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A B S T R A C T

Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric
correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance
data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area
index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval
from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this,
the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up
table (LUT) of TOA radiance data and associated input variables. This LUT was then used to train the Bayesian
machine learning algorithms Gaussian processes regression (GPR) and variational heteroscedastic GPR
(VHGPR). PROSAIL simulations were also used to train GPR and VHGPR models for LAI retrieval from S2 images
at bottom-of-atmosphere (BOA) level (L2A product) for comparison purposes. The BOA and TOA LAI products
were consistently validated against a field dataset with GPR (R2 of 0.78) and with VHGPR (R2 of 0.80) and for
both cases a slightly lower RMSE for the TOA LAI product (about 10% reduction). Because of delivering superior
accuracies and lower uncertainties, the VHGPR models were further applied for LAI mapping using S2 acqui-
sitions over the agricultural sites Marchfeld (Austria) and Barrax (Spain). The models led to consistent LAI maps
at BOA and TOA scale. The LAI maps were also compared against LAI maps as generated by the SNAP toolbox,
which is based on a neural network (NN). Maps were again consistent, however the SNAP NN model tends to
overestimate over dense vegetation cover. Overall, this study demonstrated that hybrid LAI retrieval algorithms
can be developed from TOA radiance data given a cloud-free sky, thus without the need of atmospheric cor-
rection. To the benefit of the community, the development of such hybrid models for the retrieval vegetation
properties from BOA or TOA images has been streamlined in the freely downloadable ALG-ARTMO software
framework.

1. Introduction

The estimation of vegetation biophysical variables is key for a wide
range of ecological and agricultural applications (Weiss et al., 2020).
Particularly leaf area index (LAI) has been proven to be a successful
variable retrievable from optical sensors mounted on Earth observing
satellites (Verrelst et al., 2015b; Yan et al., 2019). Copernicus’ flagship
for terrestrial earth observation (EO), i.e. the Sentinel-2 (S2) con-
stellation, provides free, full and open access optical data with very
short revisit times (5 days with 2 satellites under cloud-free conditions

with up to 2–3 days at mid-latitudes), high spatial resolution (< 30 m),
and good spectral resolution (10–180 nm) (Drusch et al., 2012;
Malenovský et al., 2012). This vast data stream has proven to be con-
venient for the quantification and monitoring of vegetation character-
istics, with LAI as the most successful indicator of vegetation density
(Fang et al., 2019; Verrelst et al., 2015b).

However, optical missions do not measure vegetation properties
directly, and some essential pre-processing steps are required to
transform at-sensor reflected radiation into interpretable surface re-
flectance measures, i.e. radiometric calibration and correction,
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geometric correction, and ultimately atmospheric correction. The re-
trieval of biophysical variables takes place typically after the atmo-
spheric correction step where top-of-atmosphere (TOA) radiance is
converted into bottom-of-atmosphere (BOA) reflectance. Consequently,
the pre-processing from TOA to BOA data is a critical step, and de-
termines the success of the subsequent retrieval process (Laurent et al.,
2011b). Nevertheless, the TOA radiance to BOA reflectance conversion
is not so straightforward. Typically, the atmospheric correction is based
on the inversion of an atmospheric radiative transfer model (RTM)
commonly through interpolation of pre-computed look-up tables (LUT).
Together with the intrinsic errors of LUT interpolation, the ill-posedness
of the inversion of atmospheric characteristics introduces important
uncertainties in atmospheric correction (Thompson et al., 2019). Also,
the atmospheric correction generally makes the assumption that the
surface is Lambertian. Other steps that introduce errors are the cor-
rections for topographic, adjacency, and bi-directional surface re-
flectance effects. These corrections are applied sequentially and in-
dependently, potentially accumulating errors into the BOA reflectance
data (Gao et al., 2009).

In an attempt to overcome this limitation, it has earlier been sug-
gested and successfully tested to retrieve biophysical variables directly
from at-sensor TOA radiance, thus without the necessity to go through
the atmospheric correction process (Fang and Liang, 2003; Lauvernet
et al., 2008; Laurent et al., 2011b; Laurent et al., 2011a; Laurent et al.,
2013; Laurent et al., 2014; Mousivand et al., 2015; Shi et al., 2016; Shi
et al., 2017; Verrelst et al., 2019b; Bayat et al., 2020). The possibility of
retrieving LAI directly from TOA radiance data was recently theoreti-
cally confirmed by calculating a global sensitivity analysis, thereby
varying all leaf-canopy-atmosphere RTM variables (Mousivand et al.,
2014; Verrelst et al., 2019b; Prikaziuk and van der Tol, 2019). At TOA
radiance, LAI proved to be a dominant variable along the spectral
range, and at multiple spectral regions it is not influenced by the at-
mospheric variables, especially in the short wave infrared (SWIR)
(Verrelst et al., 2019b). An advantage of retrieving vegetation proper-
ties directly from TOA is that the combined model simulates TOA ra-
diances, which is the physical variable measured by the sensor. This
means that the simulated quantities can be directly compared with the
reference measurements, unlike the BOA approach where a mismatch
may exist due to the approximations and assumptions in the atmo-
spheric correction step (Laurent et al., 2011b). The downside of these
approaches, however, is that they require a sound physical under-
standing on the factors determining the at-sensor spectral TOA ra-
diance, e.g. as studied in Fourty and Baret (1997), Verhoef and Bach
(2003), Verhoef and Bach (2007), Yang et al. (2020). Although for
operational products such as the S2 atmospherically-corrected BOA
reflectance products are freely provided, for experimental missions or
airborne campaign atmospheric corrections are still a mandatory pre-
processing step. It was also with such kinds of experimental data that
the aforementioned TOA retrieval approaches were presented.

When it comes to the retrieval of vegetation properties from optical
EO data, such as LAI, four principal families of retrieval methods can be
identified: (1) parametric regression, (2) nonparametric regression, (3)
inversion of RTMs, and (4) hybrid or combined method (Verrelst et al.,
2015a; Verrelst et al., 2019a). Regarding the retrieval of LAI from TOA
radiance data, earlier retrieval approaches are usually to be found into
the third category of methods, i.e., inversion of leaf a coupled canopy-
atmosphere RTMs by making use of predefined look-up tables (LUT).
The main drawback of this method is that it takes a long computational
time, i.e. for each pixel querying and interpolating the LUT for inver-
sion through a minimization function (Verrelst et al., 2015a; Verrelst
et al., 2019a). In this regard, for the last few years hybrid retrieval
methods has become an appealing alternative due to the fast progress in
machine learning methods. Hybrid methods establish a statistical re-
lationship between simulated spectra and a biophysical variable. These
type of methods have been particularly successful in operational pro-
cessing of EO data because they exploit the generic properties of

physically-based methods combined with the flexibility and computa-
tional efficiency of machine learning regression algorithms (MLRAs)
(Verrelst et al., 2015a; Verrelst et al., 2019a). One of the major ad-
vantages of these methods is that, once the MLRA is trained, it can
process an image into a vegetation product quasi-instantly.

Hybrid retrieval implementations in an operational context has long
been restricted to artificial neural networks (NNs). The combination of
artificial NNs with the radiative transfer model (RTM) PROSAIL
(Jacquemoud et al., 2009; Berger et al., 2018) has long been used in
operational applications (Bacour et al., 2006; Baret et al., 2013) and
kept on being used, e.g for the processing of S2 images. For instance,
NN models have been implemented into the biophysical processor tool
of the Sentinel Application Platform (SNAP) (Weiss et al., 2016). At the
same time, related studies reveal advantages in the application of al-
ternative MLRAs over conventional NNs techniques (Upreti et al.,
2019). Especially the MLRA families of decision trees and kernel-based
methods proved to be successful (Verrelst et al., 2015a; Verrelst et al.,
2019a). These methods tend to be simpler to train and can perform
more robust than NNs while maintaining competitive accuracies
(Verrelst et al., 2012b; Verrelst et al., 2015b). From the kernel-based
MLRAs family noteworthy are the algorithms kernel ridge regression
(Suykens and Vandewalle, 1999) because of its simplicity and therefore
fast run-time, and Gaussian Process Regression (GPR) (Rasmussen and
Williams, 2006) because of its ability to provide additional information
such as ranking of relevant bands as well as associated uncertainties
(Verrelst et al., 2013b; Verrelst et al., 2015b).

