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A B S T R A C T   

The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth 
Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. 
Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically- 
based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous 
research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires 
atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing 
Sentinel-2 (S2) Level-1C (L1C) top-of-atmosphere (TOA) reflectance data into crop traits. To achieve this, a 
training dataset was generated using the leaf-canopy RTM PROSAIL in combination with the atmospheric model 
6SV. Gaussian process regression (GPR) retrieval models were then established for eight essential crop traits 
namely leaf chlorophyll content, leaf water content, leaf dry matter content, fractional vegetation cover, leaf area 
index (LAI), and upscaled leaf variables (i.e., canopy chlorophyll content, canopy water content and canopy dry 
matter content). An important pre-requisite for implementation into GEE is that the models are sufficiently light 
in order to facilitate efficient and fast processing. Successful reduction of the training dataset by 78% was 
achieved using the active learning technique Euclidean distance-based diversity (EBD). With the EBD-GPR 
models, highly accurate validation results of LAI and upscaled leaf variables were obtained against in situ 
field data from the validation study site Munich-North-Isar (MNI), with normalized root mean square errors 
(NRMSE) from 6% to 13%. Using an independent validation dataset of similar crop types (Italian Grosseto test 
site), the retrieval models showed moderate to good performances for canopy-level variables, with NRMSE 
ranging from 14% to 50%, but failed for the leaf-level estimates. Obtained maps over the MNI site were further 
compared against Sentinel-2 Level 2 Prototype Processor (SL2P) vegetation estimates generated from the ESA 
Sentinels’ Application Platform (SNAP) Biophysical Processor, proving high consistency of both retrievals (R2 

from 0.80 to 0.94). Finally, thanks to the seamless GEE processing capability, the TOA-based mapping was 
applied over the entirety of Germany at 20 m spatial resolution including information about prediction uncer-
tainty. The obtained maps provided confidence of the developed EBD-GPR retrieval models for integration in the 
GEE framework and national scale mapping from S2-L1C imagery. In summary, the proposed retrieval workflow 
demonstrates the possibility of routine processing of S2 TOA data into crop traits maps at any place on Earth as 
required for operational agricultural applications.  
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1. Introduction 

The quantification of vegetation traits is fundamental to assess the 
dynamic response of plants to changing environmental conditions 
(Weiss et al., 2020). Earth observation (EO) sensors in the optical 
domain enable the spatiotemporally-explicit retrieval of plant traits 
(Malenovskyý et al., 2019). Among the most auspicious optical EO sat-
ellites for the retrieval of vegetation traits currently orbiting the globe is 
the Copernicus Sentinel family; and in particular the twin constellation 
of Sentinel-2A and -2B (S2), which are dedicated to terrestrial EO car-
rying the Multispectral Instrument (MSI). With their relatively short 
revisit time of up to 2–3 days in mid-latitudes, ground sampling distance 
(GSD) of 10 m, 20 m and 60 m, and adequate spectral configuration 
(with 13 bands covering the visible, the near-infrared and the shortwave 
infrared domains), the S2 constellation can be seen as an ideal data 
source for agricultural applications at the global scale (Drusch et al., 
2012; Malenovský et al., 2012; Vuolo et al., 2018). The S2 sensors 
together with prior operational satellite missions led to an enormous 
availability of optical data, thus enabling huge progress towards the 
development of multiple retrieval methods, e.g., advanced machine 
learning regression algorithms (MLRAs) and radiative transfer modeling 
for the estimation of vegetation traits (e.g., Ali et al., 2021; Kganyago 
et al., 2021; Chrysafis et al., 2020; Darvishzadeh et al., 2019). Yet, all 
these methods have in common that they rely on a model that converts a 
measured spectral quantity (usually reflectance) into vegetation traits, 
which describe status and vitality of vegetation. 

Systematic reviews on the taxonomy of retrieval methods are pro-
vided in the studies by Verrelst et al. (2015b, 2019a), including dis-
cussions on the perspectives of these methods within operational 
contexts by taking into account both retrieval accuracy and processing 
speed. Based on a qualitative and quantitative comparison, it was 
concluded that the so-called hybrid methods provided most confidence 
to comply with both criteria (Verrelst et al., 2015a,b). Hybrid methods 
blend the generic properties of physically-based models together with 
the flexibility and computational efficiency of MLRAs. Within such a 
scheme, training datasets are generated from radiative transfer models 
(RTMs) simulations. Then, the MLRA learns the (non-linear) relation-
ship between the pairs of reflectance and vegetation trait of interest. 
Accordingly, in this hybrid way, a generic model is built that enables 
processing an image quasi-instantly, thus potentially achieving both 
accurate and fast retrievals. However, the genericity of the retrieval 
model depends on the applied RTM and its ability to represent the 
observed surface types. Artificial neural networks (NN) have long served 
as the core algorithm in operational processing chains (e.g., Bacour 
et al., 2006; Baret et al., 2013), yet in the last few decades alternative 
statistical algorithms emerged, mostly in the fields of decision trees and 
kernel-based MLRAs (e.g., Houborg and McCabe, 2018; Verrelst et al., 
2015b), and more recently also with deep learning algorithms (e.g., 
Maimaitijiang et al., 2020; Pullanagari et al., 2021). With this trend, 
retrieval algorithms became more flexible than ever, and excellent 
performances were reported (e.g., Svendsen et al., 2020). 

Despite their diversity, the large majority of developed retrieval 
methods exploit bottom-of-atmosphere (BOA) reflectance, i.e., after an 
atmospheric correction algorithm has been applied to acquired top-of- 
atmosphere (TOA) radiance or reflectance. The rationale for using 
BOA reflectance is evident: removal of atmospheric effects enables 
obtaining terrestrial surface spectra. Consequently, variability of the 
received signal is only driven by biochemical and biophysical properties 
of the vegetated surfaces, though still some confounding factors (e.g., 
cloud and atmospheric contamination) may affect the spectra. Although 
this approach is standard mapping practice, the atmospheric correction 
step may introduce uncertainty into the final BOA reflectance product 
(Yang et al., 2020; Laurent et al., 2011b). On the other hand, avoiding 
atmospheric correction at all would introduce even larger uncertainty. 
To circumvent both sources of uncertainty, the alternative approach is to 
upscale training data simulations from canopy to atmosphere levels and 

derive the vegetation variables directly from TOA reflectance or radi-
ance (Fang and Liang, 2003; Lauvernet et al., 2008; Laurent et al., 
2011b, 2011a, 2013, 2014; Mousivand et al., 2015; Shi et al., 2016, 
2017; Verrelst et al., 2019b; Bayat et al., 2020; Yang et al., 2021; Estévez 
et al., 2021). TOA retrieval methods usually rely on the coupling of a 
vegetation RTM with an atmosphere RTM (Bayat et al., 2020; Mousi-
vand et al., 2015; Verrelst et al., 2019b; Estévez et al., 2021), with the 
latter explicitly modeling the atmospheric effects on the radiance 
received by the sensor. The additional parameters introduced by the 
atmospheric models will likely not lead to an increase of the ill-posed 
inverse problem as it is well-known from BOA studies employing can-
opy reflectance modeling (Combal et al., 2003). As demonstrated by a 
global sensitivity analysis (Verrelst et al., 2019b), atmospheric variables 
are sensitive in rather different mostly non-overlapping spectral regions, 
e.g., ozone column concentration or water vapour. Moreover, the 
spectral signal is affected in a much smaller magnitude by most atmo-
spheric variables compared to the canopy or leaf-level variables, which 
have a dominant impact in particular in the visible and shortwave 
infrared regions (Verrelst et al., 2019b). While some studies have 
demonstrated the coupling with advanced atmospheric RTMs such as 
MODTRAN (e.g., Bayat et al., 2020; Yang et al., 2020, 2021) for TOA- 
based retrieval approaches, equally consistent retrieval results can be 
obtained with simplified atmospheric RTMs such as Second Simulation 
of a Satellite Signal in the Solar Spectrum (6SV, Vermote et al., 1997) 
and the assumption of a Lambertian surface (Verrelst et al., 2019b). 
Estévez et al. (2020) developed a hybrid retrieval workflow by 
combining leaf-canopy-atmosphere RTMs to retrieve leaf area index 
(LAI) from BOA and TOA S2 reflectance data. Prototype retrieval models 
were established by training Gaussian processes regression (GPR, Ras-
mussen and Williams, 2006) algorithms with simulated data coming 
from the coupled leaf optical properties model PROSPECT4 (Feret et al., 
2008) and canopy reflectance model 4SAIL (Verhoef and Bach, 2007) 
with 6SV atmosphere RTM (PROSAIL-6SV). In a follow up study, 
retrieval models for multiple crop traits were established for both S2 
BOA and TOA scales leading to the following main findings (Estévez 
et al., 2021): (1) consistent theoretical performances at BOA and TOA 
scales, suggesting that hybrid retrieval models can be directly applied to 
TOA radiance or reflectance data; (2) validation results and associated 
uncertainties indicated a higher fidelity of the TOA-based retrievals 
opposed to BOA estimates; (3) canopy variables were more successfully 
retrieved than leaf variables. Nevertheless, despite the generally appli-
cable hybrid methods, none of the presented GPR retrieval models have 
yet been introduced into an operational context. Though the develop-
ment of generic retrieval algorithms is one important aspect of a pro-
cessing chain, the main challenge is rather to facilitate automated 
downloading, processing and storage of satellite data and to provide the 
required hardware. 

