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ABSTRACT
Inversion of radiative transfer models using a lookup-table
(LUT) approach against hyperspectral data streams leads
to retrievals of biophysical parameters such as chlorophyll
content (Chl), but necessary optimization strategies are not
consolidated yet. Here, various regularization options have
been evaluated to the benefit of improved Chl retrieval from
hyperspectral CHRIS data, being: i) the role of added noise,
ii) the role of multiple best solutions, and iii) the role of ap-
plied cost functions in LUT-based inversion. By using data
from the ESA-led field campaign SPARC (Barrax, Spain), it
was found that introducing noise and opting for multiple best
solutions in the inversion considerably improved retrievals.
However, the widely used RMSE was not the best performing
cost function. Three families of alternative cost functions
were applied here: information measures, minimum contrast
and M-estimates. We found that so-called ’Power divergence
measure’, ’Trigonometric’ and spectral measure with ’Con-
trast function K(x)=-log(x)+x’ outperformed RMSE. The
whole inversion approach, including more than 60 different
cost functions, has been implemented in the ARTMO (Au-
tomated Radiative Transfer Models Operator) GUI toolbox
and can easily be applied to other kinds of multispectral or
hyperspectral images.

Index Terms— LUT-based inversion, Chlorophyll con-
tent retrieval, cost functions, radiative transfer models, CHRIS

1. INTRODUCTION

Leaf chlorophyll content (Chl) is among the most important
biophysical parameters retrievable from satellite reflectance
data. The parameter gives insight in the phenological stage
and health status (e.g., development, productivity, stress) of
crops and forests.

When it comes to the development of retrieval methods, it
is mandatory to invest in methods that are both accurate and
robust and at the same time can be applied in an operational
context. Contrary to empirical approaches, canopy radiative
transfer models (RTMs) explicitly interpret driving processes
between solar radiation and the elements constituting the
canopy using physical laws. Because of being physically-
based, inversion of canopy RTMs against actual EO data is
generally considered as one of the most accurate approaches
to map biophysical parameters. However, this approach is not
straightforward. According to Hadamarad postulates, math-
ematical models of physical phenomena are mathematically
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invertible if the solution of the inverse problem to be solved
exists, is unique and depends continuously on variables. Un-
fortunately this assumption is not met. In fact, the inversion
of canopy RTMs is by nature an ill-posed problem mainly for
two reasons: on the one hand, several combinations of canopy
biophysical and leaf biochemical parameters have a mutually
compensating effect on canopy reflectance thus leading to
very similar solutions. On the other hand, model uncertain-
ties and simplifications (e.g. 1D nature of some models) may
induce large inaccuracies in the modelled canopy reflectance.

Over the past two decades, different successful strate-
gies have been proposed to circumvent the drawback of ill-
posedness, with Lookup-table (LUT)-based inversion strate-
gies as most popular ones. The main advantage of LUT-based
inversion approaches is that it can be fast because the most
computationally expensive part of the inversion procedure is
completed before the inversion itself. LUT-based inversion
in its essential form, i.e. direct comparison of LUT spectra
against an observed spectra through a cost function, consti-
tutes the majority of applied inversion approaches. Various
regularization strategies have been proposed to increase the
robustness of the estimates: 1) the use of prior knowledge
about model parameters (1), 2) the use of multiple best solu-
tions (instead of the single best solution) (1), 3) adding noise
to account for uncertainties attached to measurements and
models (2), and, 4) the combination of single variables into
synthetic variables such as the canopy level content of ab-
sorbing materials (3), e.g. canopy Chl, which is the product
of leaf Chl and LAI.

Nevertheless, in view of applying these regularization
strategies into a more operational context, above-mentioned
studies are constrained in various ways. First, while the
majority of reviewed studies focused on optimizing a single
LUT-based inversion problem, the mutual impact of proposed
optimizing strategies has not been systematically assessed.
Second, in each of these studies the well-known root mean
square error (RMSE) was used as cost function between sim-
ulated and measured spectra. However, in case of outliers and
nonlinearity, the residuals are distorted and therefore the key
assumption for using RMSE (Gaussian or zero mean white
noise distribution of residuals) is violated (4). The latter
authors suggested that alternative cost functions may provide
a more robust way to estimate biophysical parameters since
they allow retrievals for cases where errors are not normally
distributed and allow to deal with nonlinear high-parametric
problems. The availability of a large number of cost func-
tions gives a high degree of flexibility, since it allows model
optimization for a wide range of error distributions. Hence,
alternative cost functions deserve to be evaluated in view of