Given the progress made by the MLRAs, new opportunities emerged
to develop retrieval models directly applicable to TOA radiance data.
For instance, of interest to implement are hybrid strategies with ad-
vanced MLRAs that at the same time provides associated uncertainty
estimates (Verrelst et al., 2019b). Yet, what makes the implementation
of TOA approach challenging is the atmospheric part of the coupled
model to account for variability in atmospheric effects. Although mul-
tiple atmospheric RTMs have been developed, these models are often
difficult to configure for generating a large amount of simulations.
Widely used atmospheric RTMs include 6SV (Vermote et al., 1997),
Libratran (Mayer and Kylling, 2005) and MODTRAN (Berk et al., 2006).
To overcome this limitation, the Atmospheric Look-up table Generator
(ALG) is one of the few software packages that enables executing at-
mospheric RTMs with a friendly graphical user interface (Vicent et al.,
2020). In addition, the few software packages available to automate the
retrieval from TOA data are still experimental. To the best of our
knowledge, only the automated radiative transfer models Operator
(ARTMO) scientific software framework is able to provide these steps
into a streamlined and quasi-automatic way (Verrelst et al., 2012c).
ARTMO not only runs leaf-canopy models, its recent TOC2TOA toolbox
allows coupling a leaf-canopy LUT with an ALG-generated atmospheric
LUT to upscale the data to TOA radiance level given the assumption of a
Lambertian surface (Verrelst et al., 2019b). At the same time, with
ARTMO’s MLRA toolbox retrieval algorithms can be trained and maps
of vegetation products can be generated from BOA reflectance or from
TOA radiance EO data, as initially explored in Verrelst et al. (2019b).

Building on experience from above studies, the main objective of
this work was to develop, optimize and validate a hybrid LAI retrieval
model applicable to S2 TOA radiance data. To demonstrate its validity,
the developed model was compared against a hybrid retrieval model
applicable to S2 BOA reflectance data. The pursued approach was as
follows. First, a coupled atmosphere-canopy RT model was used to si-
mulate a LUT of TOA radiance data with associated input variables.
This LUT was then used to train a GPR model for LAI retrieval from a S2
TOA radiance image (L1C product) over the agricultural region Barrax,
Spain. To do so, an atmosphere 6SV LUT was generated with the ALG
toolbox, which was then coupled with PROSAIL simulations to generate
TOA radiance data in ARTMO’s TOC2TOA toolbox. The TOA radiance
data was then used by the MLRA toolbox for developing the retrieval
model. Similarly, PROSAIL simulations were used to train GPR model
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for LAI retrieval from S2 images at BOA level (L2A product) for com-
parison purposes. Finally, the obtained maps were validated against LAI
maps as generated by the NN model in the SNAP toolbox.

2. Theoretical framework top-of-canopy and top-of-atmosphere
simulations for retrieval

2.1. Leaf, canopy and atmosphere RTMs: PROSAIL and 6SV

In hybrid biophysical variable retrieval strategies, the model de-
velopment is based on simulated data coming from RTMs. When aiming
to develop hybrid retrieval models applicable to at-sensor TOA radiance
data, then the simulated data come from coupled vegetation surface
and atmosphere RTMs. Here, we demonstrate the feasibility of this
approach with the most standard leaf-canopy-atmosphere RTMs, as
they are fast and freely available to the community. Vegetation top-of-
canopy (TOC) reflectance simulations come from the combination of
the leaf RTM PROSPECT-4 (Feret et al., 2008) with the canopy RTM
SAIL (Verhoef, 1984), also known as PROSAIL (Jacquemoud et al.,
2009; Berger et al., 2018). PROSPECT-4 is one of the most widely used
RTMs that simulates leaf optical properties. It calculates directional-
hemispherical reflectance and transmittance measured from 400 nm to
2500 nm at 1 nm spectral sampling. SAIL solves the radiative transfer
equation for scattering and absorption of four upward/downward
fluxes at the canopy scale. The leaf reflectance ( l) and transmittance
( l) outputs of PROSPECT are entered into SAIL model to simulate the
top-of-canopy (TOC) reflectance ( c) in the 400–2500 nm spectral range
at 1 nm sampling. The soil spectral reflectance is another important
input of SAIL. Generally, field radiometric data is used, but also spectra
from images have been successfully used (Verrelst et al., 2019a).

By varying the RTM input variables, multiple model realization are
run and both inputs and output spectra are stored in LUTs. The LUTs
can subsequently be used for further processing such as mapping ap-
plications, e.g. by means of applying inversion strategies through
minimization functions (Rivera et al., 2013; Verrelst et al., 2014), or by
means of using these LUTs for training a hybrid retrieval strategy
(Rivera Caicedo et al., 2014; Verrelst et al., 2016a). However, with
PROSAIL only TOC reflectance simulations are generated, which means
these data can solely be used to images after atmospheric correction. An
additional step is thus required when developing retrieval strategies
directly from TOA radiance data, i.e. the coupling with an atmospheric
RTM.

In order to enable extracting biophysical variables directly from
TOA radiance data, it is necessary to upscale the PROSAIL-simulated
TOC LUT to TOA radiance level. This is achieved by means of coupling
the LUT with simulations from an atmospheric RTM. Among the

multiple atmospheric RTMs available, the 6SV (Second Simulation of
the Satellite Signal in the Solar Spectrum) (Vermote et al., 1997) is
probably the most widely used computer code that simulated the pro-
pagation of radiation through the atmosphere. 6SV is an improved
version of 5SV code, developed by the Laboratoire d’Optique Atmo-
spherique. It takes into account the main atmospheric effects like gas-
eous absorption by water vapor, carbon dioxide, oxygen and ozone;
scattering by molecules and aerosols. The computational accuracy for
Rayleigh and aerosol scattering effects is based on the use of state-of-
the-art approximations and implementation of the successive order of
scattering (SOS) algorithm (Lenoble et al., 2007). Just like PROSAIL,
the simulations of 6SV are in the 400–2500 nm spectral range but at a
spectral resolution of 2.5 nm.

The output of 6SV are the following atmospheric transfer functions
for each combination of key input parameters:

0: Intrinsic atmospheric reflectance (unitless).
Tgas: Total gas transmittance (unitless).
Tdwn and Tup: Total downwards and upwards transmittance due to
scattering (unitless)
S: Spherical albedo (unitless).
I0: Extraterrestrial solar irradiance in [mW·m ·2 nm 1].

TOA radiance spectra (L) is calculated by coupling the generated
atmospheric transfer functions from 6SV with the Lambertian surface
reflectance ( ) from PROSAIL following the equation:

= +L
I µ

T
T T

S1
il

gas
dwn up0

0 (1)

where =µ cosil il being il the solar zenith angle. For the sake of sim-
plicity, the spectral dependency of all terms in the Eq. (1) has been
omitted. A schematic overview of the coupling of PROSAIL with 6SV is
provided in Fig. 1.

2.2. Gaussian process regression

We included Gaussian Process Regression (GPR) (Rasmussen and
Williams, 2006) in the hybrid retrieval scheme because it has proven
competitive performance in variable retrieval (Verrelst et al., 2012a;
Verrelst et al., 2013a) and model emulation in general (Camps-Valls
et al., 2016; Vicent et al., 2018; Svendsen et al., 2020; Camps-Valls
et al., 2019), and when is applied to S2 and Sentinel-3 data in particular
(Verrelst et al., 2012b; Verrelst et al., 2013b; Verrelst et al., 2015b;
Upreti et al., 2019). See also reviews of Verrelst et al. (2015a, 2019a)
for a rationale of using GPR as opposed to alternative MLRAs.

