

Prototyping FLEX FLORIS and Sentinel-3 OLCI Vegetation Products in Support of Forthcoming FLEX Photosynthesis Estimates.

Jochem Verrelst, Charlotte De Grave, Eatidal Amin, Juan Pablo Rivera, Pablo Morcillo, Luca Pipia, Santiago Belda, Jose Moreno

- 1. FLEX Sentinel-3 Tandem Mission for vegetation monitoring
- 2. Vegetation **retrieval algorithms developed** for FLEX-Floris and S3-OLCI, and first validated in End-to-End Simulator
- **3. OLCI SYN images processed** over Europe and Argentina
- **4. Comparison** against S3 L2 OTCI and OGVI and S2-300m products

FLEX & S3 tandem mission

FLEX aims to quantify actual photosynthetic activity of terrestrial ecosystems from space, accounting for vegetation health status and stress conditions.

15, and the water vapour band

Oa19-20

Biophysical variables FLEX/S3

• LAI = Leaf Area Index

Range ~ 0 - 10 (m^{-2}/m^{-2})

Cab = leaf Chlorophyll (a + b) content

Range ~ 0 - 100 μ g .cm⁻¹

 fAPAR = fraction of Absorbed
Photosynthetically
Active Radiation
Range: 0 - 1 FCover =
Fractional
vegetation
Cover
Range: 0 - 1

Variables retrieved by FLEX-FLORIS, S3-OLCI and synergy of both

Hybrid retrieval method: SCOPE + GPR

Machine Learning Algorithm: Gaussian Process Regression (GPR)

Radiative Transfer Model (RTM): SCOPE (v 1.70)

- Van der Tol, C., Berry, J.A., Campbell, P.K.E., Rascher, U., (2014). Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. Journal of Geophysical Research: Biogeosciences, 119: 2312-2327
- Gaussian Processes for Machine Learning, Carl Edward Rasmussen and Chris Williams, the MIT Press, 2006

Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegory, J.P., Lewis, P., Moreno, J. (2018). Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surveys in Geophysics

Scheme training models and validation

Input SCOPE

Variable type	Variable	Distribution	Min	Max	Mean	SD
	Ν	Gaussian*	1	2.7	1.5	0.5
	Cab (µg.cm ⁻²)	Uniform	1	100		
Leaf structure	Cca (µg.cm ⁻²)	Gaussian*	0	30	10	5
	Cdm (g.cm ⁻²)*	Gaussian*	0.002	0.02	0.005	0.003
	Cw**	Gaussian*	0.005	0.035	0.012	0.006
	LAI	Uniform	0.1	10		
Canopy structure	LIDFa (rad)***	Uniform	-1	1		
	LIDFb (rad)***	Uniform	-1	1		
	SMC (%)	Gaussian	5	55	25	12.5
Sail	BSM Brightness	Gaussian	0.5	1.5	1	0.5
3011	BSM lat (°)	Gaussian	20	40	25	12.5
	BSM long (°)	Gaussian	45	65	50	10
Geometry	SZA (°)	Uniform	0	80		
	OZA (°)	Uniform	-25	25		
	RAA (°)	Uniform	0	180		

N: Leaf mesophyll structure; **Cab**: Leaf chlorophyll content; **Cdm**: Leaf dry matter content; **Cw**: Leaf water thickness; **Cant**: Leaf anthocyanin content; **Cs**: Leaf senescent material content; **Cca**: Leaf carotenoid content; **LAI**: Leaf Area Index; **LIDFa**: Average leaf angle; **LIDFb**: Variation in leaf angle; **SMC**: Soil Moisture Content; **BSM**: Brightness - Shape - Moisture spectral soil model; **SZA**: Solar Zenith Angle; **OZA**: Observer Zenith Angle; **RAA**: Relative Azimuth Angle; * truncated Gaussian; ** Constraint: Cw/(Cw+Cdm) between 0.45 and 0.93; *** constraint: |LIDFa|+ |LIDFb| < 1

- Based on global sensitivity analysis
- Based on leaf optical properties databases (OPTICLEAF)

< S. Jacquemoud, L. Bidel, C. François, G. Pavan (2003); B. Hosgood, G. Andreoli, S. Jacquemoud, A. Pedrini, G. Schmuck, J. Verdebout (1993)

- Based on literature (e.g. García-Haro et al., 2018; Weiss and Baret, 2016; Croft et al., 2015; Houborg et al., 2015; Verrelst et al., 2015; Houborg and Boegh, 2008; Lauvernet et al., 2008)
- To cover all geometrical configurations and canopy realizations
- Fixed variables: default SCOPE values

Apart from simulated LUT, additional bare soil samples are added to account for not-vegetated surfaces

E2E Validation setup

- Reference images simulated with an Automated Scene Generator Module (A-SGM)
- Small image (30 x 30 pixels) with 2 land cover (LC) classes to create a LC map
- Generated by SCOPE with varying input variables for each class