Hence, when it comes to seamless S2 data processing applicable to 
any corner in the world, computationally-efficient solutions and pro-
cessing facilities have to be sought. While GPR processes a single S2 tile 
reasonably fast (in the order of minutes), processing becomes laborious 
when time series of S2 tiles must be handled, especially for larger re-
gions. Moreover, preprocessing steps, such as selecting and preparing S2 
tiles from the Copernicus data hub (Tona and Bua, 2018), lead to 
additional run-time. In addition, imposed restrictions to the data hub are 
a substantial bottleneck, even if processes are fully automated. Alto-
gether, dynamic processing of a vast amount of S2 data requires: (1) 
migrating towards cloud-computing platforms, and (2) integrating the 
GPR retrieval algorithms into these platforms. Particularly, in the last 
few years the Google Earth Engine (GEE) emerged as an attractive high- 
performance computing platform to enable cloud-based processing of 
petabytes of S2 data (Gorelick et al., 2017). GEE provides powerful 
computational capability for planetary-scale data processing and even 
allows creation and training for well-known machine learning algo-
rithms (Kumar and Mutanga, 2018). However, despite the growing ca-
pabilities in advanced machine learning tools in GEE, GPR currently is 
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not part of the GEE environment. Only recently, Pipia et al. (2021) 
developed a workflow that introduced GPR models into the GEE cloud 
platform. To make this integration possible it was necessary to review 
the standard GPR regression formulation to achieve a factorization 
suitable for a parallel computing, and to implement the corresponding 
matrix algebra transformation. Secondly, active learning (AL) tech-
niques (Verrelst et al., 2016) were introduced to reduce the original 
training dataset without loss of information. Though Pipia et al. (2021) 
demonstrated the feasibility of implementing GPR-based LAI retrieval 
models into GEE, the workflow was restricted to empirically-trained 
models that only work with BOA data. The integration of generically- 
applicable hybrid models of multiple crop traits in GEE with direct 
application to TOA data, thus without the atmospheric correction step, is 
still missing. 

With this ambition in mind, this study strives for facilitating opera-
tional processing of TOA-scale developed GPR retrieval models by 
enabling implementation into the GEE framework. The following main 
objectives are identified to make this workflow possible: (1) processing 
TOA-scale GPR algorithms using AL to provide accurate and lightweight 
retrieval models for multiple crop traits, (2) implementation of the GPR 
retrieval models into the GEE environment for smooth crop traits 
mapping from S2 TOA data over croplands; and finally, with the purpose 
of moving ahead in exploiting the GEE framework for crop monitoring, 
(3) to process S2 TOA data into cloud-free crop traits maps at the na-
tional scale. 

2. Materials and methods 

Our retrieval strategy firstly consisted of the development of hybrid 
models that estimate crop traits from S2 TOA data within the in-house 
developed Automated Radiative Transfer Models Operator (ARTMO) 
software environment (Verrelst et al., 2012c), and then integration of 
the retrieval models in the GEE platform. The workflow with corre-
sponding models is shown schematically in Fig. 1. The main steps are 
described in the following sections, being (1) hybrid model develop-
ment, (2) optimizing the training dataset, and (3) implementation into 
GEE. Also, additional steps necessary to conduct the methodology are 
described: ground validation and comparison against SNAP estimates. 

2.1. Hybrid GPR-based retrieval models 

GPR (Rasmussen and Williams, 2006) was chosen as core machine 
learning algorithm in the hybrid retrieval scheme since it has proven 
good to excellent performances in numerous studies (e.g., Brede et al., 
2020; Mateo-Sanchis et al., 2021; de Sá et al., 2021; Xie et al., 2021; 
Verrelst et al., 2012a, 2020; Zhou et al., 2018). In the context of recent 
vegetation traits mapping activities from EO data, these Bayesian non- 
parametric approaches are to be found among the preferred regression 
models (Camps-Valls et al., 2018). GPR algorithms are not only 
straightforward in the training process, they also work well with rather 
small datasets and adopt very flexible kernel functions for establishing 

Fig. 1. Flowchart of the pursued workflow. Top: Generation of training dataset by coupling of leaf-canopy-atmosphere RTMs for AL optimization and GPR algorithm 
training. Bottom: Integration of EBD-optimized GPR models (EBD-GPR) in GEE for the retrieval of multiple crop traits from S2 TOA data. See also Table 1 for ex-
planations of model input parameters. Exemplary S2 images used from MNI campaigns (Berger et al., 2020). NV is for non-vegetated. 
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nonlinear relationships between spectral observations and variables of 
interest (Lázaro-Gredilla et al., 2013). Moreover, final retrieval models 
provide confidence intervals along with the predictions, which give fi-
delity of the models’ accuracy as well as insights into robustness of the 
estimates (Verrelst et al., 2013b). The extensive theoretical description 
of the GPR algorithms is provided in the original study (Rasmussen and 
Williams, 2006), and in Camps-Valls et al. (2016, 2018) or Verrelst et al. 
(2012a, 2015a) in the context of EO data analysis. To enhance under-
standing of the mathematical background, here we provide a short 
mathematical description of the input and output GPR formulations. 
Essentially, GPR technique models the relation between input samples x 
∈ ℝD (i.e., multispectral S2 pixels) and output observations y ∈ ℝ (i.e., a 
specific vegetation trait) as y = f(x) + ϵ, where ϵ is an additive Gaussian 
noise with zero mean and variance σn

2, and f(x) is a Gaussian-distributed 
random vector with zero-mean and covariance matrix K(x, x), i.e., f(x)
∼ N (0,K). The covariance matrix encodes the similarity between each 
combination of the input samples xi and xj using a user-defined kernel 
function k(xi, xj), which takes into account the main statistical properties 
of the variable to be modeled. For vegetation traits modeling, the 
asymmetric Square Exponential (SE) is usually preferred due to its 
capability to (1) successfully approximate smoothly varying functions, 
and (2) deal with possible asymmetries in the feature space (Camps- 
Valls et al., 2016). The asymmetric SE defines the covariance kernel 
function as: 

k

(

xi, xj

)

= σ2
s exp

(

−
1
2
∑D

b=1

[xi
(
b
)
− xj

(
b
)

σb

]2
)

, (1)  

where σs
2>0 represents the output variance while σb is related to the 

spread of the training information along the input dimension b in a way 
that the inverse of σb describes the relevance of band b in the prediction 
process: the higher σb the lower informative content of b. The covariance 
matrix is completely defined once the kernel’s free parameters and the 
noise variance, which can be denoted as θ = {σs

2, σ2, σn
2} with σ = [σ1, . . 

, σD], are set. The Bayesian framework of GPR allows estimating the 
distribution of f at any test point x* (i.e., a new S2 pixel) conditioned on 
the information carried by the training data. According to its formula-
tion, f(x*) is normally distributed with a mean and variance given by: 

f
(

x*

)
= kT

*
(
K + σ2

nIN
)− 1y

σ2
f

(
x*

)
= c* − kT

*
(
K + σ2

nIN
)− 1k*

(2)  

where N is the number of the samples available for the training, k* = [k 
(x*, x1),…, k(x*, xN)]T is an N × 1 vector containing the similarity be-
tween x* and the training input information, y = [y1, . . , yN]T is the 
training output, and c* = k(x*, x*) + σn

2. The probability of the obser-
vations given the model’s hyperparameters p(y ∣ x, θ) is provided by the 
marginal likelihood over the function values f, whose maximization 
provides directly the optimum value of θ (Rasmussen and Williams, 
2006). This optimization procedure is usually referred to as training the 
GPR (Blum and Riedmiller, 2013). Finally, once optimized θ are known, 
the prediction of y for any input x* is given along with its uncertainty by 
Eq. (2). 

For the development of the hybrid models for TOA data we generated 
a training database with the models PROSPECT-4 (Feret et al., 2008) and 
4SAIL (Verhoef and Bach, 2007) (PROSAIL). Subsequently, the atmo-
spheric RTM 6SV was used for upscaling at TOA using atmospheric 
transfer functions (Vicent et al., 2020). These functions include path 
radiance, at-surface total solar irradiance due to scattering, total gas 
transmittance, total upwelling transmittance due to scattering and 
spherical albedo. The generated functions were then coupled with the 
PROSAIL simulated vegetation spectra. For these simulations, ARTMO’s 
TOC2TOA toolbox was employed (v1.03), which was developed to allow 
coupling surface reflectance with atmospheric simulations to finally 
obtain TOA radiance data (Verrelst et al., 2019b). The toolbox assumes a 

Lambertian and homogeneous surface according to the formulation of 
Guanter et al. (2009). All the parameterization information of the 
experiment can be consulted in Table 1. The ranges of PROSAIL were set 
according to the experience of the authors and prior studies (e.g., Ver-
relst et al., 2021; Berger et al., 2020, 2021; Wocher et al., 2020; Danner 
et al., 2021). For the 6SV model input parameter ranges and values, also 
previous studies were consulted (Vicent et al., 2020; Verrelst et al., 
2019b), representing generic and globally valid parametrization. 

Furthermore, just before coupling with 6SV, white Gaussian noise 
was injected to the simulated PROSAIL spectral data pool (see Estévez 
et al., 2021), being common practice for hybrid retrieval workflows in 
order to introduce more realism to the RTM data and to prevent over-
fitting of the models (Brede et al., 2020). Subsequently, 40 spectral 
samples from non-vegetated surfaces (e.g., water bodies, bare soil or 
man-made) were added to the training dataset, with a value of zero 
assigned to all the vegetation variables corresponding to these samples. 
This step is essential to adapt the models towards processing of full 
heterogeneous scenes, which are typically characterized by various 
vegetated and non-vegetated areas. In order to simulate different 
vegetation states, the key PROSAIL and 6SV input variables were then 
ranged according to probability density functions obtaining a random 
dataset of 1′000 simulations of TOA reflectance data. Compared to 
common sampling sizes ranging from 50′000 to 200′000 samples 
applied within radiometric look-up table (LUT) inversion strategies 
(Richter et al., 2009; Omari et al., 2013; Atzberger et al., 2015), this 

Table 1 
Parameterization of leaf (PROSPECT-4), canopy (4SAIL) and atmosphere (6SV) 
models, with notations, units, ranges and distributions of inputs used to establish 
TOA synthetic reflectance databases. x: mean, SD: standard deviation. LHS: Latin 
hypercube sampling.  