Notationally, the GPR model establishes a relation between the

Fig. 1. Schematic illustration of the coupled PROSAIL with 6SV. The PROSAIL part is with permission adapted from Berger et al. (2018). For 6SV only the dominant
continuous variables are given. See Tables 2 and 3 for an explanation of the symbols.
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input (B-bands spectrum) x and the output variable (here LAI)
y of the form:

= =
=

y f Kx x x( ) ( , ),
i

N

i i
1 (2)

where =x{ }i i
N

1 are the spectra used in the training phase, i is the
weight assigned to each one of them, and K is a function evaluating the
similarity between the test spectrum and all N training spectra,

= … = …x x x i Nx [ , , , ] , 1, ,i i i i
B1 2 . We used a scaled Gaussian kernel
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where is a scaling factor, B is the number of bands, b is a dedicated
parameter controlling the spread of the relations for each particular
spectral band b, n is the noise standard deviation and ij is the
Kronecker’s symbol. The kernel is thus parametrized by signal ( , b)
and noise ( n) hyperparameters, collectively denoted as = { , , }b n .

For training purposes, we assume that the observed variable is
formed by noisy observations of the true underlying function

= +y f x( ) . Moreover we assume the noise to be additive in-
dependently identically Gaussian distributed with zero mean and var-
iance n. Let us define the stacked output values = …y yy ( , , )N1 , the
covariance terms of the test point = …k kk x x x x[ ( , ), , ( , )]N1 , and

=k k x x( , ) represents the self-similarity of x . From the previous
model assumption, the output values are distributed according to:

N
+

f x k
y

0
K I k

k( ) ~ , .n
2

(4)

For prediction purposes, the GPR is obtained by computing the pos-
terior distribution over the unknown output Dpy y x, ( | , ), where
D = …y n Nx{ , | 1, , }n n is the training dataset. Interestingly, this pos-
terior can be shown to be a Gaussian distribution, Dp y x( | , ) =
N y µ( | *, *)GP GP

2 , for which one can estimate the predictive mean (point-
wise predictions):

= +µ k K I y* ( ) ,nGP
2 1 (5)

and the predictive variance (confidence intervals):

= +k k K I k* ( ) .nGP
2 2 1 (6)

The corresponding hyperparameters are typically selected by Type-II
Maximum Likelihood, using the marginal likelihood (also called evi-
dence) of the observations, which is also analytical. When the deriva-
tives of the log-evidence are also analytical, which is often the case,
conjugated gradient ascent is typically used for optimization (see
Rasmussen and Williams, 2006 for further details). A more detailed
survey on GPR properties in remote sensing is provided in Camps-Valls
et al. (2016), and a perspective outlook in Camps-Valls et al. (2019).

With respect to EO mapping applications, GPR is simple to train and
works well with a relative small data set, as opposed to other methods
like neural networks. The use of the ARD kernel function makes the
GPR model quite flexible, and often outperforms other non-parametric
regression methods in remote sensing applications (Verrelst et al.,
2012b; Verrelst et al., 2015b). Furthermore, GPR provides information
about the level of uncertainty (or confidence intervals) for prediction,
e.g. confidence map that provides insight in the robustness of the

retrieval (Verrelst et al., 2013b), and about the relevance of bands,
which can be used for identifying the sensitive spectral regions (Verrelst
et al., 2016b; Camps-Valls et al., 2016; Camps-Valls et al., 2019).

2.3. Heteroscedastic Gaussian process regression

Despite the great advantages for modeling, an important challenge
in the practical use of GPR in EO mapping problems comes from the fact
that very often signal and noise are often correlated. As seen before, the
standard GP modeling assumes that the variance of the noise process n
is independent of the signal, which does not hold in most of EO ap-
plications. This strong assumption of homoscedasticity is generally
broken in many biophysical retrieval problems because the acquisition
process is typically affected by noise in different amounts depending on
the measured range of the variable. In order to deal with input-de-
pendent noise variance, heteroscedastic GPs let noise power vary
smoothly throughout input space, x( )n . This, however, does not lead to
closed-form solutions, and several approximations have been proposed
in the literature. Among them, the marginalized variational approx-
imation yields a richer and more flexible heteroscedastic GP model
(Lázaro-Gredilla and Titsias, 2011), which has yielded very good results
in biophysical retrieval from EO data (Lázaro-Gredilla et al., 2013;
Camps-Valls et al., 2016).

2.4. Sentinel-2 satellite measurements

ESA’s Sentinel-2 (S2) is a polar-orbiting, super-spectral and high
spatial resolution mission integrated by a pair of satellites (Sentinel-2A
and Sentinel-2B) that enables a global revisit time below 5 days. The S2
mission delivers data from all land surfaces and coastal areas for sup-
porting agro-ecosystems application within the European Commission’s
Copernicus programme. Each S2 satellite carries a Multi-Spectral
Imager (MSI) which has 13 spectral bands covering from the visible and
NIR (VNIR) to SWIR spectral domains. MSI ranges from 400 to
2400 nm, with pixel sizes of 10, 20, or 60 m, depending on the spectral
band (Drusch et al., 2012). Three of these bands are located in the red-
edge (centered at 705, 740 and 783 nm), an important region for ve-
getation study. Other band configuration details of MSI are included in
Table 1. The super-spectral resolution, the inclusion of the red edge
region of the spectrum, the high revisit frequency and the high radio-
metric quality (Gascon et al., 2017) make S2 optical data very con-
venient to estimate the biophysical variables.

Two reflectance products from S2 MSI are available at different
processing levels: Level-1C and Level-2A. L1C product provides TOA
reflectances (i.e., TOA radiance normalized by incident solar irra-
diance). The processing chain for this product involves radiometric
calibration, geometric calibration and orthorectification. L2A product
provides BOA reflectance from L1C product. Sentinel-2 Atmospheric
Correction (S2AC) is achieved by means of the Sen2Cor atmospheric
correction scheme (Main-Knorn et al., 2017). The baseline process of
Sen2Cor is the cirrus/haze detection and removal (Richter et al., 2011b;
Louis et al., 2010). The Aerosol Optical Thickness (AOT) can be pre-
ferably derived from Dark Dense Vegetation (DDV) targets and water
bodies (Kaufman and Sendra, 1988). Water vapour retrieval over land is
performed using the Atmospheric Pre-corrected Differential Absorption
(ADPA) (Schläpfer et al., 1998). Sen2Cor is based on the libRadtran
radiative transfer model (Emde et al., 2016) which simulates a wide

Table 1
Sentinel-2 MSI band settings. Bands used in this experiment are bolded.

Band # B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12

Band center (nm) 443 490 560 665 705 740 783 842 865 945 1375 1610 2190
Band width (nm) 20 65 35 30 15 15 20 115 20 20 30 9 180
Spatial resolution (m) 60 10 10 10 20 20 20 10 20 60 60 20 20
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variety of atmospheric conditions, solar geometries and ground eleva-
tions. A pre-computed LUT based on this atmospheric model is used to
invert surface reflectance, using LUT interpolation to fill gaps in the
simulation. Other optional pre-processing steps are performed such as
correction for adjacency, topography and BRDF effects. Additionally,
the Lambertian surface assumption is applied (Richter et al., 2011a). All
the errors of L2A product related to measurements, modeling and as-
sumptions, in combination with error propagation, results in non-neg-
ligible uncertainties that can impact a further biophysical retrieval. L1C
and L2A products are made available to users via the Copernicus Open
Access Hub (SciHub). L2A can also be generated by the user from the
L1C product using the Sentinel-2 Toolbox or the standalone version of
the Sen2Cor processor. This offline processing allows the user to set
certain input parameters (Müller-Wilm, 2018), e.g. the type of aerosol
(rural and maritime), the type of atmosphere (mid latitude summer and
mid latitude winter) and the ozone concentration. In addition, there is
the option to enable the cirrus correction and the BRDF correction,
which are disabled by default. Whereas this mode allows the user to
adjust certain parameters of the atmospheric correction to the local
environment conditions, the product offered by ESA core through
Scihub is processed with the default values defined in the Sen2cor al-
gorithm (Clerc and team, 2020).

3. Materials and methods

Regarding the retrieval of LAI from S2 BOA and TOA data, we fol-
lowed the recently proposed methodology by Verrelst et al. (2019b). In
short, the hybrid retrieval strategy relies on GPR and VHGPR models
trained by simulations from PROSAIL at the canopy scale and from
PROSAIL-6SV at the atmosphere scale. Trained models are then applied
S2 to L2A (BOA) and L1C (TOA) data for LAI mapping and validation
with ground measurements. The following steps were necessary to
conduct the methodology: (1) generation of simulations (LUTs) with
PROSAIL and 6SV; (2) coupling of both LUTs to upscale to TOA ra-
diance; (3) training GPR and VHGPR models with simulations and
cross-validation; (4) validation with S2 data and ground measurements;
(5) mapping variables; and (6) comparison with LAI product coming
from the SNAP Biophysical Processor. A schematic overview of the
method is provided in Fig. 2, and key steps are detailed in the following
sections, starting with a description of the used Sentinel-2 data.

