experimental spectral data

Can we use emulation to predict <u>noisy data</u> such as:

- **1. Field measurements?**
- 2. Images?

Various open questions: Emulators great idea... what about accuracy?

1. Role of machine learning regression algorithm?

2. Emulation is same as interpolation?

3. Role of data type?

Interpolation of experimental data: Scattered methods

- Gridded(o) LUTs
- Value at query point depends on distance to LUT nodes
- No tuning hyper-parameters
- Multi-output: spectra (*k*-dim)
- Only few interpolation methods allow interpolating in scattered **D**-dim parameter space:

Rationale & setup experimental SPARC dataset

SPARC data set (July 2003; Barrax, Spain)

- Field data (135 samples), 6 variables:
 - Leaf Chl measured with CCM-200
 - LAI measured with LiCor LAI-2000
 - FVC measured with hemispherical photographs
 - Biomass
 - Leaf water content
 - Canopy water content
- Spectral data:
 - HyMap (125 bands)

(MLs: 80% training – 20% testing)

80% Training

20 PCA

20% Validation

NRMSE (%) results interpolation and emulation validated against remaining 20% SPARC data.

Emulation methods more accurate and faster than conventional interpolation methods.

Visual comparison reference data vs. emulated data GPR emulator

20% SPARC dataset

GPR emulator

- Somewhat less variation emulator, because bare soils (variables=0) produce only 1 output spectra.
- Inclusion of a soil variable can solve this issue, e.g. soil moisture

Example of #500 emulated SPARC spectra based on varying all 6 variables

13/22

Hyperspectral subset: image?

R

Using emulator to reconstruct hyperspectral

image (125 bands, 500 x 500)

Evaluation NN emulator

(125 bands, 500 x 500)

1257 nm

1503 nm

738 nm

1723 nm

Some areas perfectly emulated, however, also significant differences: soil spectral variability poorly emulated (because not trained for it).

16/22

100

50

0 %

-50

-100

Using emulator to reconstruct a complete CHRIS image

- Fast rendering of full hyperspectral image.
- Vegetated surfaces adequatly emulated.
- A variable for controlling spectral variability bare soil needed (e.g. soil moisture)

17/22

Size of GPR model: 0.51Mb

Relative error maps

553 nm

643 nm

Statistic: NRMSE

Visible part better emulated than NIR.

Emulation of a S2 subset

L2A S2 subset (10 bands), Valladolid, Spain

GPR reconstructed S2 subset

Size of GPR model: 1.8Mb

Emulation of a smaller S2 subset

L2A S2 subset (10 bands), Valladolid, Spain

GPR reconstructed S2 subset

Size of GPR model: 0.12Mb

20/22

Emulation of S2-like hyperspectral image

Size of GPR model: 0.4Mb 21/22

Take home messages

- ✓ Emulation can be used to rapidly reconstruct sensor-like (hyper)spectral data with sufficient accuracy.
- ✓ Emulation is more accurate and faster than conventional interpolation techniques.
- ✓ Emulation can generate simplified (hyper)spectral scenes in the order of seconds.

Thanks!

More about emulation:

Daniel Heestermans: WE2.R7.5 MULTIOUTPUT AUTOMATIC EMULATOR FOR RADIATIVE TRANSFER MODELS (12:30-12:50)

2