
remote sensing  

Article

Top-of-Atmosphere Retrieval of Multiple Crop Traits Using
Variational Heteroscedastic Gaussian Processes within a
Hybrid Workflow

José Estévez 1,* , Katja Berger 2 , Jorge Vicent 3 , Juan Pablo Rivera-Caicedo 4 and Matthias Wocher 2

and Jochem Verrelst 1

����������
�������

Citation: Estévez, J.; Berger, K.;

Vicent, J.; Rivera-Caicedo, J.P.;

Wocher, M.; Verrelst, J.

Top-of-Atmosphere Retrieval of

Multiple Crop Traits Using

Variational Heteroscedastic Gaussian

Processes within a Hybrid Workflow.

Remote Sens. 2021, 13, 1589. https://

doi.org/10.3390/rs13081589

Academic Editors: Damiano Gianelle

and Roshanak Darvishzadeh

Received: 25 February 2021

Accepted: 12 April 2021

Published: 20 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, Spain;
jochem.verrelst@uv.es

2 Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37,
80333 Munich, Germany; katja.berger@lmu.de (K.B.); m.wocher@lmu.de (M.W.)

3 Magellium, 31520 Toulouse, France; jorge.vicent@uv.es
4 Secretary of Research and Postgraduate, CONACYT-UAN, Tepic 63155, Mexico; jprivera@conacyt.mx
* Correspondence: jose.a.estevez@uv.es

Abstract: In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became
available globally and can be explored for the retrieval of important crop traits. Based on a hybrid
workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for
both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational
heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations
generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further
combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere
model at the TOA scale. Established VHGPR models were then applied to S2 L1C and L2A reflectance
data for mapping: leaf chlorophyll content (Cab), leaf water content (Cw), fractional vegetation
coverage (FVC), leaf area index (LAI), and upscaled leaf biochemical compounds, i.e., LAI ∗ Cab

(laiCab) and LAI ∗ Cw (laiCw). Estimated variables were validated using in situ reference data
collected during the Munich-North-Isar field campaigns within growing seasons of maize and
winter wheat in the years 2017 and 2018. For leaf biochemicals, retrieval from BOA reflectance
slightly outperformed results from TOA reflectance, e.g., obtaining a root mean squared error (RMSE)
of 6.5 µg/cm2 (BOA) vs. 8 µg/cm2 (TOA) in the case of Cab. For the majority of canopy-level
variables, instead, estimation accuracy was higher when using TOA reflectance data, e.g., with an
RMSE of 139 g/m2 (BOA) vs. 113 g/m2 (TOA) for laiCw. Derived maps were further compared
against reference products obtained from the ESA Sentinel Application Platform (SNAP) Biophysical
Processor. Altogether, the consistency between L1C and L2A retrievals confirmed that crop traits can
potentially be estimated directly from TOA reflectance data. Successful mapping of canopy-level crop
traits including information about prediction confidence suggests that the models can be transferred
over spatial and temporal scales and, therefore, can contribute to decision-making processes for
cropland management.

Keywords: biophysical and biochemical traits; top-of-atmosphere reflectance; Sentinel-2; variational
heteroscedastic Gaussian process regression; hybrid model

1. Introduction

The global agricultural sector faces in 2021 multiple challenges of ensuring sufficient
food production for an increasing world population, while at the same time mitigating
negative environmental impacts under changing climatic conditions [1,2]. In this context,
Earth observation (EO) data have been proven to be a valuable nondestructive basis for
spatial and temporal monitoring of crop status and development through the retrieval
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of vegetation traits. A diversity of agricultural applications use these traits, including
yield forecasting, land use monitoring, precision farming, phenotyping activities, and
other ecosystem services [2]. Spatial and temporal information of agronomic variables
provides comprehensive insights into photosynthetic potential and functioning, and thus
the physiological status and health of agricultural crops [3]. The leaf area index (LAI),
defined as the total one-sided area of leaf tissue per unit ground surface area, is among the
most important vegetation traits to quantify [4,5]. Being a key component of biogeochemical
cycles in ecosystems, the LAI drives the canopy microclimate and influences rainfall
interception and the amount of intercepted radiation, and thus carbon gas exchange [5,6]. In
remote sensing studies, the LAI should be understood as the effective plant area index (PAI)
taking into account the nonrandom positions of leaves leading to clumping, as well as the
influences of other plant organs, such as stems and fruits, on the optical measurements [7,8].
For simplicity, we use the terms “LAI” and “effective PAI” interchangeably.

The primary light harvesting pigments of chlorophyll a + b content (Cab) strongly
determine the utilization of photosynthetically active radiation (PAR, 400–700 nm) by the
crop for the process of photosynthesis. Hence, Cab provides essential information about the
photosynthetic potential [9,10]. As another important trait, water content in plants has a
close relation to vegetation transpiration and net primary production [11]. For agricultural
crops, the quantification of leaf water content (Cw) and canopy water content (laiCw) is
important in view of water use efficiency [12] and the monitoring of plant physiological
status, health, and residual moisture during the harvesting process [1,13,14].

For agricultural applications, spatiotemporal explicit information of key crop proper-
ties is needed, which can be provided increasingly efficiently, accurately, and precisely by
remotely sensed data. Therefore, in the last few decades, an expanding arsenal of optical
and thermal satellite sensors has been exploited for the retrieval of vegetation traits across a
range of spatial and temporal scales [15]. Among the most auspicious optical EO satellites
for the retrieval of vegetation traits currently orbiting the globe are the Copernicus Sentinel
families; and in particular, the twin constellation of Sentinel-2A and -2B (S2), dedicated
to terrestrial Earth observation. With their relatively short global revisit time of five days
(2–3 days in the mid-latitudes), spatial resolutions at 10 m, 20 m, and 60 m, and adequate
spectral resolution with 13 bands covering the visible and near-infrared (VNIR, approxi-
mately 400–1300 nm) to shortwave infrared (SWIR, approximately 1300–2500 nm) spectral
domains, the S2 mission can be seen as an ideal data source for agricultural applications
in any corner of the world [16–18]. The S2 constellation together with earlier operational
EO satellite missions led to an unprecedented availability of optical data, which in turn
stimulated the development of retrieval algorithms in multiple methodological directions:
vegetation traits cannot be directly measured by the EO satellite sensors; hence, intermedi-
ate models are needed to establish the relationships between the measured spectral signal
(i.e., reflectance or radiance) and the variables or traits of interest.

A taxonomy of retrieval methods was provided by Verrelst et al. [19,20], with hybrid
approaches evolving as the most promising category. Hybrid methods combine the advan-
tages of machine learning regression algorithms (MLRAs) with radiative transfer models
(RTMs), by training MLRAs over (optimally) sampled RTM data bases [21–25]. Merging
mechanistic and data-driven methods seems ideal for variable retrieval problems due to
the complementary nature: RTMs provide physical constraints and domain knowledge
to fast and efficient machine learning algorithms [19]. With respect to MLRA, Gaussian
process regression (GPR), introduced by Rasmussen et al. [26], has proven to be one of
the most appealing algorithms, delivering highly competitive accuracy [27,28]. As the
most interesting feature, GPR provides associated uncertainty of the mean prediction,
which can be used as a quality indicator. For instance, if uncertainties obtained by a locally
trained model are in the same order as produced over an arbitrary site (without validation
data) under different conditions (e.g., spatial and time), we can assume that the model
provides same quality for both sites [29]. Hence, this special capability enables the transfer
of developed models into space and time, reducing thus the need for time-consuming
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campaigns to collect reference data for model calibration and validation [29]. Moreover,
GPR is simple to train and works well with a relative small data set, as opposed to other
methods like neural networks (NNs) [30].