3.1. PROSAIL simulations

The PROSAIL simulations were produced by coupling PROSPECT-4
with SAIL within the ARTMO framework. The PROSPECT-4 and 4SAIL
input variables with their sampling range and distribution are shown in
Table 2. This parametrization is based on the measurements campaigns
and/or other studies which used the same crops (Rivera et al., 2013;
Verrelst et al., 2014; Verrelst et al., 2015b). Hot spot and solar/viewing
angles were fixed. LAI and Cab were 100 time sampled with Gaussian
distribution and the rest of variables were 10 times sampled with uni-
form distribution. LAI and Cab required to put more emphasis on the
values at the actual growth stages of the crops. The selected values of
illumination and viewing conditions agree with the satellite overpass
conditions. The combination of all input variables values would pro-
duce an unrealistic number of simulations of 1 billion. For that reason, a
smaller LUT was randomly chosen with 1000 reflectance realizations.
Since PROSAIL simulates reflectance from 400 nm to 2500 nm with a
1 nm spectral resolution the output spectra were resampled to the band
settings of S2 (Table 1) using the spectral response function provided by
the Ground Segment as from 15 January 2018 (ESA, 2018).

3.2. Noise model and added soil spectra

In order to improve the performance of the retrieval, ideally the
training database should be as similar as possible to real Sentinel-2

data. It implies to consider some uncertainties associate with sensor
measurement accuracy and data processing including radiometric ca-
libration, atmospheric and geometric corrections. These different
source of uncertainties can introduce additive and multiplicative errors
which can be band dependent (applied to a single band) and band in-
dependent (applied to all bands) (Verger et al., 2011). All these vari-
abilities and uncertainties were introduced in the simulated LUT based
on white Gaussian noise, according to the noise model provided in Eq.
(7) (Weiss et al., 2016):

= + + + +R R MD MI AD AI( ) ( ). 1 ( )
100

( )
(7)

where R( ) and R*( ) represent respectively the raw simulated re-
flectance for band and the reflectance with uncertainties for band .
MD and MI are the multiplicative wavelength dependent noise and the
multiplicative wavelength independent noise, respectively. AD and AI
are the additive wavelength dependent noise and the additive wave-
length independent noise. After some testing of additive and multi-
plicative noise, a value of 0.01 for AD and AI, and a value of 4% for MD
and MI were used for all the bands. Similar noise levels were success-
fully used in recent works (Upreti et al., 2019; Verrelst et al., 2019b),
trying to reduce the over-fitting on the MLRA training database.

Further, because PROSAIL is a vegetation canopy model and not
prepared to simulate variability in soil cover, reflectance spectra from
bare soil pixels were added to the PROSAIL simulations (Verrelst et al.,
2019b). A dataset of 30 distinct soil samples were visually identified
from the S2 L2A and L1C products (BOA and TOA), trying to collect the
more representative soil spectral signatures. Because these spectra came
from the image itself, no additional noise was added to it.

3.3. 6SV simulations and coupling

The role of the atmosphere was simulated using the 6SV code
(6SV2.1) (Kotchenova et al., 2006; Kotchenova and Vermote, 2007)
within the ALG framework. The model input variables (Table 3) were
set considering the experimental data conditions, similar to Verrelst
et al. (2019b). The distribution of the variables follows the Latin Hy-
percube Sampling (LHS) method. The atmospheric profile mode used
was Mid-Latitude Summer and the aerosol model selected was Con-
tinental. The geometric conditions of the canopy model PROSAIL were
preserved. Finally, this atmospheric simulation generates a LUT of 1000
samples. This LUT consists on pairs of transfer functions and atmo-
spheric parameters. The spectral range was limited to the S2 MSI
spectral configuration (Table 1), matching with PROSAIL simulations.

The original 1 nm sampling of PROSAIL surface simulations were
resampled by spline interpolation to the 2.5 nm sampling 6SV atmo-
spheric simulations. With this common spectral sampling, the surface
and atmospheric LUTs were randomly combined and propagated to
TOA radiance, following the Eq. (1) with the Lambertian surface as-
sumption. This step was conducted using ARTMO’s TOC2TOA toolbox,
which generate the TOA LUT consisting of pairs of radiance spectra and
associated vegetation-atmosphere parameters. Finally, ARTMO’s
TOC2TOA toolbox applied a convolution of this high-spectral resolution
TOA radiance by the S2 spectral response function.

3.4. Training the GPR LAI models, retrieval and cross-validation

The TOC LUT simulated with model PROSAIL and the TOA LUT
simulated with the combined PROSAIL-6SV models were used to train
GPR into LAI retrieval models applicable to S2 at the corresponding
BOA (L2A) and TOA (L1C) level. In order to assess the theoretical GPR
retrieval performance, a 5-fold cross-validation was performed. Three
goodness-of-fit metrics were calculated, being: (1) the root-mean-
squared error (RMSE), (2) the normalized RMSE (NRMSE in %) and (3)
the coefficient of determination (R2).
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3.5. Validation with ground measurements and Sentinel-2 data

3.5.1. Marchfeld site
Validation data was collected from an area located east of Vienna in

Lower Austria (Lat. 48°N, Long. 17°E). The site is a major agricultural
production area in Austria with cropland occupying 60,000 ha, of
which about 21,000 ha are irrigated regularly with groundwater
throughout the growing season (Neugebauer and Vuolo, 2014). The
region is characterized by a semi-arid climate representing the driest
region of Austria.

The field campaign took place from April to August 2016. Eight
different crop types, distributed over 72 parcels, were monitored to
represent the prevailing crop types in the study area (Vuolo et al.,
2018). The parcels include 33 ordinary fields and 39 one-hectare ex-
perimental plots. In-situ LAI measurements where collected with a Li-

Cor LAI-2200 Plant Canopy Analyzer (Li-Cor, 1992). The LAI-2200’s
sensor operates a non-destructive method and is sensitive to all light
blocking objects in its view. It estimates the LAI from the values of
canopy transmittance by identifying the attenuation of the radiation as
it passes through the canopy (Li-Cor, 1992). Therefore, measurements
were taken above- (A) and below-canopy (B). LAI estimates represent
the effective Plant Area Index (PAIe), because the optical sensor does
not distinguish between photosynthetically active leaves and inactive
parts of the plants such as senescent leaves or stems. Care was taken to
measure LAI only on photosynthetically active vegetation. For example,
measurements were interrupted on winter cereals as soon as the first
signs of senescence started to appear. The LAI-2200 was deployed in an
elementary sampling units (ESUs) using a radius of 5–10 m of a geor-
eferenced point (accuracy of ±3–5 m). Each unit represented a homo-
geneous area with a single crop type. The ESUs were randomly chosen

Fig. 2. Flowchart of the pursued work-flow. Divided into two levels: bottom-of-atmosphere (left) and top-of-canopy (right). A rounded rectangle represents an input
data/parameters, a normal rectangle represents a task/process, a rectangle with a curved bottom represents an intermediate output and a circle represents a final
output/result.
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from the study area, with the only restriction being the fields’ accessi-
bility for time restraints. For ordinary fields the centres of the ESUs
were placed in a corner of a squared area of 60 m by 60 m within the
field and measured from the field border. It was imperative that the

field conditions were relatively homogeneous in terms of crop devel-
opment. The ESUs located in the experimental plots, part of a larger
experimental setup, were located in the centre of each one-hectare plot.
Winter cereal, onion, and potato were assessed through three replica-
tions of one A and eight B measurements, randomly distributed in the
ESU. Row crops like maize, carrot and sugar beet were estimated with
four replications of one A and six B measurements, for a total of 24
single measurements to generate a single LAI value per ESU. The final
dataset of in situ collected LAI consists of 114 measurements and
complementary L1C radiance and L2A reflectance values extracted
from the satellite image data. The SNAP ”Reflectance-to-Radiance” tool
was used to convert L1C reflectance to radiance. Table 4 lists the sa-
tellite images and the corresponding dates of field measurements which
were used for the analysis.

