

WorldView Biophysical Variables Retrieval over Antwerp and Valencia

J. Verrelst, L. Alonso, P. Urego S. Belda, P. Morcillo, J.P. Rivera-Caicedo

HYPERCITY final meeting 25/03/2019

Overview

- **Rationale**: mapping of biophysical variables from high-resolution WV data
- Inputs: empirical training data & NDVI WV images
- Methods: machine learning regression algorithms (MLRAs)
- MLRA results & Maps: LCC, LAI, FVC
- Conclusions & recommendations

Rationale

Can WV images be used for quantitative mapping of biophysical variables of urban vegetation for the cities Antwerp and Valencia?

Biophysical variables:

- 1. Leaf clorophyll content (LCC): μg/cm²
- 2. Leaf area index (LAI): m^2/m^2
- 3. Fractional vegetation cover (FVC): [0-1]

Inputs

• Empirical variables+hyperspectral data: SPARC03

- ✓ Around 120 Field measurements LCC, LAI, FVC
- ✓ Spaceborne CHRIS acquisition (400-1000 nm)
- ✓ To account for structure urban vegetation, additional 7 forest LAI samples and 4 fully covered samples (FVC=1) were added to training data.
- ✓ Additional 30 non-vegetated samples were added (LCC, LAI, FVC=0) to training data.

• WV images:

Table 1 Description of WV images taken over Antwerp.						
Sat ID	Image Ref.	Image Date	Cloud Cover	View Angle (°)	Time of acquisition	
WV-2	P005	15/04/2015	0.00%	29.10	10:52:19.78	
	P003	30/09/2015	0.00%	28.70	11:18:23.00	
1401.2	P002	07/05/2016	0.00%	27.20	10:55:28.11	
VV V-3	P004	10/09/2016	0.70%	29.30	11:17:03.00	
	P001	15/09/2016	0.00%	15.20	10:59:41.32	

Table 2 Description of WV images taken over Valencia

Sat ID	Image Ref.	Image Date	Cloud cover	View Angle (°)	Time of adquisition
	P005	25/02/2016	0.00%	13.30	11:17:28.05
	P007	23/03/2010	0.00%	15.70	11:17:16.60
	P006	09/08/2016	0.00%	24.50	11:02:22.96
144/2	P004	09/05/2017	0.00%	17.60	11:12:54.07
WV-3	P003	10/06/2017	0.00%	17.0	11:27:17.24
	P002	10/07/2017	0.00%	17.0	11:10:11.91
	P001	24/09/2017	0.00%	22.90	11:31:37.76
	P008	24/06/2017	0.00%	26.30	11:31:55.16

NDVI WV-3 P004 (10/09/2016) NDVI WV-3

NDVI WV-3 P004 (09/05/2017)

WV data quality for biophysical variables mapping

Some examples spectral data

- No atmospheric correction has been applied
- Initial attempts to adjust training data to all spectral bands was only partly succesful
- Using only NDVI appeared to be more successful: spectral data of training data resampled to NDVI
- All NDVI images were processed

Machine learning regression algorithms (MLRAs)

ARTMO MLRA's toolbox

To ensure robust models, a cross-validation (CV) of k-fold=3 was applied.

Post-processing: 0 NDVI vlaues led to NaNs. They have been cleaned up with linear interpolation.

Model CV results:

LCC

MLRA	RMSE	NRMSE (%)	R2	Time [s]
Weighted k-nearest neighbors regression	7.502	14.530	0.862	0.032
Gradient Boosting/Boosted Trees	7.608	14.734	0.858	0.077
Principal components regression	7.702	14.916	0.853	0.003
Least squares linear regression	7.702	14.916	0.853	0.002
VH. Gaussian Processes Regression	7.727	14.964	0.852	0.883
K-nearest neighbors regression	7.786	15.079	0.852	0.031
Bagging trees	7.832	15.169	0.849	1.081
Canonical Correlation Forests	7.888	15.276	0.847	1.943
Gaussian Processes Regression	7.904	15.308	0.845	0.192
Relevance vector Machine	7.927	15.353	0.844	12.682
Regression tree	8.557	16.573	0.823	0.008
Boosting trees	8.564	16.587	0.822	1.029
Support Vector Regression	8.585	16.627	0.826	2.259
Neural Network	8.662	16.776	0.818	3.622
Extreme Learning Machine	8.689	16.829	0.814	4.590
Kernel ridge Regression	11.307	21.899	0.734	0.028
Twin gaussian process	15.384	29.794	0.827	1.837

Although adequately validated, training data suboptimally distributed.

LAI

MLRA	RMSE	NRMSE (%)	R2	Time [s]
Neural Network	0.834	8.968	0.851	4.029
Gradient Boosting/Boosted Trees	0.835	8.973	0.850	0.071
Bagging trees	0.846	9.097	0.845	1.151
Canonical Correlation Forests	0.847	9.104	0.845	1.811
Extreme Learning Machine	0.903	9.712	0.823	8.486
Gaussian Processes Regression	0.904	9.718	0.823	0.182
Boosting trees	0.913	9.818	0.822	1.057
Regression tree	0.915	9.838	0.825	0.008
Weighted k-nearest neighbors regression	0.921	9.907	0.819	0.027
Kernel ridge Regression	0.936	10.063	0.814	0.028
Support Vector Regression	0.944	10.146	0.808	4.704
VH. Gaussian Processes Regression	0.956	10.280	0.803	0.842
Relevance vector Machine	0.979	10.522	0.797	13.292
K-nearest neighbors regression	0.996	10.709	0.785	0.026
Principal components regression	1.028	11.057	0.771	0.002
Least squares linear regression	1.028	11.057	0.771	0.002
Twin gaussian process	1.540	16.561	0.789	1.788

FVC

MLRA	RMSE	NRMSE (%)	R2	Time [s]
Gradient Boosting/Boosted Trees	0.156	15.645	0.834	0.473
Canonical Correlation Forests	0.158	15.761	0.829	1.699
Weighted k-nearest neighbors regression	0.158	15.803	0.828	0.026
Bagging trees	0.160	16.006	0.823	1.199
Kernel ridge Regression	0.162	16.234	0.818	0.028
VH. Gaussian Processes Regression	0.165	16.538	0.811	0.768
Boosting trees	0.166	16.547	0.815	1.056
Gaussian Processes Regression	0.166	16.595	0.809	0.188
Relevance vector Machine	0.167	16.741	0.806	13.214
K-nearest neighbors regression	0.169	16.872	0.803	0.026
Support Vector Regression	0.172	17.151	0.798	6.038
Regression tree	0.176	17.568	0.792	0.008
Least squares linear regression	0.178	17.769	0.782	0.002
Principal components regression	0.178	17.769	0.782	0.003
Neural Network	0.183	18.277	0.770	3.886
Extreme Learning Machine	0.264	26.384	0.629	5.956
Twin gaussian process	0.728	72.842	0.712	1.900

Final maps: Antwerp LCC

µg/cm²

LAI zoom-in

Map of LAI_Estimated

 m^2/m^2

FVC zoom-in

Map of FVC_Estimated

[0-1]

Final maps: Valencia LCC Map of LCC_Estimated

LCC zoom-in

Map of LCC_Estimated

 $\mu g/cm^2$

Map of LAI_Estimated

LAI zoom-in

Map of FVC_Estimated

[0-1]

1

FVC zoom-in

Conclusions & recommendations

- NDVI maps successfully converted into maps of biophysical variables.
- Urban vegetation clearly identified. Withincrown variability of vegetation density quantified.
- Although maps are good, retrieval models can still be improved:
 - Apply an atmospheric correction algorithm so that all spectral data can be used
 - ✓ Add LAI, LCC, FVC measurements of urban vegetation to training data.