Model variables Units Range Distribution 

Leaf variables: PROSPECT-4 
N Leaf structure 

parameter 
unitless 1.3–2.5 Uniform 

Cab Leaf chlorophyll 
content 

[μg/cm2] 5–75 Gaussian (x: 35, 
SD: 30) 

Cm Leaf dry matter 
content 

[g/cm2] 0.001–0.03 Gaussian (x: 
0.005, SD: 0.001) 

Cw Leaf water content [cm] 0.002–0.05 Gaussian (x: 0.02, 
SD: 0.01)  

Canopy variables: 4SAIL 
LAI Leaf area index [m2/m2] 0.1–7 Gaussian (x: 3, SD: 

2) 
αsoil Soil scaling factor 

(brightness) 
unitless 0–1 Uniform 

ALA Average leaf angle [◦] 40–70 Uniform 
HotS Hot spot parameter [m/m] 0.01 – 
skyl Diffuse incoming 

solar radiation 
[fraction] 0.05 – 

FVC Fractional vegetation 
cover 

[fraction] 0.05–1 –  

Atmospheric variables: 6SV 
O3C O3 Column 

concentration 
[amt-cm] 0.25–0.35 LHS 

CWV Columnar Water 
Vapour 

[g. cm− 2] 0.4–4.5 LHS 

AOT Aerosol Optical 
Thickness 

unitless 0.05–0.5 LHS 

ALPHA Angstrom coefficient unitless 0.05–2 LHS 
G Henyey-Greenstein 

asymmetry factor 
unitless 0.6–1 LHS  

Illumination/ observation conditions: 4SAIL and 6SV 
θs Sun zenith angle [◦] 20–30 Uniform 
θv View zenith angle [◦] 0 – 
ϕ Sun-sensor azimuth 

angle 
[◦] 0 –  
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dataset size appears rather small. However, the GPR models applied here 
cannot handle more than a few thousands of samples due to computa-
tional costs scaling cubically with the amount of data. Moreover, as we 
aimed to provide the models for GEE processing, the training datasets 
need to be composed of even less than 1′000 samples to guarantee suf-
ficiently light final retrieval models. GPR algorithms tend to be exigent 
in terms of memory size as all pairs of data need to be stored together 
with the actual mathematical model (Rasmussen and Williams, 2006; 
Danner et al., 2021). Therefore, training dataset sizes affects the mem-
ory usage of the final models which has to be considered when aiming 
for storing the models within software toolboxes or for implementation 
into GEE. This requirement, however, will not decrease the final models’ 
performance. Recent studies even suggested that 1′000 simulations may 
be too many for achieving optimal performances in the context of a 
hybrid workflow (see review in Berger et al. (2021)). This suggests that 
the representativeness rather than the quantity of a training dataset is 
the key for optimal GPR-based hybrid models. 

2.2. Optimization of training data with active learning 

When it comes to training data, machine learning regression, such as 
GPR, works rather passively by receiving labelled data information from 
which it learns. To obtain successful retrievals, expert knowledge or 
making use of optimization strategies is required. AL provides a possible 
optimization by enabling the learner (machine) to collect data according 
to defined selection criteria (Settles, 2009). Hence, a statistically 
“optimal way” to select the most meaningful training samples, which 
reflect the distribution of the measured data, can be performed by the 
machine itself. Optimization of training samples is well established in 
classification tasks (see review in Tuia et al., 2011), but less in regression 
applications (see review in Berger et al., 2021). In the last few years, 
progressive development of AL resulted in various regression strategies. 
In this respect, mainly two query frameworks were adapted to solve 
problems for EO data analysis (Verrelst et al., 2016; Pasolli et al., 2012): 
(1) uncertainty sampling, e.g., He et al. (2014) or Douak et al. (2011), 
and (2) diversity methods, e.g., Lu et al. (2016). Sampling based on un-
certainty heuristics belongs to the most traditional approaches. Hereby, 
the algorithm selects those samples out of an unlabeled data pool whose 
predictions are maximally uncertain (Nguyen et al., 2021). Exemplary 
methods are variance-based pool of regressors (PAL, Douak et al., 2013) 
or entropy query by bagging (EQB, Tuia et al., 2011). In contrast, di-
versity methods are based on a dissimilar sampling strategy. A popular 
technique of this second category is Euclidean distance-based diversity 
(EBD), which annotates those samples out of the unlabeled data pool 
that are distant from the already included ones, using squared Euclidean 
distance (Douak et al., 2013): 

dE = ‖ xu − xl‖
2
2, (3)  

where xu is a sample from the candidate set, and xl is a sample from the 
training set. All distances between samples are computed and then the 
farthest are selected. After all, the EBD method removes redundant in-
formation from the training database and optimizes it for the retrieval of 
the requested variable. 

From several experimental results and a systematic literature survey, 
it was concluded that EBD is the most efficient AL method for solving 
regression problems within EO data analysis (Berger et al., 2021; Upreti 
et al., 2019; Pipia et al., 2021). EBD not only outperformed other 
competing AL strategies for the retrieval of multiple crop traits, it was 
also one of the fastest algorithms in the sample selection process. Hence, 
the EBD method was chosen for the purpose of this study. 

2.3. In situ data for active learning and validation 

Two field datasets were used for tuning the algorithms and validating 
the final retrieval models. At first, the Munich-North-Isar (MNI) 

campaigns in Southern Germany (N 48◦16′, E 11◦42′) were explored and 
directly involved in the AL procedure as a validation dataset. The long- 
term consolidated MNI test site is located within communal farmlands 
owned by the city of Munich. It mainly serves as validation site for the 
preparation of agricultural algorithms in the framework of the future 
Environmental Mapping and Analysis Program (EnMAP) (Guanter et al., 
2015). The dataset is composed of structural and biochemical crop 
variables, which were collected concurrently with field spectroscopic 
measurements on winter wheat (Triticum aestivum) and corn (Zea maize) 
during the 2017 and 2018 growing seasons. The two fields were subject 
to crop rotation, which is common practice in this rainfed agricultural 
area. Extensive descriptions of the site including visual documentation 
are provided by Berger et al. (2020); Danner et al. (2019); Wocher et al. 
(2018). Moreover, the recent study of Estévez et al. (2021) provides the 
explanation of the same dataset (except leaf dry matter content). 

At both fields, a 30 × 30 m area (pseudo EnMAP pixel) was delin-
eated composed of nine elementary sampling units (ESU) of 10 × 10 m. 
LAI measurements, in [m2/m2], were performed with the LI-COR Bio-
sciences LAI-2200 device. With the instrument, seven below and one 
above canopy readings were taken manually and then repeated two 
times at each ESU. The average of all measurements over the nine ESUs 
was finally considered as representative. Note that the LAI-2200 in-
strument is based on gap-fraction and the corresponding software only 
partially corrects for leaf clumping effects. Hence, the resulting mea-
surements rather correspond to the effective LAI (Jonckheere et al., 
2004; Ryu et al., 2010). In addition, the contribution of other plant or-
gans than leaves and non-photosynthetic plant material is included in 
the measurements. Thus, the term “effective plant area index” would be 
most appropriate in this context (Leblanc et al., 2005). Nonetheless, the 
MNI dataset mainly includes green crops and hence, the measured 
values resemble the (effective) green LAI approximation of the applied 
RTM, i.e., PROSAIL. For sake of simplicity, we will use the term “LAI” 
throughout the paper. 

Leaf chlorophyll content (Cab), in [μg/cm2], was sampled with a 
Konica-Minolta SPAD-502 handheld instrument from five leaves per 
ESU (three points per leaf) considering also different plant heights. The 
SPAD values were calibrated against destructive measurements of crop 
leaf chlorophyll content from previous field campaigns at the MNI site. 
To do so, coefficients of Lichtenthaler (1987) were employed to estimate 
Cab from the measurement samples (Danner et al., 2017). Moreover, at 
each date, two leaves were cut within each ESU (i.e., 18 samples per 
date). The samples were weighed, packed in bags and brought to the 
laboratory. There, leaf area was measured using a LI-COR Biosciences LI- 
3000C scanner attached to the LI-3050C conveyor belt accessory. Final 
leaf water content (Cw), in [cm] equivalent water thickness, and leaf dry 
matter content (Cm), in [g/cm2], were obtained from the mass difference 
(per unit leaf size) of sample leaves before and after oven-drying at 
105◦C (minimum of 24 h) to constant weight. Measured leaf biochem-
ical traits were upscaled to the canopy level by multiplication with LAI, 
resulting in canopy chlorophyll content, i.e., LAI * Cab (laiCab), canopy 
water content, i.e., LAI * Cw (laiCw) and canopy dry matter content, i.e., 
LAI * Cm (laiCm), all given in [g/m2]. Table 2 provides an overview of the 
measured and calculated variables from 2017 and 2018 MNI campaigns, 
with ranges, mean values and standard deviations. 

The second dataset for independent validation of the AL-tuned 
models was collected during an extensive campaign conducted in cen-
tral Italy (N 42◦49.78′, E 11◦4.21′) in the summer of 2018. The site is an 
agricultural area cultivated with corn and located North of the city of 
Grosseto. The field sampling was performed within two corn fields 
characterized by a huge phenological variability related to differences in 
the sowing dates (i.e., early May and mid of June, respectively) as well 
as in the irrigation systems. The data were collected during two 
campaign windows (2–7 July and 31 July-1 August 2018) in corre-
spondence of homogeneous ESUs of 10 × 10 m. LAI was measured in 87 
ESUs using either a LAI-2200 plant analyser (LI-COR Biosciences, 
Lincoln, NE, USA) or digital hemispherical photos collected with a reflex 
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camera (Nikon CoolPix 990, Tokyo, Japan) equipped with a fish-eye lens 
(Nikon FC-E8 8 mm, Tokyo, Japan), depending on the canopy height 
and sampling date. During the first campaign, LAI was measured with 
the hemispherical camera looking downwards within the ESUs with low 
corn plants (development stage V2-V4) and with the LAI-2200 in the 
ESUs with high corn plants (development stage V5 or more). In the 
second campaign all ESUs were measured with the hemispherical 
camera looking either downwards or upwards depending on the canopy 
height. The LAI-2200 measurements were performed through four 10 m 
transects with two-times one above and four below canopy readings. The 
data were post-processed using the dedicated software and averaged to 
obtain a representative value for each ESU. The hemispherical photos 
were collected at the centre and corners of each ESU and the images 
were processed through the CAN-EYE software (https://www6.paca. 
inrae.fr/can-eye/) to estimate the average LAI of each ESU. Cab was 
measured indirectly within 87 ESUs through SPAD measurements 
(Konica Minolta, Tokyo, Japan) performed on the last fully expanded 
leaf (i.e., five readings along each sampled leaf). In addition, Cab labo-
ratory extractions were performed on the leaf samples collected in 
correspondence of a subset of 31 ESUs to calibrate the SPAD values. 
Final Cab measurements were based on the empirical relationship found 
between the destructive Cab measurements and the SPAD readings. Cw 
and Cm were measured destructively within 31 ESUs. For Cw and Cm 
quantification, three leaf disks with a 2.2 cm diameter collected from 
three corn plants per ESU were weighted before and after oven-drying 
(80◦C for 48 h) using an analytical balance with 0.0001 g sensitivity. 
Cw and Cm were then calculated according to the equations: Cw = (Wf- 
Wd)/Area; Cm = Wd/Area, where Wf and Wd are fresh and dry weights, 
respectively. Finally, leaf biochemical measurements were upscaled to 
the canopy-level by multiplication with LAI, alike to the MNI dataset. 
Hence, for Grosseto, we explored also the four canopy-level variables 
LAI, laiCab, laiCw and laiCm. 