3.5.2. Barrax site
As second test, the agricultural area Barrax, Spain, was chosen (Lat.

39°N, Long. −2°E). Although no field campaign has been conducted for
the last few years, this site was long used as reference for ESA field
campaigns in support of satellite missions (e.g., SPARC, SEN3EXP). The
Barrax agricultural area has a rectangular form and an extent of 5 km
by 10 km, and is characterized by a flat morphology and large, uniform
land-use units. The region consists of approximately 65% dry land and
35% irrigated land, mainly by center pivot irrigation systems. It leads to
a patchy landscape with large circular fields. Cultivated crops include
garlic, alfalfa, onion, sunflower, corn, potato, sugar beet, vineyard and
wheat. The annual rainfall average is about 400 mm.

3.6. Mapping and comparison with SNAP Biophysical Processor

As a final step, in order to evaluate the capability of the GPR and
VHGPR models to generate LAI maps, we used the trained models to
generate LAI maps from S2 images using ARTMO’s MLRA toolbox
(Rivera Caicedo et al., 2014). To do so, for both the Marchfeld and
Barrax sites, a cloud-free spatial subset of S2 L1C (TOA) and L2A (BOA)
imagery was used to evaluate the retrieval performance at both TOA
and BOA scale. For Marchfeld an acquisition during the field campaign
(2 July 2016) was used, while for Barrax a more recent acquisition was
used (5 June 2017). The average SZA values were 30° and 20° respec-
tively for Marchfeld and Barrax. A RGB of the subsets are shown in
Fig. 3. For Barrax site the L2A product was directly downloaded from
Scihub. For Marchfeld site, since the image is not available at level 2A
for this acquisition date in the Scihub, the L1C subset was processed
offline using Sen2Cor Atmospheric Correction Processor (version 2.5.5)
to perform the L2A reflectance. For this atmospheric correction the
default parameters of the Sen2Cor algorithm were used (Clerc and
team, 2020). Only the 10 m and 20 m bands were used from S2 images,
being the bands 2 to 8, 8a, 11, and 12. The images were resampled to
20 m and for both sites a spatial subset of 400 by 400 pixels was se-
lected.

Lastly, the generated LAI maps were compared against the maps
generated with the Biophysical Processor of SNAP software (Weiss

Table 2
Ranges, values and distributions of input variables used to establish the syn-
thetic canopy reflectance database for use in the LUT. x̄ : mean, SD: standard
deviation.

Model variables Units Range Distribution

Leaf variables: PROSPECT-4
N Leaf structure index unitless 1.3–2.5 Uniform
Cab Leaf chlorophyll

content
[µg/cm2] 5–75 Gaussian (x̄ : 35, SD:

30)
Cm Leaf dry matter

content
[g/cm2] 0.001–0.03 Uniform

Cw Leaf water content [cm] 0.002–0.05 Uniform
Canopy variables: 4SAIL
LAI Leaf area index [m2/m2] 0.1–7 Gaussian (x̄ : 3, SD: 2)

soil Soil scaling factor unitless 0–1 Uniform
ALA Average leaf angle [°] 40–70 Uniform
HotS Hot spot parameter [m/m] 0.01 –
SZA Sun zenith angle [°] 30 –
VZA View zenith angle [°] 0 –
RAA Relative azimuth angle [°] 0 –

Table 3
Range of 6SV input variables used for the simulations of the atmospheric
transfer functions.

Model variables Units Minimum Maximum

O3C O3 Column concentration [amt-cm] 0.25 0.35
CWV Columnar water vapor [g cm 2] 0.4 4.5
AOT Aerosol optical thickness unitless 0.05 0.5
SZA Sun zenith angle [°] 30 –
VZA View zenith angle [°] 0 –
RAA Relative azimuth angle [°] 0 –

Table 4
Satellite acquisition and ground measurements dates from April to September
2016 for Marchfeld campaign.

Date-Ground
Measurements

Date-Satellite
Acquisition

Difference (Days)

13 April 13 April 0
18 April 13 April 5
25 April 26 April 1
2 May 6 May 4
9 May 6 May 3
27–28 June 25 June 3
4–5 July 2 July 3
16 August 14 August 2
31 August 31 August 3
12 September 10 September 3

Fig. 3. RGB composition of Sentinel-2 MSI over Marchfeld, Austria (left) and Barrax, Spain (right).
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Fig. 4. General statistics (mean, standard deviation (SD), min–max) for the bare soil spectra collected from S2-L2A product and vegetation spectra simulated with
PROSAIL (left) for the 10 and 20 m S2 bands. The same data has been upscaled to TOA radiance with 6SV (right).

Fig. 5. Measured vs. estimated LAI values along the 1:1-line with associated confidence intervals (1 SD). Ground validation of several crops over Marchfeld site for
GPR (left) and VHGPR (right) for retrieval S2-L2A (BOA) data (top) and S2-L1C (TOA) data (bottom).
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et al., 2016). In SNAP, the retrieval of LAI is based on a NN model and is
built on earlier experience for other ESA land missions (Weiss et al.,
2016). This model is also trained with a PROSAIL LUT. The variables
range and distributions established for the LUT were similar to the ones
we assumed in PROSAIL (Table 2). Although ESA recommends to use
this tool with TOC reflectance data, we also use TOA reflectance data to
generate the maps for comparison purposes.

4. Results

4.1. GPR LAI models and validation against field data

Before assessing the validity of the trained GPR and VHGPR models,
first inspection of the training data is provided. RTM simulations were
run both by PROSAIL, which led to TOC reflectance, and by PROSAIL-
6SV, which led to upscaled TOA radiance data. Because empirical soil
spectra was added to the training data to account for the non-vegetated
surfaces, overview statistics of both simulated vegetated spectra and
bare soil spectra are shown in Fig. 4. The figures at TOC and TOA scales
demonstrate that a large variability of vegetation and soil profiles are
covered in the training dataset. This is essential to process a complete
S2 image, including all kinds of non-vegetated surfaces. These datasets
form the core of the LAI retrieval algorithms applied to S2 BOA and
TOA images.

Following the above-described processing scheme (Fig. 2), GPR and
VHGPR models were trained with the TOC and TOA training datasets
for the development of LAI retrieval models. A first step was to evaluate
the theoretical performances of the trained GPR and VHGPR models. A
5-k cross-validation sampling strategy was applied to assess the

theoretical goodness-of-fit of the models. Both models showed good and
consistent performances at BOA and TOA scale. At BOA scale, GPR
obtained a slightly superior accuracy with a R2 of 0.59 (RMSE: 1.08;
NRMSE: 15.50%) than VHGPR, with a R2 of 0.58 (RMSE: 1.09; NRMSE:
15.68%). Results were basically identical at the TOA scale yet some-
what poorer than at BOA scale: GPR with a R2 of 0.54 (RMSE: 1.14;
NRMSE: 16.30%), and VHGPR with a R2 of 0.54 (RMSE: 1.14; NRMSE:
16.35%). That the TOA retrieval performed somewhat inferior was
expected because of the additional variability introduced into the LUT
by means of the coupling with the atmosphere simulations. Yet, the
retrieval performances are similar to the TOC dataset, and it reveals the
consistency of the LAI retrieval method from TOA radiance data. For
both datasets, the added noise and saturation at higher LAI values ex-
plain the sub-optimal results, however what matters is the perfor-
mances against ground validation data.