the above-described optimizing strategies. Third, the major-
ity of these studies focus on a specific vegetation type such
as crop types, identified within the image. This assumes that
up-to-date knowledge of land cover types is available, which
is usually not the case in an operational context. Moreover,
eventually LUT-based inversion should be applicable not
only for agroecosystems but over all natural and semi-natural
vegetated surfaces. And fourth, from a practical perspective,
hardly any of aforementioned studies provide links to soft-
ware packages where proposed optimization strategies have
been implemented. In this work we aim to systematically
evaluate different LUT-based inversion strategies in view of
hyperspectral data for the benefit of improved pixel-wise esti-
mation ofChl. The mutual impact of the following strategies
were investigated: 1) the role of added noise, 2) the role of
multiple best solutions, and finally: 3) the role of applied
cost functions in these strategies. Data used came from the
ESA-led field campaign SPARC, which took place on the
agricultural test site Barrax, Spain.

2. ARTMO GUI TOOLBOX

In an attempt to automate LUT-based inversion, the whole
processing chain has been implemented into ARTMO (Auto-
mated Radiative Transfer Models Operator) (5). ARTMO is
a GUI toolbox written in Matlab in which the user can choose
from multiple leaf and canopy RT models to generate class-
based LUTs. This innovative toolbox provides essential tools
for running and inverting a suite of plant reflectance mod-
els. In short, the toolbox enables the user: i) to choose be-
tween various plant leaf (e.g., PROSPECT-4, PROSPECT-5)
and canopy reflectance models (e.g., 4SAIL, SLC, FLIGHT),
ii) to choose between spectral band settings of various air- and
space-borne sensors or defining new sensor band settings, iii)
to simulate a massive amount of spectra and storing them in a
relational database, iv) to visualize spectra of multiple mod-
els in the same plotting window, and finally, v) to run LUT-
based model inversion against EO imagery given a selected
cost function, optimization options and accuracy estimates.
Moreover, ARTMO is able to run inversions per land cover
class, which permits realistic retrievals of biophysical param-
eters over patchy landscapes. For instance, agricultural fields
can be interpreted by a 1D model while forests can be inter-
preted by a 3D model.

3. METHODOLOGY

3.1. Cost functions

Numerical solution of the inverse problem adjusts the model
parameters such that model predicted values closely match
the measured values. The match between model output and
data is usually based on minimizing the sum of least squares,
as in RMSE. Another way to obtain better estimates is using
alternative cost functions, e.g. as those introduced in (4).
The latter authors investigated several families of cost func-
tions on simulated reflectance data for conifer and broadleaf
cover. In general, statistical distances can be categorized into
three families: information measures, minimum contrast and

M-estimates. Although they all represent ’distance’ or ’met-
ric’ between two functions the main difference of these fam-
ilies is the way how reflectance functions are interpreted and
in what space. These metric families came from different ar-
eas of mathematics and statistics and play an important role
in image processing, engineering, medicine and code theory.
They allow to take into the account nonlinearity of the prob-
lem, robustness and skewness of the noise to provide better
retrievals of biophysical parameters. Moreover, contrary to
using one cost function, the availability of a large number of
statistical distances or divergence measures gives a high de-
gree of flexibility, since it allows model optimization for dif-
ferent assumptions on the nature and properties of errors.

Based on the research in (4) we initially compared all the
available cost functions (62) and selected three cost functions
from the different families which may provide promising re-
sults as alternative to RSME. Let D[P,Q] represent a dis-
tance between two functions, where P = (p(λ1), · · · , p(λn))
is satellite and Q = (q(λ1), · · · , q(λn)) is LUT correspon-
dent reflectances and λ1, · · · , λn represent n bands. Thus,
for RMSE:

D[P,Q] =

√√√√ λn∑
λi=1

(p(λi)− q(λi))
n

(1)

First alternative cost function belongs to the family of infor-
mation measures. This class represents different distances
between two probability distributions and were widely ex-
plored throughout mathematical applications. In this case we
consider reflectance as probability distribution function and
normalization is required (sum of probabilities is 1) prior to
numerical application. Within this family, the ’Power diver-
gence measure’ has the following form:

D[P,Q] =

λn∑
λi=1

p(λi)
{[p(λi)/q(λi)]α − 1}

α(α+ 1)
, α ∈ (−∞,+∞)

(2)
Note that in some cases for parameterα = −2,−1,−1/2, 0, 1
we can get the following already known measures: the Ney-
man chi-squared measure divided by 2, the Kullback-Leibler
divergence, the twice-squared Hellinger distance, the like-
lihood disparity, and the Pearson’s chi-squared divided by
2.