Despite the great advantages of the algorithm, an important challenge in the practical
use of GPR when dealing with spectral data is that the signal and noise are usually
correlated: the standard formulation assumes that the variance of the noise process σn
is independent of the signal. This strong assumption of homoscedasticity is generally
broken in many EO data-related retrieval problems since the acquisition process is typically
affected by noise. In order to deal with input-dependent noise variance, heteroscedastic
Gaussian processes were proposed, letting noise power vary smoothly throughout the
input space. In this respect, the marginalized variational approximation yields a rich and
flexible model [31], named variational heteroscedastic GPR (VHGPR). These models not
only showed very good results in biophysical variable retrieval from EO data [32,33], but
also proved to slightly outperform standard GPR in terms of accuracy [24,34].

Regarding useful RTMs for hybrid schemes, among the most widely applied RTMs
are the leaf optical properties model PROSPECT [35] and Scattering by Arbitrarily Inclined
Leaves (SAIL) [36]. Coupling of these models to PROSAIL [37,38] allows upscaling retrieval
problems from the leaf to the canopy level. A hybrid retrieval workflow was introduced
with the Biophysical Processor through the Sentinel Application Platform (SNAP) [39].
Hereby, NNs were trained over a simulated spectral database generated by the PROSAIL
model. The SNAP Biophysical Processor is therefore named “SNAP NN” throughout
the manuscript, referring to the neural network-based algorithm. The SNAP NN toolbox
provides Level-2B products, such as LAI and fractional vegetation cover (FVC), from S2
reflectance data at both scales (L1C and L2A). Still, comparison studies are needed across
diverse canopy types to evaluate the capability of the SNAP NN models [40].

Regardless of the selected method, the majority of studies exploited retrieval tech-
niques by using bottom-of-atmosphere (BOA) reflectance. This is common practice taught
in all remote sensing textbooks with the obvious rationale behind it to retrieve correct
surface reflectance by removing atmospheric effects. Consequently, the variability of the re-
ceived signal is only driven by the biochemical and biophysical properties of the vegetated
surfaces. As an alternative approach, a few studies attempted to infer variables of interest
from top-of-atmosphere (TOA) reflectance or radiance [41–51]. Exploiting TOA radiance
data directly for retrieval has the advantage of avoiding critical atmospheric correction,
where potential errors can be passed to subsequent retrieval processes [43]. For instance,
measurements of diverse atmospheric properties, such as aerosols or water vapor content,
are often only available within a time shift or with geolocation mismatch, which strongly
increases the uncertainty of the correction process [52]. However, a sound understanding
of the atmospheric processes is required to ensure a successful retrieval from TOA data. To
achieve this, TOA retrieval methods often relied on the coupling of a vegetation RTM with
an atmosphere RTM [34,47,50,51]. Atmosphere RTMs explicitly model the atmospheric
effects on the radiance emitted by a surface. Hence, the interaction of radiation with the at-
mosphere is calculated, accounting for different gaseous absorptions assuming anisotropic
or Lambertian surfaces [53]. Among the most widespread atmospheric models are MOD-
erate resolution atmospheric TRANsmission (MODTRAN) [54], Second Simulation of a
Satellite Signal in the Solar Spectrum (6SV) [55], and libRadtran [56].

Recent TOA retrieval attempts relied on the coupled PROSAIL-6SV models and the
Lambertian assumption, which likewise led to promising LAI mapping results [34,50]. Both
studies demonstrated the potential of vegetation properties’ estimation from TOA radiance
data; theoretically by means of a global sensitivity analysis [50] (GSA) and practically
with an LAI case study using S2 data [34]. Here, the hybrid retrieval strategy relied on
VHGPR algorithms trained over simulations from PROSAIL at the canopy scale and from
PROSAIL-6SV models at the atmosphere scale. These RTMs were chosen because of their
simplicity and public availability. For instance, the leaf and canopy RTMs are implemented
in the Automated Radiative Transfer Models Operator (ARTMO [57]), and the 6SV code
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(6SV 2.1) [58,59] is inserted within the Atmospheric Look-up table Generator (ALG [60])
software frameworks. Trained models were then applied to S2 L2A (BOA) and L1C (TOA)
data for LAI mapping and validation with field measurements. With this, the study of
Estévez et al. [34] demonstrated obvious benefits of the developed method, such as the
fast mapping and provision of uncertainty estimates. However, the transferability of this
approach to other vegetation traits still remains to be investigated.

In light of the above, the main objective of this work was to develop a hybrid retrieval
workflow for the estimation of multiple vegetation traits from S2 TOA reflectance data. As
a first sub-objective, it was aimed to derive crop traits from BOA reflectance in order to
assess the accuracy, uncertainty, and consistency between both BOA- and TOA-retrieved
vegetation products. As a second sub-objective, the produced maps by the proposed hybrid
workflow were subsequently compared against reference biophysical products generated
by the SNAP NN Biophysical Processor toolbox.

2. Materials and Methods
2.1. Experimental Site and Satellite Data

The data base exploited for our study was provided from extensive field measurements
at a test site in the North of Munich, in Southern Germany: the Munich-North-Isar (MNI)
campaigns (N 48◦16′, E 11◦42′). The test site is located east of the river Isar and belongs to
the communal farmland of the city of Munich (see Figure 1). During the growing periods
of 2017 and 2018, field spectroscopic, destructive, and non-destructive measurements of
biochemical and biophysical crop characteristics were carried out on winter wheat (Triticum
aestivum) and maize (Zea maize). In the fields, nine elementary sampling units (ESUs) of
10 × 10 m were defined (see the figure in Berger et al. [24]), delineating an area of 30 × 30 m,
which aimed to correspond to the spatial extent of a pixel of the future Environmental
Mapping and Analysis Program (EnMAP) [61]. Leaf area index measurements, in m2/m2,
were performed using an LI-COR Biosciences LAI-2200 device, equipped with a GPS sensor.
A few LAI measurements of very mature winter wheat growth stages were excluded for
validation (i.e., LAI > 5), due to the strong influence of non-photosynthetic plant tissues on
the sensor, leading to apparently high LAI values. Measurements with this instrument may
lead to LAI overestimation due to radiation interception of yellow leaves, stems, and heads
(ears), as found by Jovanovic and Annandale [62] for triticale and rye. Leaf chlorophyll
content was sampled with a Konica-Minolta SPAD-502 handheld instrument from five
leaves at different plant heights per ESU and was then averaged to obtain a representative
30 × 30 m mean value in µg/cm2. The device was calibrated in a preceding field campaign
against destructive measurements of Cab at different crop growth stages [63]. For leaf
water content, two leaves were destructively and randomly sampled within each of the
defined ESUs (18 samples per date). Leaf samples were weighed, packed in bags, and
brought to the lab. There, leaf area was measured using an LI-COR Biosciences LI-3000C
scanner attached to the LI-3050C conveyor belt accessory. The final Cw in cm was obtained
from the mass difference of sample leaves per unit leaf area before and after oven-drying
at 105 ◦C (minimum of 24 h) to constant weight [14,64]. Additionally, measured leaf
biochemicals were upscaled to the canopy level by multiplication with LAI, resulting in
canopy chlorophyll content, i.e., LAI ∗ Cab (laiCab), and canopy water content, i.e., LAI ∗
Cw (laiCw), all in g/m2. Table 1 gives an overview of all measured and calculated variables
with mean values and ranges for each acquisition date.
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Figure 1. Munich-North-Isar (MNI) test sites of maize (corn) and winter wheat rotation in 2017 and 2018: Sentinel-2A (S2)
RGB (R: B8, G: B4, B: B3) from 17/05/2017 (left); MNI location within Bavaria and Germany (lower right).

Table 1. Dates of MNI in situ data collection, S2 L1C/L2A acquisitions, crop type (ww: winter wheat), measured values of
biochemicals: leaf chlorophyll content (Cab) and leaf water content (Cw), and biophysical variables: leaf area index (LAI),
canopy chlorophyll content (laiCab), and crop water content (laiCw).