Regarding validation against field data, the Marchfeld dataset was
used. For both BOA and TOA data and for GPR and VHGPR models, the
measured vs. estimated scatter plots are shown in Fig. 5, along with the
goodness-of fit statistics. For both GPR and VHGPR, the validation re-
sults do not suggest differences between the BOA and TOA scale for the
various crop types. This is of interest, as it suggests that the retrieval
models function just as well at both scales. It underlines the possibility
of retrieving LAI directly from TOA radiance data. Conversely, valida-
tion results were slightly superior obtained by VHGPR as opposed to
GPR. These results suggest that VHGPR delivers superior accuracies;
e.g. the underestimations are smaller as opposed to GPR. An advantage
of GP models is that associated uncertainty estimates (confidence in-
tervals) are provided. As can be observed, all estimates are accom-
panied with a consistent uncertainty range. Here an additional

Fig. 6. LAI map (mean estimates; µ) (left), associated uncertainties (expressed as standard deviation (SD) around the µ) (center), and relative uncertainties
(expressed as coefficient of variation (CV = SD/µ × 100 in %) (right) as generated by VHGPR algorithm from L2A (top) and L1C (middle) data for Marchfeld test
site. Scatter plots of both maps with gridded color density (bottom). In case of %CV a maximum of 100% is set.
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advantage of VHGPR appeared: it provided lower uncertainties, espe-
cially at lower LAI. Hence, VHGPR models were used for further
mapping applications. Finally, when inspecting further the estimations
for the different crop types, all crops were reasonably well estimated.
Only, it can be observed that onion showed a systematic under-
estimation. Most likely for this row crop the influence of bare soil plays
a large role at the pixel scale, leading to the underestimation.

4.2. LAI mapping from S2 BOA (L2A) and TOA (L1C) data

Because of the adequate validation of the LAI retrieval models at the
S2 BOA and TOA scale, the subsequent step is applying the VHGPR
models to the S2 subsets for mapping. The obtained LAI maps as gen-
erated for both BOA and TOA data products of the two subsets are
shown in Fig. 6 (Marchfeld) and Fig. 7 (Barrax).

For both test sites, the obtained maps are realistic and represent well
the spatial variation of the surface. Regarding Marchfeld (Fig. 6), a
clear distinction can be made between green fields with high LAI and
fields with crops that are either senescent or where crop have been
harvested with LAI close to zero. Regarding Barrax, the irrigated cir-
cular agricultural fields can be identified on the maps with their within-
field variation. On the other hand, non-vegetated areas are estimated
with LAI values close to zero. When comparing the LAI maps extracted
at BOA and TOA scale, the spatial distribution and the LAI range appear
alike, which suggests the possibility of retrieving LAI directly from TOA
radiance data. Probably the high correlation between BOA and TOA can
be better appreciated in the scatter plot for Marchfeld site (R2 = 0.95)

in the bottom of Fig. 6 and in the scatter plot for Barrax site (R2 = 0.99)
in the bottom of Fig. 7. The similarity between BOA and TOA maps
suggests that LAI can be retrieved directly from TOA radiance data, i.e.
without the need of an atmospheric correction.

As an advantage of the GPR and VHGPR models, because of de-
veloped in a Bayesian framework, apart from the LAI estimates also
associated uncertainty maps are provided. Two uncertainty outputs are
calculated: absolute uncertainties expressed as standard deviation (SD)
around the mean estimate and relative uncertainties (%CV = SD/mean
estimate × 100). These maps provide additional information about the
performance of the retrieval models on a per-pixel basis. Accordingly,
the consistency across the BOA and TOA scales can be inspected.

In the associated uncertainties maps, low SD values over vegetated
areas indicate high certainties, while high values (light blue and
yellow) indicate less certainties. Low values over non-vegetated areas
appear because of the close-to-zero LAI values for bare soils or senes-
cent fields. A few areas with high uncertainties can be seen in the maps
in red (especially for the Barrax site), belonged to surfaces not included
in the LUTs, e.g. man-made surfaces. The uncertainty maps can be
useful to reveal areas that need more representativeness in the training
data set (Verrelst et al., 2015b). Generally the BOA and TOA un-
certainty maps are consistent. The BOA map showed some more areas
with slightly higher SD values than TOA map, i.e. higher uncertainties.
This was expected for BOA due to the errors involved in its complex
pre-processing step, as we explained earlier in Section 1. The scatter
plot of BOA vs TOA confirms again the consistency between both pro-
ducts (R2 of 0.91 for Marchfeld and R2 of 0.96 for Barrax). Although not

Fig. 7. LAI map (mean estimates; µ) (left), associated uncertainties (expressed as standard deviation (SD) around the µ) (center), and relative uncertainties
(expressed as coefficient of variation (CV = SD/µ × 100 in %) (right) as generated by VHGPR algorithm from L2A (top) and L1C (middle) data for Barrax test site.
Scatter plots of both maps with gridded color density (bottom). In case of %CV a maximum of 100% is set.
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shown, the SD uncertainties obtained from the original GPR model were
systematically higher, which confirms that VHGPR leads to higher
quality maps as opposed to GPR.

While the SD map is related to the magnitude of LAI, the relative
uncertainty as calculated by the coefficient of variation (CV) is probably
easier to interpret, as it is a relative estimate expressed in percentage.
When inspecting this map for Marchfeld, it can be observed that the
BOA map led substantial more parcels with low uncertainties than the
TOA map. Nevertheless, the regions with high uncertainties are over
parcels with close to zero LAI. The same occurs over Barrax: the irri-
gated vegetated areas are retrieved with low uncertainties, while the
bare soils are retrieved with high uncertainties. This is the result of both
very low LAI estimates, which is correct, but they are associated with
absolute uncertainties of 1 or higher, as such resulting in high un-
certainties. Hence, it is not that the estimates are out-of-range, it is
rather that the estimates are accompanied with high uncertainties.
Typically, adding more bare soil estimates to the training data, ac-
counting for local variability, would further reduce the uncertainties.
The regions with out-of-range values cause to break down the corre-
lation of the scatter plot. Yet, the large majority of pixels fell precisely
on the 1:1-line, again suggesting the consistency of both maps. It must
also be remarked that the CV map as obtained from the GPR models led
to substantially more areas with high values (not shown).

4.3. Comparison against LAI maps obtained from SNAP NN model

A final step involves comparison against the official LAI product as
can be obtained from the ESA’s SNAP toolbox. Hence, the SNAP bio-
physical processor, based on an NN model, was used to generate the LAI
maps for both BOA and TOA scale over the Marchfeld and Barrax sites.
The obtained LAI maps are provided in Fig. 8 (Marchfeld) and Fig. 9
(Barrax). At a glance, the SNAP map looks similar to the above map as
generated by VHGPR; the same patterns are obtained, and LAI esti-
mations seem alike. However, when comparing the BOA map against
VHGPR in a scatter plot, it can be observed that SNAP clearly over-
estimates some vegetated parcels. This is especially the case for Barrax,
with unrealistic LAI values up to above 20. See also the scatter plots.

Also the LAI maps look alike when obtained from TOA radiance data
(L1C). Interestingly, at this level the SNAP NN model does not suffer
from extreme overestimation. Despite the overestimation of NN at BOA
scale, it should be mentioned that the SNAP biophysical processor also
generates quality indicators per pixel. The indicators show when the
input reflectances are outside the training definition domain. Also the
indicator is flagged when the output value is outside the LAI range,
defined by SNAP with a maximum, being 8, a minimum and a tolerance
value. Hence, when the estimation is beyond 8, it is flagged as out-of-
range.

Probably an easier way to interpret the differences between the
SNAP NN and VHGPR models may be by mapping the relative errors.
For both BOA and TOA relative error maps are shown in Fig. 8
(Marchfeld) and Fig. 9 (Barrax). The white areas indicate no change
within a 20% difference. Dark blue and red shades indicate large re-
lative differences. For both the Marchfeld and Barrax sites, blue colors
(i.e., underestimation) predominate. These parcels appear over low LAI
values, i.e., parcels with influence of bare soil. When comparing both
maps, it appears that the SNAP NN model does not reach zero values
over senescent or non-vegetated surfaces. This suggests that the NN
model is not optimized to estimate 0 values in case vegetation is absent
or no longer green.

5. Discussion

Building on the hybrid retrieval processing strategy earlier proposed
in Verrelst et al. (2019b), in this work we developed LAI retrieval
models applicable to S2 BOA (L2A) and TOA (L1C) data using Gaussian
processes (GPs). These GP models can then be applied to S2 images for
the operational production of LAI maps. In this context, while demon-
strating that the TOA retrieval approach can be developed using a hy-
brid method based on coupled vegetation-atmosphere RTMs and GP
models is one thing, what was left to be done was assessing the ro-
bustness and the maturity of the retrieval models. This was done as
follows. First the retrieval models were validated against ground mea-
surements, then the mapping performances were tested over two Eur-
opean agricultural sites, and finally the maps were compared against

Fig. 8. LAI map obtained with SNAP (left), scatter plot (center) and relative error map (right) between VHGPR (Fig. 6) and SNAP NN estimations from L2A (BOA)
data (top) and L1C (TOA) data (bottom) for Marchfeld test site. For visualization purposes, the LAI color bar was limited to. a maximum of 7.