To obtain the corresponding spectral acquisitions for the in situ data, 
all available Sentinel-2 Level-1C orthorectified top-of-atmosphere 
reflectance (L1C) images (maximum 1% cloud cover) within the two 
growing seasons were requested using the GEE catalog. Ten out of the 13 
available Sentinel-2 MSI bands were employed from the images, 
covering the visible and near-infrared (VNIR) to shortwave infrared 
(SWIR) domain with central wavelengths of 493 nm, 560 nm, 665 nm, 
704 nm, 740 nm, 783 nm, 833 nm, 865 nm, 1610 nm, and 2190 nm. 
From these scenes, TOA reflectance was extracted at the location of the 
ESUs, i.e., within the 30 × 30 m pseudo EnMAP pixel. 

The above-described simulated training database (Section 2.1) and 
the in situ dataset from the MNI site were used to tune the retrieval 
models as follows: firstly, the EBD method was applied to each variable- 
specific (simulated and measured) dataset, which means one crop trait 
with corresponding S2 reflectance. To start the EBD procedure, an initial 
dataset of 5% (i.e., 50 from the 1′000 simulated samples) was randomly 
selected out of the full data pool (Verrelst et al., 2016, 2020). The pro-
cedure was composed of 1′000 iterations, adding each time a new 
sample to the training dataset. Then, distances between all samples were 

calculated, keeping only the sample with the largest distance. The new 
sample was only added to the training data when retrieval accuracy 
increased as evaluated against the in situ dataset using the root mean 
square error (RMSE). The process was repeated until all samples of the 
training dataset were evaluated. In summary, the EBD sampling step was 
required to identify the optimal model training samples in terms of 
composition and size. Second, these defined variable-specific EBD- 
optimized datasets were used for building the EBD-GPR models. In this 
way, each training dataset had a different sample collection and a 
different size based on the point of optimal performance of individual 
variable retrievals. To evaluate the suitability of the optimized EBD-GPR 
models for implementation into GEE, the usage of full datasets for model 
building was also tested. For all conducted simulations, the in-house 
developed ARTMO software framework was used, which includes the 
MLRA toolbox with an integrated AL module (Verrelst et al., 2020). The 
6SV code (6SV2.1) (Kotchenova et al., 2006; Kotchenova and Vermote, 
2007) is implemented within the Atmospheric Look-up table Generator 
(ALG) (Vicent et al., 2020) and coupled to the ARTMO environment 
(ALG-ARTMO). The full software framework can be freely downloaded 
at artmotoolbox.com. 

2.4. Comparison against SNAP retrievals 

As an additional evaluation step to assess the suitability of the EBD- 
GPR models, a comparison exercise was performed using the Sentinel-2 
Level 2 Prototype Processor (SL2P) from SNAP (version 7.0) (Weiss and 
Baret, 2016). The rationale for comparing the results of the hybrid 
retrieval workflow presented here with these estimates applies to the 
fact that the SL2P serves as benchmark used by an increasing number of 
studies and image processing applications (Xie et al., 2019; Pasqualotto 
et al., 2019; Upreti et al., 2019; Vanino et al., 2018; Danner et al., 2021). 
Among others, the processor provides LAI, laiCab, laiCw and FVC, thus 
exclusively canopy-level variables, from Level-2A (L2A) MSI data. SL2P 
is based on NN algorithms, which are trained over synthetic training 
datasets generated by the PROSAIL model. Specifically, SL2P employs 
prior information in the form of truncated Gaussian distributions of 
input parameters to mimic global conditions (Brown et al., 2021). 
Detailed information about training dataset sizes and compositions can 
be found in the algorithm theoretical basis document (Weiss and Baret, 
2016). In principle, the workflow is comparable to the one proposed in 
our study as also a hybrid retrieval strategy was adopted. For the pur-
pose of our study, SL2P NN models were applied for processing BOA 
(L2A) data into these traits. 

For conducting validation, common goodness-of-fit statistics, i.e., 
root mean square error (RMSE) in variable-specific units, normalized 
RMSE (NRMSE in %, being RMSE divided by range of observations), and 
coefficient of determination (R2) are provided. 

2.5. Integration of EBD-GPR models in GEE 

The GEE data catalog provides a multi-petabyte collection of widely 

Table 2 
Range, mean and standard deviation (SD) for ground measurements from 2017 and 2018 MNI campaigns of leaf biochemical and structural variables: Cab, Cw and Cm, 
as well as biophysical canopy variables: LAI, laiCab, laiCw and laiCm.  

Variables Units Range Mean SD 

Leaf variables:     
Cab leaf chlorophyll content [μg/cm2] 38.5 to 60.8 52.8 6 
Cw leaf water content [cm] 0.012 to 0.025 0.019 0.003 
Cm leaf dry matter content [g/cm2](x1000) 2.62 to 7.58 5.03 1.38  

Canopy variables:     
LAI leaf area index [m2/m2] 0.2 to 3.9 2.9 1.2 
laiCab canopy chlorophyll content [g/m2] 0.08 to 2.22 1.55 0.71 
laiCw canopy water content [g/m2] 32.1 to 887.9 562.5 274.8 
laiCm canopy dry matter content [g/m2] 5.4 to 290.7 152.9 83.5  
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used satellite imagery, including the complete archives of S2 L1C TOA 
and L2A orthorectified atmospherically corrected surface reflectance 
data. On the processing side, the Python Application Programming 
Interface (API) package ee provides functions that allow to extract any 
available information layer over a specific area of interest (AOI) and 
process the resulting datasets very efficiently, thus enabling studies at 
any place on Earth and any time since the launch of Sentinel-2A in 2015. 
In GEE, for L1C and L2A the datasets are available from 23 June 2015 
and 28 March 2017, respectively. 

Additionally, the ee library provides optimized functions to perform 
computationally expensive cartographic (mosaicking, compositing, 
clipping, etc.) and matrix algebraic operations. To circumvent time/ 
space bottlenecks and fully exploit the high-performance parallel 
computing environment, all these operations must be carried out on 
server-side of Google processing facilities (Pipia et al., 2021). All in all, a 
whole study can be bounded to the AOI starting off with the raw images 
from the available datasets in a few steps. As a demonstration case, two 
S2 tiles (T32UPU and T32UQU) acquired over the MNI study site on 6 
July 2017 were selected. First, the corresponding 10-to-20 m bands were 
mosaicked and then clipped over the AOI. The maps of the different 
functional vegetation traits were obtained by importing the corre-
sponding EBD-GPR models generated in ARTMO in the GEE environ-
ment and performing the mean value prediction on-the-fly as explained 
in Pipia et al. (2021). Essentially, the standard formulation of 
anisotropic-kernel GPR in Camps-Valls et al. (2018) was reorganized in a 
way to isolate all those terms depending on the model’s hyper-
parameters and training data, which can be calculated before being 
imported into GEE. The remaining ones, which account for the mathe-
matical bounds between the new input (i.e., the multispectral S2 im-
agery to be processed) and specific features of the GPR model, are 
decomposed into matrix linear algebra operations, which are suited for 
parallel implementation into GEE. As already mentioned, this compu-
tational optimization can be achieved if only functions provided by the 
ee library are used for coding. As a result, the GPR mean value retrievals 
from a specific S2 tile can be visualized in a few seconds at any zoom 
level, and the maximum resolution map can be downloaded locally in a 
few minutes. In Section 3.3, the process is applied to all the S2 TOA EBD- 
GPR models corresponding to the multiple crop traits over the selected 
AOI, and in Section 3.4 the resulting maps are compared against the 
corresponding SNAP estimates. Finally, Section 3.5 shows an example of 
how to exploit GEE to the fullest, where all the vegetation traits 
described in Table 2 are mapped at the country scale of Germany. Since 
mapping the country scale may not fully reveal the details of the ob-
tained trait maps, a few subset maps were additionally generated 
zooming into specific agricultural regions of Germany at 20 m GSD (see 
Section 3.5). The GEE codes to run the EBD-GPR models and display the 

vegetation maps of this study is hosted on the repository https://github. 
com/esjoal/GEE_GPR_mapping_vegetation. 

3. Results 

3.1. Performance of active learning sample selection 

Lightweight GPR retrieval models are essential to avoid memory is-
sues for seamless on-the-fly mapping in GEE. As a workaround, here the 
AL sampling method EBD was applied to reduce the full training data 
pool (including 40 non-vegetated spectra) to the most informative 
samples. The two statistics NRMSE and R2 were used to compare the 
performances across the variables against the MNI field dataset (see 
Fig. 2). Results improved substantially after adding EBD-selected sam-
ples, and then the performances rapidly stabilized, suggesting that 
newly added samples hardly led to further improvements. The use of 
RMSE as criterion to keep or discard a sample is reflected in the 
smoother convergence of NRMSE compared to R2. However, in general 
R2 follows the same pattern. All analyzed variables converged to stable 
accuracy, with particularly high performances for LAI and laiCab. Most 
importantly, Fig. 2 demonstrates that only a few hundred simulations 
are required to optimize results. For the majority of variables hardly any 
improvement was achieved in terms of NRMSE after 150 samples. This is 
especially promising in view of subsequent implementation into GEE 
given that the lighter the model the smoother the on-the-fly processing. 
As a result, we obtained training dataset sizes varying from 135 samples 
(for laiCw) to 246 (for Cab, Cw, Cm and laiCm) (see Fig. 2). 