Second alternative cost function belongs to the family of
M-estimates. In this case we interpret reflectance as nonlinear
regression function. One of the well known distances from
this class is RMSE which, for Gaussian error distributions,
is consistent, asymptotically normal and asymptotically effi-
cient. However, when the error distribution is non-Gaussian
or non-symmetric, the RMSE can result in large losses of ef-
ficiency. Robust methods replace the sum of squares by more
suitable loss functions. Thus, for α, β > 0, we can determine
so-called ’Trigonometric’ distance:

D[P,Q] =

λn∑
λi=1

αx(λi)arctan(β ∗ x(λi))

−αlog(s
2(x(λi))

2 + 1)

2β
, (3)



where x(λi) = p(λi) − q(λi). It is known that errors in this
case are distributed by a logistic distribution.

Third alternative cost function belongs to the family of
minimum contrast estimates, where we consider reflectance
as a spectral density function of some stochastic process. The
basic idea behind it is to minimize the distance (contrast) be-
tween a parametric model and a non-parametric spectral den-
sity. Since one can interpret satellite observations as mea-
surements in the spectral domain these distances seem to be
a natural choice for analysing satellite data. We consider the
following spectral distance with the so-called ’Contrast func-
tion K(x) = −log(x) + x’, then distance has the form:

D[P,Q] =

λn∑
λi

{−log(q(λi))/p(λi))+q(λi))//p(λi)}. (4)

3.2. SPARC database

Ideally, LUT-based inversion strategies should be validated
by a dataset that represents the same variety of actual crops
and conditions as remotely observed by the optical sensor.
A diverse field dataset, covering various crop types, growing
phases, canopy geometries and soil conditions was collected
during SPARC (SPectra bARrax Campaign). The SPARC-
2003 and SPARC-2004 campaigns took place in Barrax, La
Mancha, Spain (coordinates 30◦3’N, 28◦6’W, 700 m alti-
tude). The test area has an extent of 5 km × 10 km, and is
characterized by a flat morphology and large, uniform land-
use units. The region consists of approximately 65% dry land
and 35% irrigated land. The annual rainfall average is about
400 mm. In the 2003 campaign (12-14 July) biophysical
parameters were measured within a total of 113 Elementary
Sampling Units (ESU) among different crops. ESU refers to a
plot size of about 202 m2. The same field data were collected
in the 2004 campaign (15-16 July) within a total of 18 ESUs
among different crops. Leaf Chl was derived by measuring
within each ESU about 50 samples with a calibrated CCM-
200 Chlorophyll Content Meter. For both years, we have a
total of 9 crops (garlic, alfalfa, onion, sunflower, corn, potato,
sugar beet, vineyard and wheat), with field-measured values
of LAI that vary between 0.4 and 6.3 and Chl between 2
and 55 µg/cm−2. Further details on the measurements can be
found in (6).

3.3. LUT generation

From the available models in ARTMO we chose to use the
coupling between PROSPECT-4 and 4SAIL because of be-
ing fast, invertible and well representing homogeneous plant
covers on flat surfaces areas such as those present at Barrax.
Both models, hereafter referred as PROSAIL, have been used
extensively over the past few years for a variety of applica-
tions (for a review on these models see (7)). PROSPECT-
4 calculates leaf reflectance and transmittance over the so-
lar spectrum from 400 to 2500 nm at a 1 nm spectral sam-
pling interval as a function of its biochemistry and anatomi-
cal structure. It consists of 4 parameters, being leaf structure,
chlorophyll content (Chl), equivalent water thickness and dry
matter content. 4SAIL calculates top-of-canopy reflectance.
4SAIL inputs consist of: LAI, leaf angle distribution, ratio

diffuse/direct irradiation, a hot spot parameter and sun-target-
sensor geometry. Spectral input consists of leaf reflectance
and transmittance spectra, here coming from PROSPECT-4,
and a a moist and dry soil reflectance spectrum. To obtain
these soil spectra, the average of bare soil signature was cal-
culated from bare moist and dry soil pixels identified in the
imagery. In 4SAIL a scaling factor, αsoil, has been intro-
duced that takes variation in soil brightness into account as a
function of these two soil types.