J. Estévez, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 289–304

299



the official S2 LAI product. The obtained validation results and con-
sistency of the generated maps confirmed that biophysical variables
such as LAI can be meaningfully retrieved directly from at-sensor ra-
diance data. Here we discuss the multiple aspects of the retrieval
strategy, starting with the chosen variable.

The reason to focus on LAI retrieval from TOA radiance data was
motivated by an earlier conducted leaf-canopy-atmosphere global sen-
sitivity analysis (GSA) (Verrelst et al., 2019b). According to those GSA
results, LAI is the most dominant variable that drives the variability of
TOA radiance along the visible-SWIR spectral range, followed by leaf
chlorophyll and water content (Verrelst et al., 2019b). The good vali-
dation results obtained at the TOA scale were to be expected; the TOA-
based GSA results indicated that – outside the water absorption regions
and the blue region – the vegetation variables drive TOA radiance much
more than atmospheric variables (Verrelst et al., 2019b). Moreover, the
used S2 bands are conveniently located in the spectral regions where
LAI plays a dominant role, especially in the red and SWIR bands (B11 at
1610 nm and B12 at 2190 nm). The S2 band settings exploit efficiently
the spectral information because according to the GSA results it is in
these two SWIR bands where LAI is mostly driving, with about 80% of
the total sensitivity (STi) (Verrelst et al., 2019b). At the same time, the
influence of the atmosphere in the visible part can introduce some error
in both the TOA and BOA retrieval. While in principle at the BOA scale
atmospheric correction takes care of it, in TOA retrieval, the idea is that
the influence of the atmosphere in the visible is accounted for directly
in the retrieval model.

In an attempt to figure out the role of S2 band positions, we revised
the used S2 bands with respect to LAI retrieval performance. Related
studies used similar S2 band settings in LAI model development but
with one or two bands less. For instance Verrelst et al. (2019b) used 9
bands excluding B8, and Upreti et al. (2019) used 8 bands by excluding
B2 and B8. To clarify the contribution of the bands, we conducted si-
milar tests using 8, 9 and 10 bands in the LAI retrieval algorithms.
Validation results showed insignificant differences in the retrieval
performance (results not shown), which suggests that using one band
more or less will not impact the results. Another aspect is that our
validation results at BOA level conducted with GPR (RMSE: 0.70) and

VHGPR (RMSE: 0.63) are consistent with the related work of Upreti
et al. (2019), who found a similar performance using least-squares
linear regression (RMSE: 0.68) and GPR with active learning (RMSE:
1.31). In comparison to the latter case, we obtained superior validation
results without implementing an active learning strategy. At the same
time, the reason for a good validation may as well lie in the good
quality of the validation data; with over 100 ground measurements
covering multiple crop types it is a rich dataset. It is also worth men-
tioning that we did not encounter related S2 studies that provide LAI
validation results at the TOA scale, implying that the conducted BOA vs
TOA intercomparison is probably the more informative. To sum up, the
consistent validation results and also the similar estimations for all crop
types at each scale support that the pursued hybrid retrieval method
works at both TOA and BOA scales.

Apart from the targeted variable and selected bands, a key factor of
the hybrid model is the specific GP algorithm used, i.e. GPR and
VHGPR. Both flavors of GP models achieved consistent performances in
LAI estimation with both BOA and TOA data. The small but systematic
superiority by VHGPR over GPR can be explained by its more flexible
nature accounting for signal-to-noise relations. Unlike GPR, VHGPR
does not assume that the noise is independent of the signal. When ob-
serving the information of uncertainties offered by these methods, we
can appreciate how VHGPR yields consistently lower uncertainties than
GPR at low LAI values. We hypothesize that VHGPR adjusts better to
the noise conditions at low levels of the variable due to its hetero-
scedastic characteristic. Although VHGPR takes somewhat longer
training time than GPR (roughly twice as much, see Lázaro-Gredilla and
Titsias, 2011; Camps-Valls et al., 2016), mapping run-time are on the
same order for both algorithms, which suggests that training time
should not be an obstacle to prefer VHGPR over GPR for achieving
lower uncertainties and higher accuracy.

Having grip on the data and retrieval model, the essence of this
work was to explore how well LAI can be retrieved directly from TOA
data. Although the obtained results at BOA and TOA scale are con-
sistent, it is not escaping our attention that the TOA validation results
slightly outperformed those of BOA. It can be argued that retrieving
from BOA data is probably a more complex approach due to the

Fig. 9. LAI map obtained with SNAP (left), scatter plot (center) and relative error map (right) between VHGPR (Fig. 7) and SNAP NN estimations from L2A (BOA)
data (Top) and L1C (TOA) data (Bottom) for Barrax test site. For visualization purposes, the LAI color bar was limited to a maximum of 7.
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multiple steps involved in the processing to convert the L1C product
into L2A. In addition to the uncertainties introduced by the hybrid LAI
retrieval algorithm, the atmospheric correction carried out with the
Sen2Cor procedure can introduce residual errors in the L2A product
that are propagated in the biophysical variables retrieval. Among the
elements that can affect the atmospheric correction accuracy of the
Sen2Cor algorithm involve the atmospheric effects (i.e., Rayleigh and
aerosol scattering effects) on the TOA data across the spectrum, parti-
cularly in the visible bands (Martins et al., 2017). In this respect, Sola
et al. (2018), Doxani et al. (2018) compared the role of alternative
atmospheric correction algorithms (6SV, ACOLITE and Sen2Cor). The
authors reported diverging performances with respect to location,
spectral band and land cover. These sensitivities suggest that atmo-
spheric correction is not that straightforward, and can easily influence
the resulting BOA reflectance. Also Djamai and Fernandes (2018) sug-
gested that more research is required to quantify the impact of different
atmospheric correction algorithms on biophysical variables retrieval.

The here proposed alternative approach, i.e. developing retrieval
models directly at the TOA scale, seems to simplify the problem. Yet
likewise challenges appear, although probably less than at BOA scale.
First of all, a bright, cloud-free atmosphere is assumed, as was the case
in the two demonstration sites. It must be remarked that the TOA
models have not yet been tested in case of hazy conditions, so a bright
sky is a requirement. Notwithstanding, the observed moderate dis-
crepancies between BOA and TOA against the ground validation require
further explanation; they may be attributed to the use of different RTMs
for the atmospheric simulation and for the TOA data preprocessing.
While 6SV is used to generate the training data set, the S2 TOA re-
flectance-to-radiance conversion in SNAP is done with routines based
on libRadtran using the solar irradiance spectrum from Thuillier
(Thuillier et al., 2003). Further work should ensure consistency among
the atmospheric models used to simulate the training dataset as well as
the preprocessing of real TOA data. This can be easily done in the ALG-
TOC2TOA packages. For instance, new TOA LUTs can be generated
with different atmospheric RTMs for comparison purposes. PROSAIL
can be kept as the vegetation model that has proven to be suitable for
generating the training dataset, while distinct atmospheric models can
be applied to perform the atmospheric correction of the TOA product,
e.g. 6SV, libRadtran, MODTRAN. Another research task would be to
enable TOC2TOA to generate TOA reflectance spectra instead of TOA
radiance spectra so that retrieval can use directly the provided S2 TOA
reflectance product.