MNI Date S2 Date Crop Cab Cw LAI laiCab laiCw
(µg/cm2) (cm) (m2/m2) (g/m2) (g/m2)

21 April 2017 24 April 2017 ww 44.68 0.020 3.60 1.61 703.70
04 April 2018 07 April 2018 ww 51.95 0.020 0.28 0.15 55.98
18 April 2018 19 April 2018 ww 50.47 0.019 3.10 1.56 586.88
13 June 2017 13 June 2017 maize 38.45 0.015 0.21 0.08 32.14
26 June 2017 26 June 2017 maize 49.60 0.012 1.57 0.78 193.70
06 July 2017 06 July 2017 maize 51.03 0.014 2.88 1.47 416.36

09 August 2017 05 August 2017 maize 52.22 0.016 3.90 2.04 640.25
30 August 2017 25 August 2017 maize 53.67 0.017 3.06 1.64 510.28

03 July 2018 01 July 2018 maize 55.67 0.020 3.59 1.99 729.28
26 July 2018 31 July 2018 maize 60.79 0.025 3.61 2.19 891.00

08 August 2018 12 August 2018 maize 60.54 0.022 3.67 2.22 798.50
17 August 2018 17 August 2018 maize 57.40 0.022 3.39 1.94 734.81
22 August 2018 22 August 2018 maize 57.50 0.022 3.25 1.87 713.49
29 August 2018 27 August 2018 maize 55.07 0.020 3.83 2.11 754.18
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Google Earth Engine (GEE), a cloud computing platform designed for geo-spatial
analysis at the petabyte scale [65], was used to obtain all available S2 L1C and correspond-
ing L2A images (maximum 1% cloud cover) within the vegetation growing seasons of 2017
and 2018 (between 15 March and 30 September) over the MNI test site. The GEE catalog
was found to be an optimal data source for the purposes of this study; it is continuously
updated, ingesting data from different archives, among others the ESA Copernicus Open
Access Hub. The dates of the acquired S2 images with the corresponding dates of the MNI
campaigns are indicated along with the measurement values of crop traits in Table 1. BOA
and TOA reflectance were extracted from the scenes in order to match the pseudo-EnMAP
pixel average of the in situ data collections. Note that the moderate total number of only 14
in situ measurement points (from approximately 30 for the two seasons) was either due to
the temporal mismatch of S2 scenes and field reference data or caused by local weather
conditions: the average cloud cover over the MNI site region is around 5.5 okta [63]. De-
spite the limited number of samples, this should nevertheless be an adequate number to
compare the retrieval performances between the BOA and TOA scales.

2.2. Theory, Models, and Retrieval Strategy

A hybrid retrieval workflow was adopted from two earlier exploratory TOA retrieval
studies [34,50]. The conceptual overview of the workflow is provided in Figure 2. Its
key steps are detailed in the following sections, starting with a brief description of the
top-of-canopy (TOC) model and simulations, followed by top-of-atmosphere radiative
transfer modeling, the VHGPR algorithm used functioning as core retrieval model, and
the outline of the workflow. Finally, the comparison exercise with the SNAP Biophysical
Processor is described.

Lookup table: training 
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Figure 2. Flowchart of the pursued workflow. Top: coupling of leaf-canopy-atmosphere radiative transfer models (RTMs)
for the generation of the data base for training. Bottom: training of variational heteroscedastic Gaussian process regression
(VHGPR) for vegetation traits mapping at S2 bottom-of-atmosphere (BOA) and TOA scales. See also Table 2 for the
explanations of the model input parameters. Exemplary S2 images used from Barrax campaigns [34]. ALA, average leaf
angle; HotS, hot spot parameter; 6SV, Second Simulation of a Satellite Signal in the Solar Spectrum; CWV, columnar water
vapor; AOT, Aerosol optical thickness; FVC, fractional vegetation coverage.



Remote Sens. 2021, 13, 1589 7 of 26

2.2.1. Top-of-Canopy Radiative Transfer Modeling

At the BOA scale, a wide range of vegetation states was assumed to simulate the
corresponding TOC reflectance with the PROSAIL model. Table 2 lists the biochemical
and biophysical input parameters with the applied units, ranges, and distributions. We
employed an older version of the leaf optical properties model series (PROSPECT-4 [35]),
since the total number of input parameters should be kept small. The additional input
parameters in the more recent PROSPECT versions, such as carotenoids or anthocyanins,
were not of interest for this research, but may be explored in a future study. However,
in contrast to the study of Estévez et al. [34], here, all PROSPECT-4 input parameter
were ranged, and also, fractional vegetation cover (FVC) was added. In SAIL, the canopy
is considered as a 1D homogeneous structure, which means that the variations of the
macroscopic properties in the horizontal plane, as well as the clumping of canopy elements
are neglected. FVC is therefore approximated empirically from the gap fraction at nadir.
The gap fraction can be expressed mathematically as P = exp(−k× LAI), where k is the
extinction coefficient [66]. In SAIL, k is calculated based on the leaf inclination distribution
and the viewing angle [67]. Further, to determine the estimation accuracy of biochemical
variables at the canopy level, Cab and Cw were multiplied with the LAI to obtain laiCab
and laiCw, in g/m2.

Table 2. Parameterization of leaf (PROSPECT-4), canopy (4SAIL), and atmosphere (6SV) models, with the notations, units,
ranges, and distributions of inputs used to establish BOA and TOA synthetic reflectance databases. x̄: mean, SD: standard
deviation. LHS: Latin hypercube sampling.

Model Variables Units Range Distribution

Lea f variables: PROSPECT-4
N Leaf structure parameter unitless 1.3–2.5 Uniform
Cab Leaf chlorophyll content (µg/cm2) 5–75 Gaussian (x̄: 35, SD: 30)
Cm Leaf dry matter content (g/cm2) 0.001–0.03 Gaussian (x̄: 0.005, SD: 0.001)
Cw Leaf water content (cm) 0.002–0.05 Gaussian (x̄: 0.02, SD: 0.01)
Canopy variables: 4SAIL
LAI Leaf area index (m2/m2) 0.1–7 Gaussian (x̄: 3, SD: 2)
αsoil Soil scaling factor unitless 0–1 Uniform
ALA Average leaf angle (◦) 40–70 Uniform
HotS Hot spot parameter (m/m) 0.01 -
skyl Diffuse incoming solar radiation (fraction) 0.05 -
FVC Fractional vegetation cover (fraction) 0.05–1 -
Atmospheric variables: 6SV
O3C O3 column concentration (amt-cm) 0.25–0.35 LHS
CWV Columnar water vapor (g · cm−2) 0.4–4.5 LHS
AOT Aerosol optical thickness unitless 0.05–0.5 LHS
ALPHA Angstrom coefficient unitless 0.05–2 LHS
G Henyey–Greenstein asymmetry factor unitless 0.6–1 LHS
Illumination/observation conditions: 4SAIL and 6SV
θs Sun zenith angle (◦) 20–30 Uniform
θv View zenith angle (◦) 0 -
φ Sun-sensor azimuth angle (◦) 0 -

Based on possible PROSAIL input parameter ranges according to Table 2, a random
subset of 1000 combinations was used to simulate the bi-directional reflectance of vegetated
canopies. This size was small compared to the typical sampling sizes applied within radio-
metric look-up table (LUT) inversion strategies, as well as compared to training data sets for
neural networks [39,68]. However, a standard implementation of a GPR typically cannot
cope with more than a few thousand samples within a reasonable computational time.
This apparent limitation is well compensated by the algorithms, which require only rela-
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tively small training data sets and can adopt very flexible kernel functions for establishing
nonlinear relationships between spectral observations and variables of interest [32].