3.2. Optimization and validation of retrieval models 

Based on the results of EBD sample selection, final retrieval models 
for each variable were established (EBD-GPR models). The exclusion of 
non-vegetated spectra in the in situ dataset for the ground validation led 
to slightly poorer validation results (Fig. 3) as opposed to the EBD 
sample selection (Fig. 2) where non-vegetated spectra were added (see 
Section 2.3), e.g., NRMSE values for Cab increased from 10% (EBD 
sample selection) to 26% (ground validation). This discrepancy can be 
explained with the fact that the non-vegetated spectra were included in 
the training dataset for EBD-GPR model building, but excluded for 
model validation, shown in Fig. 3. 

An overview of the different variable retrieval statistics using the full 
dataset and the EBD-optimized dataset for GPR model building is pro-
vided in Table 3. In general, all retrieval results for EBD-optimized 
datasets improved in comparison to using the full dataset for model 
building. For instance, in the case of Cw performance increased by 24%, 
i.e., reducing NRMSE values from 48% (for full dataset) to 24% (for 

Fig. 2. NRMSE (left) and R2 (right) for several traits estimations validated against the MNI dataset using the EBD-GPR active learning scheme. The optimal number of 
training samples for the best performance point (marked with an asterisk) is provided in parentheses. Variable abbreviations can be found in Table 2. 
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EBD-optimized). For canopy-level variables, improvement was more 
moderate, as these variables were already well retrieved when imple-
menting the full datasets for model building. Still, the retrieval perfor-
mance increased, as in case of laiCab with highest error reduction from 
NRMSE = 16% (full) to NRMSE = 6% (EBD). Fig. 3 shows the scatter 
plots of in situ measured versus estimated variables from the MNI site 

using the EBD-GPR models. Leaf-level variables are generally moder-
ately validated with, e.g., NRMSE values of 17% for Cm and 26% for Cab. 
In contrast, estimated LAI showed high agreement with observed (in 
situ) data, with NRMSE values of only 10%. The role of LAI also enabled 
successful leaf-to-canopy upscaling of the leaf variables leading to lower 
NRMSE values, e.g., 11% and 13% for laiCw and laiCm, respectively. 

Fig. 3. Ground validation for retrieval of biochemical and biophysical crop traits (corn and winter wheat) over the MNI site by the EBD-GPR models from S2-L1C 
(TOA) reflectance: Cab (a), Cw (b), Cm (c), LAI (d), laiCab (e), laiCw (f) and laiCm (g). Measured vs. estimated values along the 1:1-line with associated confidence 
intervals (1 SD). A trend line (red) was added to represent the pattern of the points. 

Table 3 
Goodness-of-fit results of estimated vs. measured crop traits at the MNI site. Results are given for the GPR model trained with the original datasets (Full) compared to 
the EBD optimized datasets (EBD). Variable abbreviations and units can be found in Table 2.  

Variable Cab Cw Cm LAI laiCab laiCw laiCm 

Dataset type Full EBD Full EBD Full EBD Full EBD Full EBD Full EBD Full EBD 

RMSE 10.07 5.87 0.0060 0.0030 0.0016 0.0009 0.44 0.37 0.33 0.14 122.51 96.09 47.99 36.51 
NRMSE (%) 45.09 26.26 48.28 23.90 32.36 17.24 11.84 10.10 15.54 6.47 14.32 11.23 16.83 12.80 
R2 0.77 0.80 0.18 0.29 0.69 0.60 0.93 0.93 0.87 0.96 0.86 0.87 0.72 0.83  

Fig. 4. Ground validation of corn for retrieval of canopy-level crop traits over the Grosseto site by the EBD-GPR models from S2-L1C (TOA) reflectance: LAI (a), laiCab 
(b), laiCw (c) and laiCm (d). Measured vs. estimated values along the 1:1-line. Horizontal bars indicate SD for ground measurements. Vertical bars indicate associated 
uncertainty estimates (1 SD) for EBD-GPR model. A trend line (red) was added to represent the pattern of the points. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

J. Estévez et al.                                                                                                                                                                                                                                  



Remote Sensing of Environment 273 (2022) 112958

9

Since for FVC no in situ data were available for AL tuning and validation, 
only the full dataset was applied for model building. 

Fig. 4 provides the independent validation results of the established 
retrieval models using the corn dataset from the Grosseto site. Scatter 
plots between measured versus estimated canopy-level traits LAI, laiCab, 
laiCw and laiCm are given including goodness-of-fit statistics. Overall 
retrieval accuracy can be seen as moderate with NRMSE >20% (for 
laiCab and laiCw) to good with NRMSE <20% (LAI and laiCm). In 
particular, laiCw was significantly overestimated with respect to ground 
data. This situation can be interpreted as follows by considering both 
ground data characteristics and retrieval approach. First, the AL-tuning 
was performed over the MNI dataset, which is characterized by higher 
Cw values (0.0125–0.025 cm for MNI versus 0.01 to 0.019 cm for 
Grosseto) that are likely due to the slightly different field sampling 
protocol. Second, in the MNI dataset the sampling was performed on the 
entire leaves (i.e., including the leaf veins), while in the Grosseto dataset 
the leaf disks were only collected from the leaf blades. This may influ-
ence the final Cw measured values. Moreover, from author experience, 
lower values from the Grosseto dataset might also be due to potential 
loss of water when transporting the samples from field to the laboratory 
in summer conditions. Finally, it must also be remarked that the over-
estimation of LAI affects the results of laiCw providing consequently 
higher values with respect to field observation. Compared to fully 
trained models, the EBD-GPR models even led to slightly lower perfor-
mance (see Table A.1), for instance in the case of LAI NRMSE = 14.2 
(EBD) versus NRMSE = 12.4% (full), or for laiCm NRMSE = 16.6% (EBD) 
versus NRMSE = 15.8% (full). Except for laiCw, these differences in 
retrieval performance were rather small and the main objective of 
reducing the models to a feasible size for implementation into GEE was 
achieved, keeping similar accuracy. The retrieval of leaf-level variables 

failed (see Fig. A.2) with all traits showing NRMSE >45%. Although, in 
case of Cw and Cm, we noticed a positive effect of EBD optimization 
compared to usage of full training datasets for model building. None-
theless, our results confirm the difficulty of leaf-level trait estimation 
from space given a row crop (corn). In row crops, spectral signals 
transmitted from leaves through the canopy are strongly affected by soil 
background and structural traits, often leading to rather poor leaf-level 
retrieval results (Estévez et al., 2021; Xie et al., 2019). The specific 
heterogeneous canopy architecture of corn fields further complicates the 
estimation of leaf-level variables, among others, as clumping affects the 
overall spectral signal (Richter et al., 2010). Considering the indepen-
dence of the Grosseto dataset, the results provide sufficient confidence of 
our EBD-GPR models for the estimation of canopy-level variables, 
though still improvements would be required. Based on these results, we 
integrated the developed EBD-GPR model into the GEE framework. 

3.3. Mapping crop traits in GEE 

Adequate to highly accurate ground validation results of EBD-GPR 
models proved the feasibility of mapping canopy-level crop traits from 
S2-L1C data using optimized training datasets for model building and 
their subsequent implementation into GEE. Transfer of leaf-level trait 
models may be limited due to failure with the Grosseto data, however, as 
moderate performances were achieved with the MNI data, these traits 
will be included for mapping applications. The maps were generated in 
GEE applying the EBD-GPR models for TOA data products over a subset 
from the MNI test site on 6 July 2017, as shown in Fig. 5. 

In general, obtained biochemical and biophysical maps are plausible 
and represent properly the spatial variability of the surface. Both the 
vegetated and the non-vegetated areas can be correctly identified 

Fig. 5. Maps (mean estimates; μ) of several crop traits: Cab (a), Cw (b), Cm (c), LAI (d), laiCab (e), laiCw (f), laiCm (g) and FVC (h), as generated by EBD-GPR models 
applied in GEE from S2-L1C data at the MNI test site on 6 July 2017. 
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through their realistic ranges. Even the actual variability of vegetation 
properties at this point in time is well represented, including fully green 
and mature crops. The river Isar is also well identified in all maps with 
close-to-zero values, confirming the overall validity of the retrieval 
models beyond vegetated surfaces. For comparison, the crop traits maps 
were also generated with the models trained over the full dataset as 
shown in appendix section (Fig. A.1). These maps were processed with 
ARTMO and a visual inspection comparing against maps of optimized 
models (Fig. 5) does not reveal any substantial difference: the spatial 
distributions and the dynamic ranges of the traits are similar. In addi-
tion, the relative model uncertainty expressed as coefficient of variation 
(CV = SD/μ x 100, in %) was extracted in GEE for all trait maps over the 
MNI site. Fig. 6 presents the resulting CV maps, indicating high uncer-
tainty for the river and some fields due to unknown spectral signatures, 
which may be caused by low vegetation cover or particular crop types or 
reproductive organs not accounted for by the used RTM. For the ma-
jority of the fields, however, trustful mapping results were achieved 
indicating sufficient to high fidelity of the retrieval models. 

For a more exhaustive inspection, scatterplots between EBD-based 
and those generated using full datasets for the MNI site are shown in 
Fig. 7. In general, these results show significant moderate to high cor-
relations for all eight variables. Lower correlations are to be found for 
leaf-level traits, with Cw (R2 = 0.54) and Cm (R2 = 0.63), as well as laiCab 
(R2 = 0.79) (Fig. 7), coinciding with traits of greatest improvement in 
performance (see NRMSE in Table 3). On the other hand, highest cor-
relations appear for laiCw/laiCm (R2 = 0.95) and LAI (R2 = 0.97) (Fig. 7), 
corresponding to the traits with similar performance between the full 
and optimized models (see NRMSE in Table 3). 