Variable type	Variable	Distribution	Min	Max	Mean	SD
Leaf structure	N	Gaussian*	1	2.7	1.5	0.5
	Cca (µg.cm ⁻²)	Gaussian*	0	30	10	5
	Cdm (g.cm ⁻²)*	Gaussian*	0.002	0.02	0.005	0.003
	Cw**	Gaussian*	0.005	0.035	0.012	0.006
C	LIDFa (rad)***	Uniform	-1	1		
Canopy structure	LIDFb (rad)***	Uniform	-1	1		
e-11	SMC (%)	Gaussian	5	55	25	12.5
	BSM Brightness	Gaussian	0.5	1.5	1	0.5
5011	BSM lat (°)	Gaussian	20	40	25	12.5
	BSM long (°)	Gaussian	45	65	50	10

Variable	class 1	class 2
Cab (µg.cm ⁻²)	1 - 60	15 - 100
LAI	0.1 - 3	3 - 10

- •Cab and LAI images: uniform sampling distribution, random spatial distribution
- Selection of the mapped SCOPE output (reflectances, fAPAR) with noise

Cab

E2E Validation results - Cab

E2E Validation results - LAI

E2E Validation results - fAPAR

E2E Validation results - FCover

S3 & FLEX tandem mission

sentinel-3

L2 SYN product: Surface Directional Reflectance (SDR):

- SLSTR channels (S1 to S6 for both nadir and oblique views) and for
- All OLCI channels, except for the oxygen absorption bands Oa13-15, and the water vapour band Oa20-21

Ω

Map of LAI_Estimated

15/36

Map of fAPAR_Estimated

16/36

Map of FCover_Estimated

17/36

Absolute Uncertainties (SD)

Relative Uncertainties CV=SD/µ*100

Map of fAPAR_CV

19/36

100

S3A_SY_2_SYN_20181021T103913_0179_037_108 Map of Cab_Estimated

21 Oct 2018

- fAPAR best estimated (lowest uncertainties)
- Probably some overestimation Cab
- Some underestimation LAI and FCover

S3A_SY_2_SYN_20181118T101301_0180_038

- fAPAR best estimated (lowest uncertainties)
- Probably some overestimation Cab
- Some underestimation LAI and FCover

SYN product faces artifact due to atm. **Correction using SLSTR Nadir/Oblique**

90

80

70

60

50

40

30

20

10

Map of fAPAR_Estimated

Map of LAI_Estimated with mask 100 LAI

Map of estimated FCover

Assessment SYN product over Argentina from hub

SYN Data available from October 2018

Crop area in South Hemisphere (Argentina) for significant phenology changes

🗸 🕅 Sentin	el3 ORIG	
	3A_5Y_2_5YN	20181028T130254
🗌 🖬 S	3A_5Y_2_5YN	20181016T131407
🗌 🖬 S	3A_5Y_2_5YN	20181015T134018
_ _ S	3A_5Y_2_5YN	20181012T131752
_ _ S	3A_5Y_2_5YN	20190224T131750
_ _ S	3A_5Y_2_5YN	20190220T132135
_ _ S	3A_5Y_2_5YN	20190216T132519
_ S	3A_5Y_2_5YN	20190213T130253
_ S	3A_5Y_2_5YN	20190212T132904
_ S	3A_5Y_2_5YN	20190209T130637
🗌 🚺 S	3A_5Y_2_5YN	20190208T133248
_ • s	3A_5Y_2_5YN	20190205T131022
_ 5	3A_5Y_2_5YN	20190204T133632
_ 5	3A_5Y_2_5YN	20190201T131406
_ S	3A_5Y_2_5YN	20190131T134017
_ S	3A_5Y_2_5YN	20190128T131750
_ S	3A_5Y_2_5YN	20190124T132134
_ _ S	3A_5Y_2_5YN	20190120T132518
_ _ S	3A_5Y_2_5YN	20190117T130252
_ _ S	3A_5Y_2_5YN	20190116T132903
_ _ S	3A_5Y_2_5YN	20190113T130636
_ _ S	3A_5Y_2_5YN	20190112T133247
_ _ S	3A_5Y_2_5YN	20190108T133631
🗌 🖬 S	3A_5Y_2_5YN	_20190105T131404
	3A SY 2 SYN	20190104T134014

Collection of S3 SYNERGY images with cloud percentage <50%

October 2018- February 2019

Oa01 (400.0nm)
Oa02 (412.5nm)
Oa03 (442.5nm)
<mark>Oa04</mark> (510.0nm)
<mark>Oa05</mark> (555.0nm)
<mark>S1N</mark> (555.0nm)
S1O (560.0nm)
<mark>Oa06</mark> (620.0nm)
<mark>Oa07</mark> (659.0nm)
<mark>S2N</mark> (659.0nm)
S2O (665.0nm)
<mark>Oa08</mark> (673.75nm)
Oa09 (681.25nm))