To address uncertainties associated with sensor measurement accuracy or data pro-
cessing including radiometric calibration, atmospheric and geometric corrections, as well
as the limited realism of the RTM with respect to surface heterogeneity or failure in param-
eterization, the inclusion of noise may be considered [21,64,69,70].

White Gaussian noise was applied to the simulated spectra, according to the noise
model provided in Equation (1) [39]:

R∗(λ) = R(λ) ·
(

1 +
MD(λ) + MI

100

)
+ AD(λ) + AI (1)

where R(λ) and R∗(λ) represent the raw simulated reflectance for band λ and the re-
flectance with uncertainties for band λ, respectively. MD denotes the multiplicative
wavelength-dependent noise, MI the multiplicative wavelength-independent noise. AD
and AI stand for the additive wavelength-dependent and -independent noises, respec-
tively. According to internal tests, we applied AD, AI = 0.01 and MD, MI = 4% for all
the bands. Similar noise levels were introduced to optimize LUT-based inversion for
LAI retrieval [71–73] or to generate training data for machine learning regression algo-
rithms [21,50].

The final data base of the combined PROSAIL input variables and TOC reflectance
output was subsequently used for the development of the retrieval models at the BOA
(S2 L2A) scale.

2.2.2. Top-of-Atmosphere Radiative Transfer Modeling

At the TOA scale, atmospheric reflectance was simulated with the 6SV model. For
this, we selected mid-latitude summer atmospheric profile mode. In Table 2, the details of
the atmospheric model input parameters and their respective ranges can be found. The
outputs of 6SV were the following atmospheric transfer functions for each combination of
the key input variables; see also Vicent et al. [60]:
• Intrinsic atmospheric reflectance (ρ0),
• Total gas transmittance (Tgas),
• Total downwards and upwards transmittance due to scattering (Tdwn and Tup),
• Spherical albedo (S), which denotes the atmospheric reflectance spectrum for the

photons backscattered to the surface (S), and
• Extraterrestrial solar irradiance (I0) in mW·m−2·nm−1.

TOA radiance spectra (L) were then calculated by coupling the generated atmospheric
transfer functions from 6SV with the Lambertian surface reflectance (ρ) from PROSAIL
following the equation:

L =
I0µil

π
Tgas

[
ρ0 +

TdwnTupρ

1− Sρ

]
≡ I0µil

π
ρtoa (2)

where µil = cos θil , with θil being the solar zenith angle. The magnitude ρtoa is the TOA
reflectance (i.e., Sentinel-2 L1C product), which can be understood as the TOA radiance
normalized by the solar irradiance. For the sake of simplicity, the spectral dependency of
all terms within Equation (2) was omitted.

For the upscaling from BOA to TOA, it was necessary to resample the 1 nm PROSAIL
spectral resolution to the 2.5 nm sampling of 6SV atmospheric simulations using spline
interpolation. With this common spectral resampling method, both data sets generated
by PROSAIL and 6SV were randomly combined, and a total number of 1000 samples was
propagated into TOA radiance, following Equation (2).

The TOC-to-TOA coupling was performed by means of ARTMO’s TOC2TOA toolbox,
which can generate the final TOA table consisting of pairs of radiance (or reflectance)
spectra with associated vegetation properties and atmosphere parameters [50]. As opposed
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to the earlier version presented in Estévez et al. [34], two novelties were introduced in
the updated toolbox (v. 1.02): (i) with the inclusion of Equation (2), both TOA radiance
and reflectance are provided; and (ii) viewing and observation geometry can be ranged.
This was now possible through allowing a buffer around each geometry value, even when
random numbers were introduced into the TOC or atmospheric geometry. Instead, in the
earlier TOC2TOA version, it was only possible to synchronize the TOC and atmospheric
simulations with a fixed geometry. In the actual tool, two training data sets generated
with random geometry values can be coupled. The conversion of TOA radiance into the
S2 spectral configuration was carried out by convolving the full spectra to the resolution
of S2 using built-in spectral response functions (SRFs). The information of the SRFs was
obtained from ESA’s website [74] (accessed 14 April 2021).

2.2.3. Variational Heteroscedastic Gaussian Process Regression

The main retrieval algorithm of our study relied on the principles of GPR. How-
ever, a non-standard variational approximation that allows accurate inference in signal-
dependent noise scenarios (i.e., under input-dependent noise conditions) was adapted, called
VHGPR [31,32]. This marginalized variational approximation renders (approximate)
Bayesian inference in the model fast and accurate, providing an analytical expression for
the Kullback–Leibler divergence between a proposed distribution and the true posterior
distribution. By minimizing this quantity with respect to the proposal distribution, as well
as the hyperparameters, accurate estimation of the true posterior can be obtained while
concurrently performing model selection. The expression of the approximate mean and
variance of the posterior can then be computed in closed form. Variational techniques allow
approximating intractable integrals arising in Bayesian inference and machine learning in
general. For instance, these techniques are used to provide analytical approximations to
the posterior probability of the unobserved variables and, hence, apply statistical inference
over these variables [32]. Detailed descriptions of the VHGPR algorithms including mathe-
matical expressions and equations were provided by Lázaro-Gredilla and Titsias [31] and
Lázaro-Gredilla [32].

2.2.4. Delineation of the Hybrid Workflow

In summary, the retrieval workflow (see also Figure 2) consisted of the following
main steps:
1. generation of training data bases with the models PROSAIL and 6SV and coupling

for upscaling at the TOA using atmospheric transfer functions;
2. training the VHGPR algorithm over the simulated data bases to establish variable-

specific retrieval models for both scales;
3. validation with in situ field measurements from the MNI site; and
4. mapping multiple crop traits and corresponding uncertainties using S2 scenes from a

selected date.
For all spectral data, ten out of the 13 available S2 bands were employed or established

using S2-SRFs, covering 10–20 m pixel sizes with S2 central wavelengths of 493 nm,
560 nm, 665 nm, 704 nm, 740 nm, 783 nm, 833 nm, 865 nm, 1610 nm, and 2190 nm. In
Estévez et al. [34], the contribution of these bands was analyzed for LAI retrieval. Since the
validation results showed insignificant differences when using eight, nine, or ten bands,
no large impact was assumed. Hence, it was decided to keep all ten bands for further
processing to assure a maximum of spectral information that may be required for the
retrieval of multiple crop traits. The three bands of a 60 m pixel size (443 nm, 945 nm,
and 1374 nm) were excluded since their focus was on cloud screening and atmospheric
corrections. Finally, images were resampled to a 10 m ground sampling distance.

It must also be noted that PROSAIL is a vegetation canopy model and not prepared to
simulate the spectral variability of non-vegetated surfaces. Hence, around 30 distinct non-
vegetated samples (e.g., soil, man-made surfaces, water bodies) were visually identified
from S2 L2A and L1C products and added to the training data bases (TOC and TOA).
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The TOC and TOA tables were used to train the VHGPR algorithm for the generation
of variable-specific retrieval models applicable to S2 L2A and L1C data. With the exception
of FVC, models were only established for those vegetation traits where validation data were
available. When training an MLRA with simulated data, a first requirement is to evaluate
the theoretical performances of the established models, i.e., the accuracy using simulated
data. To do so, a k-fold cross-validation sampling scheme was applied, in which the
training data set was split into five subsets (k = 5). Finally, in order to assess the capability
of the VHGPR models to generate maps of multiple crop traits, the retrieval models were
applied to estimate actual Cab, Cw, FVC, LAI, laiCab, and laiCw using ARTMO’s MLRA
toolbox [75]. Second, a cloud-free spatial subset of S2 L1C (TOA) and L2A (BOA) imagery
from 6 July 2017 was chosen to evaluate mapping accuracy at both scales.