3.4. Comparison against SNAP SL2P retrievals 

Apart from the physical validation exercise against the in situ data-
sets, the canopy-level models were compared against the same retrievals 
obtained by the SNAP SL2P models. The maps generated with SL2P NN 
over the MNI site are demonstrated in Fig. 8 (upper). Overall, the SL2P 
NN estimate maps look alike to those generated by EBD-GPR in GEE 
(Fig. 5), obtaining similar spatial patterns. Moderate to good consistency 
also appeared when comparing the products by means of scatterplots 
(Fig. 8, bottom): all traits suggest a relatively high correlation between 
products with an R2 between 0.80 and 0.94 for laiCab, laiCw, LAI and 
FVC. Highest consistency between SL2P NN and EBD-GPR models was 
achieved for LAI (with lowest NRMSE). For all variables, an over-
estimation by SL2P NN can be seen for values close to zero. Strongest 
discrepancies appear for higher LAI (>6 m2/m2) and laiCab (>3 g/m2) 
estimates. 

The relative error maps also reflect these differences between the two 
products (see Fig. 8, middle). White areas indicate no change within a 
20% difference, as it is especcially the case for FVC. Blue colors indicate 
an underestimation of the EBD-GPR model relative to SL2P NN, clearly 
observed for laiCab with predominant underestimation. In case of LAI, 
the natural vegetation and some fields showed higher estimates of the 
GPR-retrieval models opposed to the SL2P LAI maps. The blue color of 
the river Isar in all maps suggests that SL2P NN does not reach zero 
values over non-vegetated surfaces as opposed to EBD-GPR model. 

3.5. Mapping at national scale from TOA data with GEE 

To demonstrate large scale mapping capabilities of GEE, we 

Fig. 6. Relative uncertainties expressed as coefficient of variation (CV = SD/μ x 100 in %) of several crop traits: Cab (a), Cw (b), Cm (c), LAI (d), laiCab (e), laiCw (f), 
laiCm (g) and FVC (h), as generated by EBD-GPR models applied in GEE from S2-L1C data at the MNI test site on 6 July 2017. 
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Fig. 7. Density scatterplots for comparison of crop traits maps estimated by Full-GPR models (appendix section Fig. A.1) and EBD-GPR models (Fig. 5): Cab (a), Cw 
(b), Cm (c), LAI (d), laiCab (e), laiCw (f), laiCm (g) and FVC (h). Density in %. 

Fig. 8. Crop traits maps as obtained by SNAP SL2P NN (Top), relative error maps (Center) and density scatter plots (Bottom) between EBD-GPR (Fig. 5) and SL2P NN, 
estimated from S2-L2A (BOA) data for LAI (a), laiCab (b), laiCw (c) and FVC (d) over the MNI site on 6 July 2017. Relative errors and density in %. 
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simulated the crop traits at the national scale for the entirety of Ger-
many. Fig. 9 shows the resulting maps of Cab, Cw, Cm, LAI, laiCab, laiCw, 
laiCm and FVC generated by the developed EBD-GPR models integrated 
in GEE. 

To do this, the procedure described in Section 2.5 was simply applied 
in a tile-by-tile fashion until the whole country was covered. In this case, 
we considered a time span instead of a specific date, and finally applied 
the statistical median estimator to obtain a spatially continuous 
coverage. Note that this approach allows also to cope with presence of 
clouds using the quality band ‘Q60’, hence reducing the spatial gaps as 
much as possible. In general, the time span to be chosen depends on the 
extension of the area to be imaged as well as its climate properties. For 
Germany, the acquisitions taken within July 2017 resulted in a collec-
tion of 997 scenes spread over 69 distinct tiles. Note that the number of 
days covered by the input collection is expected to vary with the season 
and the latitude, but the process can be carried out over any other 
country worldwide by simply adjusting the input search parameters. The 
trait maps from each tile were exported as a GeoTIFF file and the na-
tional mosaics were finally obtained using GDAL libraries (GDAL/OGR 
contributors, 2021). Exporting map collections at 20 m from GEE 
required about 8–9 h and generated an overall data volume of 8 Gb per 
vegetation trait. Conversely, reducing the spatial resolution to 100 m 
made the image export task more feasible, both in terms of processing 
time and file size, dropping off to 10 min and 300 Mb, respectively. 

At a glance, the maps show spatial patterns across the country sur-
face and estimation range of variables seems to be correct. However, it 
must be noted that the maximum boundaries of the color scaling were 
put lower than of the subset maps. This was necessary because upscaling 
to 100 m resolution causes aggregation of multiple land covers. Ger-
many, with its characteristic European patchwork landscape, typically 
consists of multiple small-scale land cover types. This especially holds 
true in July where cereal fields normally reach senescence. As the crop 
traits retrieval models were trained for green vegetation, upscaling to a 
coarser scale leads to aggregation, achieving systematically lower values 
for all crop traits. 

For a better interpretation of estimated traits, subset maps of 20 m 
spatial resolution are provided for five selected German regions char-
acterized by specific agricultural conditions and with a relatively high 
share of pastures and croplands (see Fig. 10). For each region, one 
canopy-level trait was selected as exemplary case study on 6 July 2017. 
Ground reference data were not available for these regions, but instead 
the same maps are again shown only for the retrievals that fall within a 
threshold of 30% relative uncertainty. These mapping serves only for 
demonstration and interpretation is solely be done by plausibility and 
given associated uncertainty estimates. Mapping of LAI was conducted 
for an area in Niedersachsen (Lower Saxony), being one of the most 
important locations for agriculture in Europe (Rega et al., 2020). The 
federal state is characterized by intense agricultural usage with cereals, 

Fig. 9. Maps (mean estimates; μ) at big scale of several crop traits over the whole of Germany: Cab (a), Cw (b), Cm (c), LAI (d), laiCab (e), laiCw (f), laiCm (g) and FVC 
(h), as generated by EBD-GPR models applied in GEE from S2-L1C data. Time span covers from 01 to 31 July 2017 using median value strategy. 
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extensive grasslands, sugar beets and potato crops, as is reflected in the 
relatively high LAI values compared to the rest of Germany (see also 
Fig. 9). Canopy chlorophyll content was calculated for an area around 
Demmin in Mecklenburg-Vorpommern, which was identified as a 
remote sensing test site for validation and calibration (Gerighausen 
et al., 2007). In this region, mainly cereals are cultivated in the large 
fields, as indicated by the almost senescent coverage. Still, several fully 
green fields can be easily distinguished, which may correspond to corn 
or sugar beet, being most common crops. Mapping of FVC is provided for 
a small area in Rheinhessen (Rheinland Pfalz), being the largest German 
wine-growing region with around 26′300 ha of vineyards. Here it can be 
noted that the specific canopy architecture of the vineyards rather leads 
to lower FVC values. Canopy dry matter content was simulated for an 
agricultural area close to the river Elbe in Saxony. In this example, the 
within-field patterns of the crops reveal some irregularities, probably 
caused by sandy soil streams (postglacial sandy deposits) due to previ-
ous meanders in the floodplain. Lastly, canopy water content estima-
tions are demonstrated for the region around Irlbach, Bavaria. Also here, 
cereal crops typically are about to reach mature (senescent) growth 
stages at this time of the year and thus some fields already exhibit low 
values. Additionally, also the associated uncertainties provide relevant 
information. When comparing full traits maps against the masked maps, 
it can be observed that for all traits medium to high estimates are 
consistently preserved while low retrievals are masked out. The latter 
can be explained by the combination of a low estimate with some ab-
solute uncertainty (SD), leading rapidly to a relative uncertainty above 
30% (CV = SD/μ x 100, in %). 

4. Discussion 

With the ambition to automate the mapping of a variety of crop traits 
from satellite data, an optimized hybrid retrieval processing strategy 
was developed that can be implemented into the GEE framework. The 
core idea of this strategy is that the retrieval models can be directly 
applied to S2 TOA reflectance data without the need of preprocessing 
steps, such as downloading images or atmospheric correction. In the 
following, performances of AL optimization (Section 4.1), towards 
operational TOA-based retrieval (Section 4.2), and finally encountered 
challenges and future opportunities of the GEE workflow (Section 4.3) 
are discussed. 

4.1. Performance of active learning optimization 

A key finding of the workflow presented here is the substantial 
improvement achieved by the implemented AL strategy. Using the EBD 
sampling method for optimal reduction of the training databases led to 
moderate (leaf-level traits) to high (canopy-level traits) performances 
with relatively few simulations applied on the MNI data (see Table 3), 
confirming earlier experiences with AL (Verrelst et al., 2016, 2020; 
Berger et al., 2021; Pipia et al., 2021). The increase in retrieval accuracy 
can be explained by the positive effects of this intelligent sampling 
method, which decreases redundancy but keeps spectral variability of 
reflectance datasets. Since the AL sampling selection is run against in 
situ data, it is also essential that the field dataset covers a sufficiently 
broad range of vegetation states. Hence, the collection of good quality 
field data remains an important part of the retrieval algorithm devel-
opment anticipating the need of extended validation datasets covering 

Fig. 10. Subset maps for five selected German regions with typical agricultural usage in 20 m spatial resolution (left maps). Uncertainty provided by the EBD-GPR 
models was used to mask out areas with more than 30% of relative uncertainty (CV) (right maps). 
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multiple crop types and growth stages. In this respect, the transfer of the 
established EBD-GPR models only achieved a limited accuracy for the 
Grosseto field dataset, since the application of leaf-level models failed to 
provide trustful estimates. Besides this, when it comes to processing full 
scenes, typically characterized by multiple land covers, the retrieval 
models need to be adapted to diverse spectral surfaces. This can be easily 
achieved by adding non-vegetated spectra (i.e., bare soil, water, man- 
made surfaces, etc.) to the training dataset. Training the models some-
what less specialized towards exclusively vegetation surfaces has the 
drawback that slightly poorer validation results are obtained against in 
situ data when these additional spectra are part of the learning process 
(around 10% NRMSE in our study). Nonetheless, broadening the 
training dataset to non-vegetated spectra is an essential part of devel-
oping generally applicable hybrid retrieval models for processing het-
erogeneous landscapes into vegetation functional traits (De Grave et al., 
2020). After all, generic models are strived for, i.e., ensuring valid es-
timates over full satellite scenes. 

Model size reduction is an essential step for implementation into 
GEE. Despite that the training datasets were heavily reduced as opposed 
to the full dataset (75% or more), retrieval accuracies were superior for 
all variables from the MNI site (see Table 3) and on the same order for 
the canopy variables from the Grosseto site (see Table A.1) when using 
EBD-optimized models, though a relatively small field dataset was 
employed for AL tuning. These results suggest that GPR models benefit 
rather from representative training samples than from quantity, as was 
also noted in Berger et al. (2021). Therefore, it is expected that future 
hybrid retrieval models will converge towards an optimization of both 
representativeness and quantity of training datasets, as it can be solely 
achieved by means of AL. 