Oa10 (708.75nm) Oa11 (753.75nm) Oa12 (778.75nm) Oa16 (865.0nm) Oa17 (865.0nm) S3N (65.0nm) S3O (885.0nm) Oa18 (1020.0nm) Oa18 (1020.0nm) Oa21 (1610.0nm) S5N (1610.0nm) S5O (2250.0nm) S6O (2250.0nm)

S3A_SY_2_SYN___20181224T132515

22 Dec 2018

- fAPAR best estimated (lowest uncertainties)
- Probably some overestimation Cab
- Underestimation LAI and FCover

Comparison against L2 OTCI product

S3A_SY_2_SYN___20181224T132515

Comparison against L2 OGVI product

S3A_SY_2_SYN___20181224T132515

S3A_SY_2_SYN____ 20190104T134014

04 Jan 2019

70 Map of estimated LAI

Map of estimated Cab

80

Map of estimated FCover

- fAPAR best estimated (lowest uncertainties)
- Probably some overestimation Cab
- Underestimation LAI and FCover

SYN product faces artifact due to atm. Correction using SLSTR N/O

Comparison against L2 OTCI product

^{27/36}

Comparison against L2 OGVI product

S3A_SY_2_SYN____20190104T134014

Comparison against S2 resampled to 300m

(µg .cm⁻¹) Sentinel 2 RGB mosaic of 18/02/2019, zoom in Argentina S2 vegetation products derived in SNAP and resampled to 300 m S3 vegetation products derived from S3A SY 2 SYN from 20/02/2019

- Similar products
- Low values for not masked out water spots
- Too high values for man-made surfaces for both products
- Probably too high values for some bare soil (but even worse for S2 product)

Cab

60

Comparison against S2 resampled to 300m

LAI (m^{-2}/m^{-2})

- Similar products -
- S3 overestimation for not masked out water spots
- S3 Bare soil areas larger and "darker" -(really at 0)

6

Comparison against S2 resampled to 300m

fAPAR

- Similar products
- Low values for not masked out water spots
- Low values for urban area

DATimeS, a new toolbox for time series analysis: opportunities for Sentinels time series processing

Santiago Belda et al., <u>A3.17: Agriculture (3,4,5,6) Poster Session; Wednesday</u>

Conclusions

- Retrieval models for vegetation products developed for both FLEX-FLORIS, S3-OLCI and synergy
- Hybrid method using GPR: provision of uncertainty estimates
- Models validated by E2E. Comply requirements. Synergy of FLEX-S3 data leads to most accurate retrievals
- S3 models tested to SYN product over Europe & Argentina
- Cab and fAPAR consistent against L2 OTCI and OGVI
- LAI consistent against S2-300m
- Improvements are pending

Man of estimated Ca

Optical synergies for spatiotemporal sensing of scalable ecophysiological traits COST Action CA17134

The main aim of the **SENSECO** Action is to ensure that the practices of optical earth observations for ecophysiology are **compatible at various scales**, **enabling synergistic multi-sensor use** and **transferability** to guarantee the **knowledge exchange on scaling methods** in a European context.

SENSECO is divided into four working groups: [WG1] Scaling gap [WG2] Temporal gap [WG3] Sensor synergies [WG4] Data quality Get involved ! Become a SENSECO Member. To join SENSECO follow simple instructions provided at: <u>https://www.senseco.eu/join-us/how-to-join/</u>

> Do you want to know more? Contact: Martin Schlerf (martin.schlerf@list.lu) Jochem Verrelst (jochem.verrelst@uv.es)

an Open Access Journal by MDPI Special Issue

Applications of Spectroscopy in Agriculture and Vegetation Research

Special Issue Editors:

Dr. Jochem Verrelst University of Valencia, Spain

Dr. Tobias Hank LUDWIG-MAXIMILIANS-UNIVERSITÄT München, Germany

Dr. Martin Schlerf Luxembourg Institute of Science and Technology, Luxembourg

Dr. Xia Yao Nanjing Agricultural University, China

Dr. Karolina Sakowska University of Innsbruck, Austria

Submission Deadline: 31 May 2019

This *Special Issue* aims to address **fundamental and applied research relating the spectral properties of vegetation to agronomic and biophysical variables**, genetic and phenotypic parameters, as well as diurnal and seasonal dynamics linked to light harvesting and photoprotection.

Website:

https://www.mdpi.com/journal/remotesensing/special_issues/spectroscopy_agri_veg

Remote Sensing Editorial Office St. Alban-Anlage 66 4052, Basel, Switzerland

🖾 remotesensing@mdpi.com

www.mdpi.com/journal/remotesensing

@Animals_MDPI