2.2.5. Comparison against SNAP Biophysical Processor Vegetation Products

Since a limited number of in situ samples may not be conclusive enough to assess
the suitability of the developed VHGPR models, an additional comparison exercise was
performed using the Biophysical Processor toolbox from SNAP (v.6.0.0) [39]. Among others,
the processor provides the following vegetation products: LAI, laiCab, laiCw, and FVC
from L1C (TOA) and L2A (BOA) data. The rationale for comparing the results of the here
presented hybrid retrieval workflow with these products lied in the fact that the Biophysical
Processor can be considered as a benchmark product used by an increasing number of
studies and image processing applications [40,73,76,77]. Hence, a direct comparison against
the SNAP vegetation products through the computation of scatter plots and relative error
maps gave a quantitative assessment of the models’ performance across all land cover
types present around the test sites.

Lastly, to streamline the whole analysis for all the conducted validation including
BOA and TOA comparison, common goodness-of-fit statistics, i.e., the root mean squared
error (RMSE) in variable-specific units, normalized RMSE (NRMSE in %, being the RMSE
divided by the range of observations), and coefficient of determination (R2), are given.

3. Results
3.1. Theoretical Results of the VHGPR Models

The theoretical goodness-of-fit results, displayed in Table 3, revealed the following
trends: (1) there were generally small, but statistically non-significant differences between
the BOA and TOA results; (2) the good performance of LAI estimation benefited from the
accuracy of upscaled leaf variables (i.e., for laiCab and laiCw). All variables reached reason-
able performances, with laiCab, laiCw, and FVC obtaining relative errors (i.e., NRMSE) far
below 10%. Nevertheless, these statistics merely gave information about theoretical model
performances, which were required to assess the reliability of the models’ parameterization.
Evaluation against in situ-collected ground validation data would additionally indicate the
suitability and portability of the developed models.

Table 3. Theoretical k-fold (5k) cross-validation goodness-of-fit results of studied vegetation traits for the BOA and TOA.
Units of the RMSE for Cab in µg/cm2, for Cw in cm, for LAI in m2/m2, and for laiCab and laiCw in g/m2. NRMSE in %.
Variable abbreviations can be found in Table 1.

Variable Cab Cw FVC LAI laiCab laiCw

Level BOA TOA BOA TOA BOA TOA BOA TOA BOA TOA BOA TOA

RMSE 9.66 10.20 0.0063 0.0059 0.0589 0.0539 0.81 0.80 0.34 0.34 172.00 167.00
NRMSE 12.90 13.64 12.73 11.92 5.94 5.45 11.61 11.41 7.15 7.12 5.52 5.72
R2 0.76 0.73 0.56 0.60 0.95 0.96 0.77 0.78 0.85 0.84 0.86 0.87
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3.2. Validation against In Situ Data

The VHGPR models’ performance was evaluated against the in situ data set of the
MNI campaigns. Hereby, the accuracy of the Cab and Cw simulations from L2A BOA and
from L1C TOA are presented in Figure 3, top and bottom, respectively. Generally, the
retrieval from BOA reflectance slightly outperformed the results from TOA reflectance,
for both leaf-level variables. The accuracy of Cab can be considered as good, with the
RMSE between 6.5 and 8 µg/cm2, though a slight underestimation occurred at the BOA
scale. In the case of Cw, overestimation at both scales could be detected, and the retrieval
performance was only moderate with relative errors around 60%. Hereby, water loss during
transport to the laboratory may play a role, limiting the credibility of the ground-sampled
data (see also the Discussion Section).

L2
A

(B
O

A
)

L1
C

(T
O

A
)

Figure 3. Ground validation of maize and winter wheat over the MNI site by the VHGPR model for retrieval from
S2-L2A (BOA) (top) and S2-L1C (TOA) reflectance (bottom). Measured vs. estimated values along the 1:1-line with
associated confidence intervals (1 SD) for leaf traits: leaf chlorophyll content, Cab (left), and leaf water content, Cw (right).
Labels indicate the time-shift between the date of in situ collection and S2 acquisition. Vertical bars indicate associated
uncertainty estimates.

Results for the canopy-level variables against in situ are demonstrated in Figure 4 with
retrieval from L2A BOA reflectance in the top plots and from L1C TOA reflectance in the
bottom plots. In general, the estimation performance at the canopy level was reasonably
accurate, with higher accuracy from the TOA scale for two of the three variables. LAI
estimation from TOA reflectance only slightly outperformed BOA estimations (RMSE
of 0.46 m2/m2 versus 0.48 m2/m2). For laiCab, underestimation occurred, which was
related to the underestimation at the leaf scale. Noteworthy is the higher accuracy of laiCw
predicted from TOA compared to BOA reflectance, with an NRMSE of 13% vs. 16%. Still,
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the model slightly overestimated the laiCw values at both scales. Yet, mapping results
were needed to inspect these trends at the landscape scale.

As a side remark, the labels in Figures 3 and 4 indicate the time-shift of zero to a
maximum of five days between the dates of in situ collection and the corresponding S2
acquisition. However, no clear trend can be identified: even if the data were recorded with
an offset of some days, the accuracy was alike compared to the simultaneous recordings.
This confirmed the reasonable choice of this time-window. Vertical bars indicate the
associated uncertainty intervals for each estimate corresponding to the standard deviation
(SD). It can be observed that all bars fall within the same range without the occurrence
of outliers.

L2
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)
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)

Figure 4. Ground validation of maize and winter wheat over the MNI site by the VHGPR model for retrieval from S2-L2A
(BOA) (top) and S2-L1C (TOA) reflectance (bottom). Measured vs. estimated values along the 1:1-line with associated
confidence intervals (1 SD) for several canopy variables: LAI (left), canopy chlorophyll content, laiCab (center), and canopy
water content, laiCw (right). Labels indicate the time-shift between the date of in situ collection and S2 acquisition. Vertical
bars indicate associated uncertainty estimates.

3.3. Mapping Biochemical and Biophysical Crop Traits

The developed VHGPR models were subsequently applied to the S2 scene covering
the MNI test site on 6 July 2017 to map biochemical leaf compounds (Cab and Cw) and FVC
(Figure 5), as well as the LAI with upscaled crop traits (laiCab and laiCw; Figure 6). On
this date, both winter wheat and maize fields used for validation (Section 3.2) showed
mean LAI values around 3 m2/m2. While the maize field was fully green, winter wheat
started senescence, as indicated by lower estimated within-field values of Cab around
Cab = 60 µg/cm2 versus Cab = 20 µg/cm2 for maize and winter wheat, respectively. In
general, for this agricultural area located east of the river Isar, the maps nicely reflected the
actual variability of vegetation properties to this point of time, with fully green or mature
crops (maize, cereals, rape, and potatoes), but also fallow lands. Scatter plots between BOA
and TOA scale estimates are also presented. For the leaf scale (Figure 5, bottom), only
moderate correlations were achieved with R2 between 0.62 (Cab) and 0.35 (Cw). Scatter
plots suggest a generally broad estimation range. At the canopy level, a significantly higher
consistency between the mapping scales was achieved, with R2 = 0.91 for FVC and R2

around 0.96–0.99 for LAI, laiCab, and laiCw (Figure 6, bottom).
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Figure 5. Maps of biochemical leaf traits (mean estimates; µ): Cab (left) and Cw (center), as well as FVC (right), as generated
by the VHGPR algorithm from L2A (top) and L1C (middle) data for the MNI test site on 6 July 2017. Scatter plots of both
maps with gridded color density (bottom).