Apart from validation against local field datasets, the canopy-level 
retrieval models were also compared to the same estimates as ob-
tained by the models embedded in the SNAP Biophysical Processor 
toolbox over the MNI test site. The SL2P NN retrievals can be considered 
as reference used by diverse studies to evaluate if their own products 
meet user requirements over agricultural environments or other eco-
systems (Amin et al., 2021; Brown et al., 2021; Mourad et al., 2020). 
Here we obtained overall similar maps from SL2P compared to the EBD- 
GPR retrieval models, as confirmed by scatterplots (Fig. 8). Neverthe-
less, processing a single image is likely insufficient to draw conclusions 
about the quality of these products. Such comparison study could be 
extended to multiple sites and repeated over several dates to confirm 
this consistency over space and time in a future study. As demonstrated 
in this work, with GEE in principle these products can be easily obtained 
anywhere in the world, and at a large scale. The key message of this 
comparison exercise is that TOA-based retrieval models can be 
straightforwardly developed showing high consistency with the esti-
mates provided by the SNAP SL2P toolbox. 

4.2. Towards operational TOA-based retrieval 

The S2 L1C TOA reflectance products, being acquired since July 
2015, satisfy specifications for radiometric performance with adequate 
radiometric calibration uncertainty below 3% and uncertainty around 
5% in the worst case (Djamai and Fernandes, 2018). A key advantage of 
working with L1C data is its longer historical availability than L2A data. 
For instance, in GEE or SentinelHub, L1C data is available since June 
2015, while for L2A that is only the case since March 2017, which 
corresponds to the date the official product started to being distributed 
by ESA using the Sen2Cor processor. Yet, in other official data hubs, 
such as the USGS portal, only S2-L1C data is offered. Having efficient 
models applicable directly to L1C imagery easily allows to create and 
process longer, consistent and thus more meaningful time series of 
multiple traits. 

Apart from a few studies exploring TOA-based LAI retrieval (Kga-
nyago et al., 2020; Estévez et al., 2020), we are not aware of other works 
exploring the S2 TOA product for the estimation of (multiple) crop traits. 

An explanation why this approach has been left aside may be that S2 
offers a sound atmospherically-corrected reflectance product (L2A) that 
has proven to be suitable for the retrieval of a range of vegetation traits 
(Upreti et al., 2019; Vanino et al., 2018; Novelli et al., 2019; Vuolo et al., 
2016). Nevertheless, atmospheric correction is a critical task and dis-
crepancies have been reported depending on the applied atmospheric 
correction method, spectral bands and land cover type (Sola et al., 2018; 
Vanino et al., 2018; Doxani et al., 2018), which could be avoided when 
directly processing TOA data into vegetation properties. Note that the 
TOA retrieval approach presented here was performed with ARTMO’s 
TOC2TOA toolbox assuming a Lambertian surface. Though this 
approximation may introduce small additional uncertainty (Wang et al., 
2010), it was shown to provide accurate retrievals for flat surfaces 
(Verrelst et al., 2019b; Estévez et al., 2020, 2021) and has been also 
adopted by other studies (e.g., Gómez-Dans et al., 2016). Hence, TOA- 
based retrieval algorithms represent an appealing alternative, e.g., (1) 
for experimental missions where BOA reflectance is not provided as 
standard product, (2) for new-generation imaging spectrometer mis-
sions where due to hundreds of contiguous spectral bands, atmospheric 
correction becomes highly challenging over the full spectral region 
(Vibhute et al., 2015), (3) for airborne or drone missions where new 
atmospheric correction procedures have only recently been proposed (e. 
g., Schläpfer et al., 2020), which despite the promising results need 
further validations. 

Though we demonstrated the processing of S2-L1C data, it must be 
emphasized that with the hybrid modeling concept, training data can be 
simulated for any optical sensor data from the visible to the shortwave 
infrared using the ALG-ARTMO software framework. This implies that 
the retrieval models can be built to process whatever type of TOA 
reflectance or radiance into crop traits, as long as the precondition of 
clear sky during the sensor overpass is given. Future studies could 
fruitfully explore this approach further by developing and validating 
TOA-based retrieval models for different crop types, locations and 
sensors. 

4.3. Challenges and opportunities with GEE 

With the advent of cloud-computing platforms, such as GEE, 
satellite-based vegetation or crop trait mapping progressed towards a 
new paradigm (Wagemann et al., 2021). Thereupon, we move away 
from desktop-based processing to cloud-based image analysis. The 
paradigm shift is triggered, among others, through the enormous in-
crease of high temporal resolution (S2) data available in GEE, allowing 
the automatic processing of precise large-scale maps of agricultural 
fields. In GEE, entire data collections of multiple EO missions from 
medium-to-coarse spatial resolution are available online for free, and 
the user-friendly JavaScript/Python libraries (e.g., Wu, 2020) allow 
launching computational-demanding processes over distributed 
computing platforms. Besides, efficient mosaicking tools enable to deal 
with raster and vector information at once for selecting specific areas to 
be studied, or extend the analysis to nation-wide coverage (Li et al., 
2019; Tamiminia et al., 2020). The diversity of terrestrial mapping ap-
plications is rapidly expanding, with the large majority of GEE-based 
studies in the domains of land cover classification (e.g., see review 
Amani et al., 2020), but also vegetation properties mapping applications 
are reported. These quantification studies either rely on vegetation 
indices (e.g., Thieme et al., 2020; Zhen et al., 2021) or on data-driven 
MLRAs such as random forest models (e.g., Campos-Taberner et al., 
2018; Kang et al., 2021). Progressing along this line, only recently the 
implementation of GPR models into GEE was introduced by Pipia et al. 
(2021). Despite the fact that GPR is a highly competitive MLRA and has 
appealing advantages over others with the provision of associated un-
certainty estimates (Verrelst et al., 2012a,b, 2013a,b, 2015a), its inte-
gration in GEE is not straightforward. Instead, the GEE contiguous 
memory allocation restrictions associated with the usage of the Matrix 
algebra operations involved in GPR estimation required workarounds 
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(Pipia et al., 2021). First, the size of the GPR training data had to be 
reduced using AL. Second, GPR formulation terms independent of the 
input multispectral imagery had to be precalculated to avoid redundant 
operations, and third, all pixel-dependent terms were expressed in par-
allelizable operations. In our study, we followed these main steps for the 
implementation of the multiple trait models, here directly from TOA 
reflectance data. Unfortunately, it is impossible to quantify resources 
made available for the processing in GEE. However, according to our 
empirical experience, resources seem to be related to the number of 
users using GEE simultaneously. When it comes to implementing GPR 
formulation into GEE, we heavily back up on matrix algebra operations 
to carry out calculations, such as multiplication, inversion, and trans-
position over spectral bands managed as matrices. To do so, GEE obliges 
the user to convert (casting) imagecollection-type data to array data-
type, which imply using physically contiguous memory for their storage. 

Our example of nation-wide crop traits estimations over Germany 
exemplifies the potential of GEE-based mapping, including the GPR 
capability of providing uncertainties (see Fig. 10). The latter informa-
tion can be used to mask out those fields or areas whose estimates 
provide highest ambiguity probably due to unknown spectral signatures 
not present in the training database. Therefore, uncertainty information 
extracted from GEE gives our workflow a new perspective, as it can be 
used as a quality information for follow-up analysis and applications. 
Since the detail of 20 m resolution was not visible when printing out the 
maps, it was decided to process at 100 m resolution. The coarsening step 
also simplified the processing, in terms of memory handling and pro-
cessing speed. However, coarsening implies aggregation of patchwork 
landscape, leading to a trend of lower maximal values than at the 20 m 
resolution. The impact of heterogeneous landscapes on scaling is well 
understood, e.g., upscaling mechanisms have been more thoroughly 
studied by Chen (1999); Garrigues et al. (2006); De Grave et al. (2021); 
Meier et al. (2020). However, a deeper analysis goes beyond the scope of 
the present study. In principle, crop properties can be quantified any-
where, over large areas and over multiple years at any scale with this 
cloud-computing framework. By providing such information for crop 
monitoring, our proposed method could assist in recent progress to-
wards the Agriculture 4.0 era (Arauújo et al., 2021). 

Nevertheless, this approach requires some practice on dealing with 
memory issues. As a guideline, we recommend: (1) to keep the GPR 
models as small as possible whilst maintaining adequate performance, 
(2) to coarsen the S2 data for larger-scale mapping, (3) when filtering 
collections of images, first apply more selective filters, (4) if memory 
problems arise, export the results for later processing, and (5) use the 
most computational expensive GEE algorithms and operations with 
precaution (e.g., clipping). Although there is a “Profiler” feature in the 
GEE JavaScript code editor, which displays information about the re-
sources (CPU time and memory) consumed by specific algorithms and 
other parts of a computation, it is difficult to determine the maximum 
workload to avoid the aforementioned memory errors as there is no 
specification on the characteristics of the cluster of computing nodes (e. 
g., number of working nodes available per user or hardware specifica-
tion). This feature enables the detection of the most demanding opera-
tions performed in the scripts in terms of optimization and debugging. 

Given this all, we are only at the onset of cloud-based satellite data 
processing. In the coming years, crop traits retrieval will be further 
facilitated within the free-to-use GEE computational infrastructure, 
enabling seamless mapping over larger areas and multiple time periods 
(Tamiminia et al., 2020). With the implementation of EBD-GPR models 
into GEE, in principle any kind of variable can be routinely retrieved. 
This implies that apart from the crop traits presented here, not only 
other vegetation models (e.g., related to non-photosynthetic vegetation, 
Amin et al., 2021), but also those targeting other land cover types, such 

as models dedicated to the quantification of water variables (e.g., 
Ruescas et al., 2018) or soil properties (e.g., Vaudour et al., 2019) can be 
provided. Furthermore, the presented workflow can serve as a founda-
tion for the computation of higher-level products, e.g., time series pro-
cessing for the calculation of phenology metrics (e.g., Misra et al., 2020; 
Htitiou et al., 2020; Salinero-Delgado et al., 2021), fusion or assimila-
tion of multiple products (e.g., Pipia et al., 2019; Schreier et al., 2021; 
Sadeh et al., 2021). At the same time, although this work focused on the 
processing of S2 TOA data, it must be emphasized that essentially the 
EBD-GPR retrieval models can be developed for any optical sensor data 
with the ALG-ARTMO software framework. A similar vegetation prop-
erties retrieval approach based on Sentinel-3 TOA data is already in 
preparation, and models for other optical data sources (e.g., Landsat or 
MODIS), if available in GEE, can likewise be prepared. 