The bounds and distributions of the PROSAIL variables
are defined according to (8). They were chosen in order to
describe the characteristics of all crop types used in the study.
Gaussian input distributions were generated for Chl content
in order to put more emphasis on the variable values being
present in the actual growth stages of the crops. Sun and
viewing conditions correspond to the situation of the satel-
lite overpass. A useful feature of ARTMO is that all simu-
lations are automatically employed according to predefined
band settings (here CHRIS mode 1). From the inserted leaf
and canopy input ranges all possible combinations were cal-
culated by ARTMO. From this, a LUT size of 100000 TOC
reflectance realizations was randomly chosen. All input pa-
rameters, metadata and associated output simulations were
automatically stored in a relational database running under-
neath ARTMO.

Two regularization options are commonly applied in LUT-
based inversion strategies. First, often a Gaussian (white)
noise is added to the simulated canopy reflectance. Differ-
ent numbers are encountered in literature, typically spanning
from 2.5 to 20% (1), meaning that this strategy is not consol-
idated yet. To clarify its role in LUT-based inversion, a sys-
tematic assessment is pursued here, ranging from 0 (no noise)
until 30% noise. Second, several studies demonstrated that
the single best parameter combination corresponding to the
smallest RMSE does not necessarily lead to best accuracies
(1). A widely applied strategy is therefore taking the mean of
multiple best solutions. Also here different numbers are en-
countered in literature, spanning from the single best solution
to the mean of the 20% best solutions. However, its role in
view of different noise levels and cost functions remains to be
evaluated. Therefore, a range from 0 (single best solution) to
the mean of 30% best solutions has been included in the anal-
ysis. Given all these factors, their effects on the robustness of
LUT-based inversion has been assessed. The retrieved predic-
tions were compared against the measured validation dataset
using the normalized or relative RMSE (RRMSE).

4. NUMERICAL RESULTS

The performance of the four cost functions in retrieving Chl
validated against the field dataset using the relative RMSE
(RRMSE); further referred as relative error to avoid confu-
sion with RMSE as cost function. Figure 1 shows relative
error matrices displaying the impact of noise levels against
multiple best solutions. Several observations can be made
from these error matrices. First, the widely used RMSE was
not evaluated as best performing cost function (best result:
26.30%). All the alternative functions outperformed RMSE
with their best results. Particularly ’Power divergence’ proved
to be a more robust cost function, with best relative error ob-



tained at 18.93%, followed by ’Trigonometric’ (22.33%) and
then ’Contrast function K(x)=-log(x)+x’ (26.09%). Second,
for none of the cost functions was the single best solution
and without noise evaluated as best configuration. In fact,
adding noise and applying multiple best solutions in the inver-
sion considerably improved accuracies, e.g. for RMSE rela-
tive errors lowered from 43.64% (no regularization options) to
26.30% (30% best solutions, 11% noise added). Also for the
others accuracies improved spectacularly (e.g. Trigonometric
from 52.67% to 22.33%), which underlines the importance
of regularization strategies. It should however be noted that
’Power divergence’ needs one parameter and ’Trigonometric’
even two parameters to be tuned. Given these four examples
it can be concluded that RMSE behaves as suboptimal cost
function. It should also be mentioned that in ARTMO the best
evaluated cost function and regularization options can imme-
diately be applied over the whole image so that maps of the
biophysical parameters can be generated in an automated way.
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Fig. 1. Relative RMSE (RRMSE) matrices using ’RMSE’,
’Power divergence’, ’Trigonometric’ and ’Contrast function
K(x)=-log(x)+x’ as cost functions displaying the impact of %
noise (X-axis) vs. multiple solutions (Y-axis) in LUT-based
RTM inversion for Chl retrieval against CHRIS observations.
The more bluish, the better the estimate.

5. CONCLUSIONS

While various LUT-based inversion methods have been pro-
posed in literature for retrieval of biophysical parameters they
all rely on RMSE as cost function. However RMSE can re-
sult in large losses of efficiency when the error distribution is
non-Gaussian or non-symmetric. For the benefit of realizing
improved retrievals, we have compared three alternative cost
functions, being ’Power divergence measure’, Trigonometric’
and ’Contrast function K(x)=-log(x)+x’) using a hyperspec-
tral CHRIS dataset (62 bands). These cost functions outper-
formed the widely used RMSE in Chl retrieval. Introducing

noise and applying multiple best solutions in the inversion
further improved the inversion performance. The whole inver-
sion processing chain, including more than 60 different cost
functions and regularization options, has been implemented
in the ARTMO toolbox. Specifically, an ’inversion evalua-
tion’ module has been implemented that enables comparing
all available cost functions and regularization options against
a test dataset prior to applying the inversion over the whole
image. ARTMO is available on request to those who want to
contribute in expanding the toolbox.
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