In Gaussian process models, a probability distribution over all possible values of the
variable of interest is provided (see also Section 2.2.3). The target output (crop trait) is
thus given along with a quantification of prediction uncertainty, allowing assessing the
VHGPR model retrieval performance over the entire image. Maps of absolute associated
uncertainty (expressed as SD around the mean) are provided for all predicted crop traits
in Figure 7. Although not shown for brevity, also relative uncertainty (expressed as the
coefficient of variation (CV), i.e., the SD divided by the mean) maps were processed. For
Cab, the absolute uncertainty at the BOA scale (Figure 7, top left) revealed mainly values
between 5 and 10 µg/cm2 over the whole area. There were some fields characterized by
high uncertainty, which can be explained by high vegetation coverage: the magnitude of
uncertainty values was often highly related to the mean estimates. One field stood out in
the BOA-scale Cab map exposing very high uncertainty (>30 µg/cm2). As indicated by all
other crop trait estimates, in particular LAI (see Figure 6, top left), this field had very low or
non-green vegetation coverage. Though, at the BOA scale, very high Cab (Figure 5, top left)
was estimated (around 70 µg/cm2), which appeared out of range. Most likely, this field
was a senescent wheat field or fallow land with a specific unknown reflectance signature.
Hence, the algorithm failed, which was expressed by a high scale of absolute uncertainty.
Compared to BOA retrievals, patterns of uncertainty of leaf compounds appeared more
evenly distributed at the TOA scale, with values in a narrower range, thus indicating higher
confidence of the estimates.
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Figure 6. Maps of canopy traits (mean estimates): LAI (left), laiCab (center), and laiCw (right), as generated by the VHGPR
algorithm from L2A (top) and L1C (middle) data at the MNI test site on 6 July 2017. Scatter plots of both maps with gridded
color density (bottom).

Absolute uncertainty patterns of the canopy-level traits responded much more alike
at both the TOA-L1C and BOA-L2A scales (Figure 7, bottom). Here also, higher estimates
were closely related to higher absolute uncertainty. Goodness-of-fit comparisons of absolute
and relative uncertainty mapping between the BOA and TOA scales is provided for all
crop traits in Table 4. Essentially, we can observe that the canopy variables were more alike
between both scales than the leaf variables and that absolute uncertainty patterns (SD)
gave more consistent statistics than relative uncertainty (CV).

Table 4. Comparison results of BOA vs. TOA uncertainty maps for several crop traits. The RMSE, NRMSE, and R2 are given
for the standard deviation (SD) maps (Figure 7) and the coefficient of variation (CV) maps (not shown).

Variable Cab Cw FVC LAI laiCab laiCw

Uncertainty Type SD CV SD CV SD CV SD CV SD CV SD CV

RMSE 4.04 19.09 0.0015 16.42 0.0113 21.94 0.0786 14.12 0.0362 12.31 26.68 15.54
NRMSE (%) 13.49 19.09 14.45 16.42 3.67 21.94 2.80 14.12 1.63 12.31 1.33 15.54
R2 0.03 0.41 0.20 0.34 0.17 0.28 0.93 0.37 0.91 0.68 0.91 0.51
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Figure 7. Associated uncertainties (expressed as the standard deviation (SD) around the µ) for leaf biochemicals and FVC
(top) and canopy crop traits (bottom), generated by the VHGPR algorithm from L2A and L1C data for the MNI test site on
6 July 2017.

3.4. Comparison against SNAP Vegetation Products

Since the validation exercise with in situ data coming from two crop types may not be
conclusive enough to assess the validity of models that pretend to be generally applicable,
our maps were additionally compared against those obtained by the SNAP Biophysical
Processor products. With SNAP NN, only biophysical canopy variables were generated,
i.e., LAI, laiCab, laiCw, and FVC. For each variable, a scatter plot against the corresponding
estimates over the whole scene as obtained by our VHGPR model indicated the retrieval
consistency of the respective estimated variable (Figure 8). Between the two products,
the high consistency up to LAI = 7 can be observed. The SNAP NN model, however,
strongly overestimated the actual LAI values of agricultural fields in the area at this point
of time (i.e., with LAI up to 11 at the BOA scale). In the case of laiCab, these differences
between the TOA and BOA scales could no longer be observed: in contrast to the VHGPR
models, the SNAP NN model systematically overestimated laiCab at both scales. Similar
trends can be observed for laiCw and FVC, with an even stronger tendency of SNAP NN
model overestimation at the TOA scales. Highest consistency between SNAP NN and the
VHGPR models was achieved for LAI retrievals at the TOA scale and FVC estimations
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at the BOA scale. The strongest discrepancies appeared for higher laiCab (>2 g/m2) and
laiCw (>1000 g/m2) values. Spatial discrepancies can probably be better observed in the
relative error maps (Figure 9); blue colors indicate an underestimation of the VHGPR
model relative to SNAP NN. Remarkably, hereby is the blue color of the river Isar, which is
a non-vegetated area and should thus reach zero values. This suggested that the VHGPR
model was better adapted to interpret water bodies as non-vegetated surfaces than the
SNAP NN models.
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Figure 8. Scatter plots between VHGPR and SNAP NN estimations from L2A (BOA) data (top) and L1C (TOA) data (bottom)
for LAI, laiCab, laiCw, and FVC over the MNI site on 6 July 2017.
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Figure 9. Relative error maps between VHGPR and SNAP NN estimations from L2A (BOA) data (top) and L1C (TOA) data
(bottom) for LAI, laiCab, laiCw, and FVC over the MNI site on 6 July 2017.

4. Discussion

With the ambition to simplify the mapping of a variety of vegetation traits from
satellite data, a prototype hybrid retrieval processing strategy was developed. The core idea
of this strategy is that the retrieval models can be directly applied to TOA reflectance data,
thus without the need for an atmospheric correction. In the following, the performances of
the retrievals from S2 BOA (L2A) and TOA (L1C) data (Section 4.1), the variable-specific
retrieval differences (Section 4.2), the comparison with the SNAP NN model reference
vegetation products (Section 4.3), the advantages and limitations of the VHGPR models
used (Section 4.4) and the RTMs (Section 4.5), and finally, future challenges and possible
improvements of the workflow (Section 4.6) are discussed.
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4.1. Performance of BOA and TOA Retrievals

The feasibility of retrieving key biophysical and biochemical variables from TOA
radiance data has been earlier theoretically justified by means of a GSA of coupled RTMs.
In a few studies, all input variables of the coupled leaf-canopy-atmosphere RTMs were
entered into a GSA [50,78,79]. At the TOA scale, sensitivity results indicated that leaf
biochemical and structural canopy variables predominantly drive radiance along the
optical spectral range outside water vapor absorption. When applying the GSA over the
full spectral range at 1 nm [50], the leaf variable Cab has the main effect in the visible region
(VIS, 380–700 nm), and Cw mainly affects the SWIR. The most dominant canopy structural
variable in the VIS and SWIR optical domains is the LAI with a total sensitivity of more
than 80%, although it must be remarked that in SAIL-like RTMs, the canopy structure is
only defined by the LAI and average leaf angle. In more advanced RTMs, the role of canopy
structure is spread over multiple variables, e.g., as demonstrated with INFORM [80].

Although no GSA was applied in our study, interestingly, the obtained variable
retrieval accuracy from the BOA and TOA levels (see Table 3) was consistent with the
GSA results. Furthermore, when validating against in situ reference data collected during
the MNI campaigns, the same meaningful retrievals emerged. Overall, theoretical and
validation results suggested that vegetation variables could be retrieved from TOA data
with moderate to high accuracy. Moreover, we observed a slight trend of improved
estimates from the TOA scale, in particular for crop traits at the canopy level (i.e., LAI and
laiCw). Likewise, the former study of Estévez et al. [34] found that LAI retrieval at the
TOA scale outperformed those at the BOA scale. It was argued that the quality of BOA
data was influenced by the various processing steps involved to convert the L1C product
into L2A, which further affected retrieval accuracy [81]. For instance, Figure 7 shows a few
croplands exhibiting very high absolute uncertainty of leaf biochemical estimates from the
BOA scale, which is no longer seen in estimates from TOA reflectance. Hence, potential
uncertainty introduced in the processing steps may have been propagated to the estimates.
Yet, the uncertainty patterns at both the BOA and TOA scales were generally alike, which
suggested a similar prediction performance of the LAI at both scales (see Figure 6, bottom).