5. Conclusions 

This study presents an innovative workflow for operational mapping 
of multiple crop traits from top-of-atmosphere S2 data. We optimized a 
hybrid retrieval method by implementing AL sampling to establish 
lightweight GPR retrieval models for processing into the cloud- 
computing GEE framework. The workflow included the following 
essential steps: (1) generation of training datasets by coupled leaf- 
canopy-atmosphere RTMs in the ARTMO software environment, (2) 
applying EBD-based sampling for building small but efficient training 
datasets and tuning the models towards real spectra, (3) adding non- 
vegetated spectra to the training database to ensure overall applica-
bility of final models to process full heterogeneous satellites scenes, and 
finally (4) integration in GEE to obtain trustful regional and nation-wide 
maps of multiple crop traits. 

Substantially higher accuracy was obtained with the EBD-optimized 
GPR models for the estimation of all traits over the MNI site including 
overall lower uncertainties than when fully sampled datasets were used 
for model building. EBD-optimized models further allowed to map 
canopy-level traits from an independent test site, while mainly preser-
ving estimation accuracy. Moreover, plausible and consistent maps were 
obtained in comparison to those provided by the SNAP SL2P toolbox, 
suggesting high transferability of the proposed hybrid method. Having 
the EBD-GPR models customized for GEE integration, possibilities are 
opened to routinely map these traits anywhere in the world. Though 
nation-wide maps were processed at 100 m spatial resolution, also more 
detailed maps of 20 m were generated for dedicated sites. In addition, 
relative uncertainty provided by the EBD-GPR models was used for 
masking out most uncertain areas providing spatially detailed infor-
mation about the fidelity of the retrieval models. Altogether, we can 
conclude that the workflow described here presents a promising path 
towards operational mapping of essential crop traits with the high- 
performance computing capacity of GEE, to be used for a multitude of 
agricultural applications supporting management decisions from farm to 
regional levels. 
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Appendix A

Fig. A.1. Maps (mean estimates; μ) of several crop traits: Cab (a), Cw (b), Cm (c), LAI (d), laiCab (e), laiCw (f), laiCm (g) and FVC (h), as generated by GPR model trained 
over the full dataset from S2-L1C data at the MNI test site on 6 July 2017.  

Table A.1 
Goodness-of-fit results of estimated vs. measured crop traits at Grosseto site. Results are given for the GPR model trained with the original datasets (Full) compared to 
the EBD optimized datasets (EBD). Variable abbreviations and units can be found in Table 2.  

Variable Cab Cw Cm LAI laiCab laiCw laiCm 

Dataset type Full EBD Full EBD Full EBD Full EBD Full EBD Full EBD Full EBD 

RMSE 10.96 19.55 0.0104 0.0073 0.0025 0.0014 0.69 0.79 0.54 0.64 250.50 309.17 41.99 44.32 
NRMSE (%) 24.85 44.33 127.97 89.96 167.94 98.25 12.39 14.21 19.22 22.72 40.61 50.12 15.75 16.63 
R2 0.01 0.07 0.23 0.35 0.37 0.36 0.78 0.78 0.58 0.65 0.74 0.75 0.74 0.78   
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Fig. A.2. Ground validation of corn for retrieval of leaf-level crop traits over the Grosseto site by the EBD-GPR models from S2-L1C (TOA) reflectance: Cab (a), Cw (b) 
and Cm (c). Measured vs. estimated values along the 1:1-line. Horizontal bars indicate SD for ground measurements. Vertical bars indicate associated uncertainty 
estimates (1 SD) for EBD-GPR model. A trend line (red) was added to represent the pattern of the points. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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Knyazikhin, Y., Wang, L., 2003. Retrieval of canopy biophysical variables from 
bidirectional reflectance: using prior information to solve the ill-posed inverse 
problem. Remote Sens. Environ. 84, 1–15. https://doi.org/10.1016/S0034-4257(02) 
00035-4. 

Danner, M., Berger, K., Wocher, M., Mauser, W., Hank, T., 2017. Retrieval of biophysical 
crop variables from multi-angular canopy spectroscopy. Remote Sens. 9, 726. 
https://doi.org/10.3390/rs9070726. 

Danner, M., Berger, K., Wocher, M., Mauser, W., Hank, T., 2019. Fitted PROSAIL 
parameterization of leaf inclinations, water content and brown pigment content for 
winter wheat and maize canopies. Remote Sens. 11, 1150. https://doi.org/10.3390/ 
rs11101150. 

Danner, M., Berger, K., Wocher, M., Mauser, W., Hank, T., 2021. Efficient RTM-based 
training of machine learning regression algorithms to quantify biophysical & 
biochemical traits of agricultural crops. ISPRS J. Photogramm. Remote Sens. 173, 
278–296. https://doi.org/10.1016/j.isprsjprs.2021.01.017. 

Darvishzadeh, R., Skidmore, A., Abdullah, H., Cherenet, E., Ali, A., Wang, T., 
Nieuwenhuis, W., Heurich, M., Vrieling, A., O’Connor, B., Paganini, M., 2019. 
Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce 
stands using the invertible forest reflectance model. Int. J. Appl. Earth Obs. Geoinf. 
79, 58–70. https://doi.org/10.1016/j.jag.2019.03.003. 

De Grave, C., Verrelst, J., Morcillo-Pallarés, P., Pipia, L., Rivera-Caicedo, J.P., Amin, E., 
Belda, S., Moreno, J., 2020. Quantifying vegetation biophysical variables from the 
Sentinel-3/FLEX tandem mission: evaluation of the synergy of OLCI and FLORIS data 
sources. Remote Sens. Environ. 251, 112101. https://doi.org/10.1016/j. 
rse.2020.112101. 

De Grave, C., Pipia, L., Siegmann, B., Morcillo-Pallarés, P., Rivera-Caicedo, J.P., 
Moreno, J., Verrelst, J., 2021. Retrieving and validating leaf and canopy chlorophyll 
content at moderate resolution: a multiscale analysis with the Sentinel-3 OLCI 
sensor. Remote Sens. 13, 1419. 
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J. Estévez et al.                                                                                                                                                                                                                                  

https://doi.org/10.1109/JSTARS.2010.2091492
https://doi.org/10.1109/JSTARS.2010.2091492
https://doi.org/10.3390/rs10050786
https://doi.org/10.1016/j.agrformet.2010.01.009
https://doi.org/10.1016/j.agrformet.2010.01.009
https://doi.org/10.1016/j.jag.2020.102260
https://doi.org/10.3390/rs14010146
https://doi.org/10.3390/rs14010146
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0435
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0435
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0435
https://doi.org/10.1080/22797254.2020.1831969
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0445
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0445
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0450
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0450
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0450
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0455
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0455
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0455
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0460
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0460
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0460
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0460
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0465
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0465
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0465
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0470
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0470
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0470
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0475
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0475
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0475
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0475
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0480
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0480
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0480
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0485
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0485
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0485
https://doi.org/10.3390/rs11050481
https://doi.org/10.3390/rs11050481
https://doi.org/10.1016/j.rse.2018.06.035
https://doi.org/10.1016/j.rse.2019.01.006
https://doi.org/10.1016/j.rse.2006.12.013
https://doi.org/10.1016/j.rse.2006.12.013
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0510
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0510
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0510
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0515
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0515
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0515
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0520
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0520
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0520
https://doi.org/10.3390/rs4092866
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0530
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0530
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0530
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0535
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0535
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0535
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0540
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0540
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0540
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0540
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0545
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0545
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0545
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0545
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0550
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0550
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0550
https://doi.org/10.1007/s10712-018-9478-y
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0560
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0560
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0560
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0560
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0565
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0565
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0565
https://doi.org/10.1016/j.isprsjprs.2021.06.017
https://doi.org/10.1109/MAMI.2015.7456604
https://doi.org/10.5194/gmd-13-1945-2020
https://doi.org/10.3390/rs8110938
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0590
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0590
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0590
https://doi.org/10.1080/17538947.2021.1982031
https://doi.org/10.1080/17538947.2021.1982031
https://doi.org/10.1016/j.rse.2010.06.013
https://doi.org/10.1016/j.rse.2010.06.013
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0605
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0605
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0610
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0610
https://doi.org/10.3390/rs10121924
https://doi.org/10.1016/j.jag.2020.102219
https://doi.org/10.21105/joss.02305
https://doi.org/10.21105/joss.02305
https://doi.org/10.1016/j.jag.2019.04.019
https://doi.org/10.1016/j.jag.2020.102242
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0635
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0635
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0635
https://doi.org/10.1016/j.rse.2021.112328
https://doi.org/10.1016/j.rse.2021.112328
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0645
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0645
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0645
http://refhub.elsevier.com/S0034-4257(22)00072-4/rf0645
https://doi.org/10.3389/fpls.2018.00964

	Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data
	1 Introduction
	2 Materials and methods
	2.1 Hybrid GPR-based retrieval models
	2.2 Optimization of training data with active learning
	2.3 In situ data for active learning and validation
	2.4 Comparison against SNAP retrievals
	2.5 Integration of EBD-GPR models in GEE

	3 Results
	3.1 Performance of active learning sample selection
	3.2 Optimization and validation of retrieval models
	3.3 Mapping crop traits in GEE
	3.4 Comparison against SNAP SL2P retrievals
	3.5 Mapping at national scale from TOA data with GEE

	4 Discussion
	4.1 Performance of active learning optimization
	4.2 Towards operational TOA-based retrieval
	4.3 Challenges and opportunities with GEE

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Acknowledgements
	References