4.2. Variable-Specific Mapping

From space, crop traits at the canopy level (LAI, laiCab, laiCw) are usually more
successfully estimated than leaf-level variables, e.g., Cab and Cw. That trend was strongly
observed by our results for both L1C and L2A scales and was also confirmed by a few
similar studies exploring Sentinel-2 data [40,82,83]. A possible explanation for poorer
retrieval accuracy at the leaf level was given by Xie et al. [40], who argued about the
compensation effects between LAI and Cab leading to the well-known ill-posed inverse
problem. The retrieval accuracy of leaf biochemicals when derived from canopy reflectance
may also be affected by the strength of the signal transmitted from the leaf to the canopy
scale, i.e., signal dissemination, which is mainly controlled by structural traits such as the
LAI or leaf angle distribution [84,85].

When using simulated data to evaluate the theoretical performance of the VHGPR
models, the estimation of leaf-level traits works much better than with in situ data. This
was also reflected by our results (theoretical performances vs. in situ) with NRMSE values
around 13% vs. 29–36% for Cab and an NRMSE of 12% vs. 60% for Cw. Except for the
LAI, this difference was also found for canopy traits, but less pronounced. Higher NRMSE
values obtained by in situ evaluation can be also explained by the few data available from
the MNI campaigns, i.e., few samples collected on only two crop types. Obviously, more in
situ data would lead to more pronounced trends. However, care is required; uncertainty
introduced by the ground measurements themselves can also lead to poorer validation
results. For example, in the case of Cw measurements, leaf water may have been lost during
the transport of samples from the field to the laboratory. Other sources of uncertainty
were the S2 acquisitions and pre-processing: real-world data always include some artifacts,
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which may not be interpreted correctly by the retrieval model developed over the synthetic
data base, hence leading to poorer predictions over unknown data.

To the the best of our knowledge, this was the first study estimating multiple crop
traits from S2 L1C data using a hybrid retrieval approach. Though comparison studies at
the TOA scale are lacking, our results can be compared at the scale of S2 L2A data, with a
few recent works assessing the retrieval of leaf and canopy chlorophyll content and the LAI.
For instance, Darvishzadeh et al. [85] estimated leaf chlorophyll content in spruce stands
with RTM inversion (applying an optimized S2 band setting) with an RMSE of 8.1 µg/cm2,
an NRMSE of 33%, and an R2 of 0.36, which was less accurate than our in situ validation
(RMSE = 6.5 µg/cm2, NRMSE = 29%, R2 = 0.47). Our results also outperformed those of
the study of Xie et al. [40], who obtained an R2 of 0.68 and an RMSE of 0.94 m2/m2 for the
LAI of winter wheat (the same held true for the Cab and laiCab retrievals). Furthermore,
Ali et al. [86] estimated laiCab from S2 data and compared empirical and RTM inversion
methods with the best results obtained by partial least squares regression (PLSR) with an R2

of 0.78 and an RMSE of 0.22 g/m2. Here, this variable was retrieved with higher precision
in terms of R2 (0.85), but not in absolute measures (RMSE = 0.38 g/m2). Still, comparing
the results of different studies was not straightforward. First, the conditions of those
studies were completely different, including the retrieval methods, types of vegetation,
or number and magnitude of in situ reference data. Second, the use of only one or two
different goodness-of-fit statistical indicators limited the comparability between studies.
For instance, the RMSE is strongly influenced by the magnitude of trait values, whereas
the NRMSE is sensitive to outliers. Hence, an optimal set of evaluation statistics should
be used comprised of at least three or four measures of different statistical categories for
appropriate and valid comparison of the results obtained by different studies (see also
Richter et al. [87] for a discussion on this topic).

4.3. Comparison against SNAP Vegetation Products

The SNAP NN models for the estimation of crop traits are considered as reference
products and have been also evaluated by a few studies [40,76,77,88]. For instance,
Kganyago et al. [88] compared the retrieval performance of SNAP-derived LAI with ex-
isting global LAI products. They found only moderate consistency between different
products (RMSE of 0.5–0.6 m2/m2), which was a lower match than VHGPR versus the
SNAP NN models of our study with an LAI-RMSE of 0.49 m2/m2 (BOA) and an LAI-RMSE
of 0.4 m2/m2 (TOA; see Figure 8, left). Still, the SNAP NN model strongly overestimated
the LAI values at the MNI site at this point of time (beginning of July), with unrealistic LAI
values up to 11 at the BOA scale. These results were consistent with the findings of Estévez
et al. [34], where the SNAP NN model suffered from extreme LAI overestimation at the
BOA, but less at the TOA scale. This tendency was also observed for laiCab and laiCw, but
not for FVC (see Figure 9): a comparison between VHGPR and SNAP NN estimates at the
TOA scale revealed lower discrepancies than at the BOA scale. The strong overestimation
of the higher laiCab (>2 g/m2) and laiCw (>1000 g/m2) values by SNAP NN compared to
the VHGPR models (Figure 8, middle plots) was most likely also influenced by the high
LAI predictions. Our findings were confirmed by a laiCab retrieval study [86], indicating
the tendency of overestimation by SNAP NN models from Sentinel-2 data (for forests).

In contrast to ours and other studies reporting retrieval inconsistencies, Pasqualotto et al. [76]
found relatively good accuracy when estimating LAI and laiCab with the SNAP NN models.
The authors even suggested that the generated biophysical products offered a great potential for
hybrid retrieval workflows within agricultural applications. Though this may be certainly valid,
caution is required when interpreting the LAI (and other canopy-level traits) estimates by the
SNAP NN model in the later (mature) growing season. Using TOA instead of BOA reflectance
for retrieval could be one solution to mitigate this problem. Further, we proposed to test our
workflow as an alternative, since the implemented VHGPR models were not particularly prone to
overestimating canopy-level traits. Generally, our results may be of specific relevance since we
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are not aware of any other study providing a comparison of multiple crop traits’ retrieval
between SNAP NN BOA and TOA products, except for the LAI [34,88].

4.4. Machine Learning Regression Model and Uncertainty

A key aspect of the hybrid workflow was the choice of the machine learning regres-
sion algorithm. We favored the VHGPR algorithm in hybrid designs, as the family of
Gaussian processes achieved generally superior performances compared to other MLRAs
in vegetation properties’ estimation, e.g., [27,30,75,89]. VHGPR yielded also high perfor-
mances of LAI estimation in our previous study at both the BOA and TOA scales [34] and
provided meaningful uncertainty estimates. The systematic superiority of VHGPR over
standard GPR was explained by its feature of assuming the variance of the noise process
as dependent on the signal, hence letting the noise power vary smoothly throughout the
input space [32]. Once the VHGPR model is established, it can be applied to any S2 L1C or
L2A image for mapping diverse leaf biochemical compounds and canopy biophysical crop
traits, as demonstrated here over the German MNI agricultural site. Consistency among
TOA and BOA retrievals and the uncertainty pattern, in particular for canopy traits (i.e.,
FVC, LAI, laiCab, and laiCw), confirms the potential of VHGPR models for implementation
into EO retrieval processing chains.

The majority of existing methods for the estimation of vegetation biochemical and
biophysical traits from EO data only provide point predictions. This is, however, unfavor-
able, since those estimates can be affected by uncertainty in the model parameterization or
input data [90]. With the provision of uncertainty maps, we overcame this drawback. For
instance, these maps could function as spatial masks using a defined threshold (e.g., of 20%,
as proposed by the Global Climate Observing System (GCOS) [91]) in order to exclude sam-
ples or improve mapping. In this context, the spectra of bare soils or senescent crop fields,
which cannot be appropriately modeled by the RTM used, could be extracted from the
scene and added to the training data to improve robustness and accuracy [92]. Moreover,
the information of per-pixel uncertainty can be used to assess the portability of the estab-
lished models over spatial and temporal scales [93]. Note that the provided uncertainty
intervals by the Gaussian process models mainly cover the error sources of the retrieval
algorithm including the parameterizations and simplifications of the RTMs used. There are
two more broad clusters of uncertainty sources in the process of estimating vegetation traits
from Earth observation data [94]: (i) sensor design, data acquisition, and pre-processing;
and (ii) uncertainty arising from field data collection. It should be kept in mind that these
additional error sources are not covered by VHGPR uncertainty maps.

4.5. Advantage and Limitations of the RTMs Used

TOA observations above a cropped surface are basically influenced by three main
factors: (1) atmospheric conditions, (2) leaf and canopy characteristics, and (3) soil back-
ground [53]. Accurate prediction of crop traits from satellite sensors, such as S2, depends
on reliable models, able to accurately describe each of these three components in the
atmosphere-surface system [51]. In our study, we used the well-known coupled leaf optical
properties and canopy reflectance model PROSAIL and the atmosphere model 6SV, both of
which have proven to be suitable for satellite applications providing reasonable accuracy
for diverse applications (see [37,38] for an overview of PROSAIL applications and [58,60]
for 6SV applications). An overall advantage of these RTMs is their simplicity, which facili-
tates the whole workflow: relatively low computational times go along with good to high
accuracy in predicting most biophysical and biochemical crop traits of interest. Though
both are 1D turbid medium approaches, the scattering and absorption processes within
the atmosphere and canopy are accurately described by these models taking into account
the underlying physics. The limited number of variables further facilitates parameteriza-
tion. On the other hand, oversimplification is also a limitation, leading to the increase of
uncertainty in forward modeling.
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The idea to combine vegetation RTMs with atmospheric RTMs in forward model-
ing was initiated almost two decades ago by Verhoef and Bach [53,95], who coupled the
SLCmodel with MODTRANto generate TOA observed radiance. This coupled leaf-canopy-
atmosphere approach was further elaborated for vegetation trait mapping applications
from air- and space-borne imaging spectroscopy data by Laurent et al. [43–45]. More
recently, Mousivand et al. [47] and Verhoef et al. [96] estimated vegetation traits from TOA
radiance combining the SCOPE, global soil vectors (GSVs), and MODTRAN5 models. In
these two studies, the MODTRAN atmospheric input parameters were assumed as known
and used to simulate the optical coefficients for the translation of TOC to TOA reflectance.
Finally, only surface characteristics were retrieved. Hence, to further improve this research
line, the soil-plant-atmosphere radiative transfer (SPART) model was introduced [52] and
was recently applied for the retrieval of vegetation properties from Sentinel-3 OLCITOA
radiance [97]. SPART is a combination of three models for soil reflectance, canopy, and
atmosphere radiative transfer. As a specificity, this model assumes the surface to dis-
play non-Lambertian reflectance behavior. Indeed, vegetation canopies are not optimal
Lambertian diffusers. Uncompensated atmospheric scattering caused by the Lambertian
assumption may systematically introduce uncertainty into the retrieval results. The mag-
nitude of biases increases with enhanced scattering in the atmosphere caused by higher
aerosol concentrations [98]. On the other hand, assuming a Lambertian approximation
renders the computation more feasible by reducing the required size of the simulated data
sets used for training MLRAs. Moreover, according to the studies of Thome et al. [99],
Settle et al. [100], and Wang et al. [98], the error caused by Lambertian approximation only
introduces a small error in the final product retrieval (albedo) for near-nadir observations
where the observation geometry is not in the hot spot direction.

4.6. Future Challenges and Possible Improvements of the Workflow

Further improvements of the TOC modeling concept could be achieved when moving
towards more complex (3D) vegetation models, e.g., DART [101]. These 3D canopy models
describe the mechanistic link between the vegetation properties and the radiation regime
within heterogeneous crop canopies more accurately compared to the 1D models used
here. Apart from synthetic vegetation spectra, also the collection of non-vegetated spectra
in the training data set can be broadened to make the model more generally applicable,
e.g., by making use of spectral libraries. At the TOA scale, the implementation of more
accurate atmosphere RTMs, e.g., libRadtran [56], may also improve the retrieval accuracy.
This notwithstanding, the usage of more complex RTMs at both canopy and atmosphere
scales increases the theoretical uncertainty through a higher number of input variables if
no prior knowledge is available [94]. A high number of input variables also challenges
the development of regression models: enlarging the size of the training data set goes
along with increasing computational costs, in particular for kernel-based algorithms, such
as VHGPR. In order to optimize training data sets in terms of size and diversity, smart
sample reduction strategies, also known as active learning (AL), will be tested within a
future study [25,102,103]. To our knowledge, AL heuristics have not yet been applied over
coupled vegetation-atmosphere states as proposed by a recent survey [104]. This could
provide an efficient solution in view of developing cost-efficient kernel-based machine
learning regression models within operational S2 TOA retrieval workflows. Furthermore,
future studies will be dedicated to TOA retrieval workflows of vegetation traits from other
sensors, in particular using data from recently launched and upcoming spaceborne imaging
spectroscopy missions.

As a final remark, it must be emphasized that this comparison exercise between
our proposed modeling approach and the SNAP NN serves merely for demonstration
purposes, i.e., as a proof-of-concept that TOA-based vegetation traits’ retrieval can be easily
achieved, e.g., by developing models with the ALG-ARTMO software framework. The
usage of S2 data served perfectly as a benchmark because of having good quality BOA
and TOA products at disposal. Yet, in principle, the models can be trained for any type
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of TOA radiance, as long as these data were acquired under clear-sky conditions. The
software framework can be freely downloaded at http://artmotoolbox.com/, (accessed
on 15 April 2021). Both the SNAP NN and the VHGPR retrieval approaches presented
here have their strengths and limitations, and the final decision about a method strongly
depends on the users’ needs and software requirements.

5. Conclusions

In this study, we presented a computationally efficient approach of directly retriev-
ing multiple crop traits from TOA Sentinel-2 reflectance data. To achieve this, a hybrid
retrieval workflow was proposed, combining leaf-canopy-atmosphere RTMs and devel-
oping prototype retrieval models with VHGPR algorithms. The validation of the VHGPR
retrieval models led to reasonably accurate results against theoretical and in situ reference
data from an agricultural region. Moreover, whole images could be processed within a
semi-automated processing framework. The evaluation of VHGPR retrieval models for six
vegetation variables at both the S2 BOA and TOA scales led to the following main findings:

• Consistent theoretical performances at the BOA and TOA scales were achieved,
suggesting that hybrid retrieval models can be directly applied to TOA radiance
or reflectance data.

• The validation results and associated uncertainties suggested higher fidelity of the
TOA model performances as opposed to the BOA.

• Canopy variables were more successfully retrieved than leaf variables.
• VHGPR models provided higher plausibility than the SNAP NN models for deriving

vegetation products.

All in all, the results showed that vegetation (crop) traits’ estimation can be achieved
directly from TOA reflectance, which suggests that atmospheric correction is not strictly
necessary given a clear sky. Direct TOA-based retrieval not only simplifies the processing
chain, but also helps to avoid potential uncertainty propagated by this step. Moreover,
the capability of VHGPR models to generate uncertainty intervals enables verifying the
portability of the models in space and time and can eventually support decision-making
processes for agricultural applications. In summary, the presented retrieval workflow opens
the door to monitoring biochemical and biophysical crop characteristics over agricultural
areas within operational processing schemes based on Copernicus Sentinel-2 data products.
Beyond S2, the workflow can be applied and tested to any reflectance or radiance images
for mapping multiple crop traits using the ALG-ARTMO software framework.
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