Once the VHGPR model is trained, in principle it can be applied to
any S2 image for LAI mapping, such as here demonstrated over two
agricultural sites. The consistency among the TOA and BOA scale and
the low deviation shown in the uncertainty maps confirm the good
performance of the VHGPR models. The uncertainty maps are a valu-
able addition as opposed to other retrieval methods: it model provides
information about the per-pixel performance and thus portability of the
VHGPR model (Verrelst et al., 2013b). For instance, the model can be
applied to any S2 image as long as the uncertainties stay within a
certain threshold. On the other hand, the uncertainty maps could also
be used as a spatial mask to show only the pixels that meet a minimum
level of confidence (Verrelst et al., 2015a). For example, the pixels
below 20% of relative certainties can be discarded, as such meeting the
recommendation of the GCOS for the minimum LAI quality (GCOS,
2011). Moreover, the models were performing more consistent than the
SNAP NN model. As opposed to the NN-derived maps, more close-to-
zero values were achieved for non-vegetated surfaces, while over-
estimations over dense vegetation did not occur. In the SNAP NN
model, estimations above a LAI of 8 are flagged by additional quality
layers as out-of-range, which can thus also be masked out. When
comparing both approaches, the VHGPR-produced uncertainty esti-
mates seem more valuable than threshold-based quality flags as an in-
dependent and quantitative source of information about the model
performance (Verrelst et al., 2013b; Verrelst et al., 2015a).

It must also be remarked that, although LAI was successfully esti-
mated over agricultural areas, it remains necessary to test and validate
the models over other vegetation types typically present in a S2 image,
such as forest and more heterogeneous areas. The estimations will most
likely be poorer, as the models are not optimized for these vegetation
types. Complementary training data is therefore required, e.g. coming
from RTMs that are better equipped to simulate more heterogeneous
vegetation types such as forest or shrubland. At the same time, the maps
show higher levels of uncertainty over non-vegetation surfaces (such as
bare soil, man-made surfaces) than over vegetation zones. The re-
ference soil spectra extracted directly from the images would be lim-
iting when moving beyond local conditions. In order to be more gen-
erically applicable, instead of extracting the soil spectra directly from
the images, an idea is to implement reference soil data set that re-
present a large variation of soil types, moisture, roughness and geo-
metrical configuration (Jacquemoud et al., 1992; Weidong et al., 2002).
From this database a small subset of field measured spectra could be
implemented that does not significantly increase the size of the LUT but
that represents well the variability of the soil making the retrieval
model more global (Weiss et al., 2016). The diversity of soil properties
can be further increased by applying the concept of brightness. The
brightness coefficient can multiply the reflectance values of the soil in
order to reach a better soil representation (Verger et al., 2011). In case
the soil spectra is too smooth, the implemented noise model should also
be applied to these soil spectra. Additionally, the models are currently
not trained for water bodies and man-made surfaces. It would be either
a matter of adding such spectra (e.g., USGS database (Kokaly et al.,
2017) or ECOSTRESS spectral library (Meerdink et al., 2019)) to the
training dataset or otherwise masking out those non-vegetated surfaces.

Finally, in view of moving beyond the here presented results and
with ambition to obtain consistent LAI retrievals across the globe, op-
timally trained and robust models are required. To achieve this, a fine
tuning of PROSAIL and 6SV was conducted to ensure that the LUTs
represent the most variable conditions possible for a cloudless agri-
cultural scene. For the vegetation variables, Gaussian distributions ap-
plied to LAI and Cab were appropriate to represent the vegetation
conditions in spring and summer. This allowed to concentrate the
maximum information on the most characteristic LAI and Cab values
for those dates. However, the lower representativeness at the extremes
of the ranges may contribute to the underestimation and overestimation
observed in the extreme LAI values. This configuration focused for a
period of the year might limit the global application of the model. In
order to mitigate these limitations, a common approach is to distribute
better the variable along the range, even if this generates an increment
in the size of the LUT that complicates the (VH)GPR training process
and affects the efficiency of the retrieval (Verrelst et al., 2016a). Re-
garding the development of the LUTs for training, several modifications
can be introduced that may lead to improved or more robust models.
For instance, various PROSAIL and 6SV parameters were kept fixed,
such as the hot-spot and the sun-target sensor geometry in order to
facilitate the coupling between the vegetation and atmospheric RTMs.
Also the validity of the Lambertian surface assumption might have to be
revised, and more advanced TOA couplings taking into account surface
anisotropy (Verhoef and Bach, 2003; Verhoef and Bach, 2007; Bayat
et al., 2020; Yang et al., 2020) might lead to more accurate vegetation
properties retrievals. However, adding more variables to the LUT makes
the training more difficult and may deteriorate the retrieval perfor-
mance. To deal with the growth of the LUT, reduction strategies such as
active learning (Pasolli et al., 2012) can be used, which has been de-
monstrated to be superior to random sampling, improving retrieval
accuracy with lower sampling rates (Verrelst et al., 2016a; Upreti et al.,
2019). Another option is to use sample distributions that reflect reality
more, e.g., normal or log-normal distributions for key variables
(Verrelst et al., 2019b). Global processing applications of the methods
presented here should take into account the variability in the illumi-
nation conditions along the orbit and acquisition time. Rather than
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being an independent variable, the illumination conditions should be
taken as an additional source of information for the retrieval, which
could be included as an additional band for training the statistical
model. Several of these LUT optimization aspects have been studied and
implemented in the SNAP NN model, which led to a large and opti-
mized LUT (41472 simulations with 2/3 used for training) (Weiss et al.,
2016). However, the validation of the NN model against the same
Marchfeld field data yielded only a slightly better performance at the
BOA scale (R2 of 0.83) (Vuolo et al., 2016) than reported in this study
(R2 of 0.80). The here presented (VH)GPR models made use of about
1000 samples, which is considerably less than what is used in the SNAP
NN model. Hence, LUT size is not a key factor for the (VH)GPR model;
in fact large training datasets make the model unnecessary heavy and
slow. What matters is the quality of the training data, which eventually
boils down to seek for an optimized threshold between realism, di-
versity and keeping it manageable.

As a closing remark, although in this work the focus was on LAI
retrieval from S2, it must be emphasized that essentially any hybrid
retrieval model can be developed for any kind of TOA radiance data
with the developed ALG-ARTMO software framework. For instance,
that can be achieved with other leaf-canopy-atmosphere RTMs combi-
nations or other machine learning regression algorithms. Future work
will be dedicated to the retrieval of other vegetation and atmosphere
variables and from other sensors, such as Sentinel-3. The software
framework can be downloaded at http://artmotoolbox.com/. Code
snippets and demos for both GPR, VHGPR and other machine learning
regression algorithms are available from https://isp.uv.es/soft_
regression.html.

6. Conclusions

This study aimed to develop LAI retrieval models directly from
Sentinel-2 (S2) top-of-atmosphere (TOA) radiance data (L1C product).
To do so, a hybrid machine learning regression approach was developed
by making use of simulations from leaf-canopy-atmosphere radiative
transfer models (RTMs). The coupled PROSAIL-6S RTMs were used to
simulate a look-up table (LUT) of TOA radiance data and associated
input variables. This LUT was then used to train the Bayesian algo-
rithms Gaussian processes regression (GPR) and variational hetero-
scedastic GPR (VHGPR). Similarly, PROSAIL simulations were used to
train GPR and VHGPR models for LAI retrieval from S2 images at BOA
level (L2A product) for comparison purposes. The LAI products were
adequately validated at TOA and BOA scale against a field dataset ac-
quired at the agricultural site Marchfeld (Austria). The VHGPR model
was further used for LAI mapping because of delivering superior ac-
curacies and lower uncertainties. Obtained LAI maps over the agri-
cultural sites Marchfeld and Barrax (Spain) from a S2 BOA and TOA
subset were alike. A similar degree of consistency was obtained when
comparing the obtained LAI maps against the SNAP LAI products at
BOA and TOA scale. Associated uncertainty maps supported the spatial
consistency.

Altogether, this study demonstrated that hybrid LAI retrieval
models can be developed directly from TOA radiance data given a
cloud-free sky, thus without the need of atmospheric correction. It is
expected that in future hybrid retrieval models will be developed for a
diversity of vegetation properties operated from TOA radiance data.
The development of such hybrid retrieval models can be easily achieved
within the ALG-ARTMO software framework.

Declaration of Competing Interest

None.

Acknowledgements

This work was supported by the European Research Council (ERC)
under the ERC-2017-STG SENTIFLEX project (grant agreement 755617)
and Ramón y Cajal Contract (Spanish Ministry of Science, Innovation
and Universities). Gustau Camps-Valls was supported by the European
Research Council (ERC) under the ERC-CoG-2014 SEDAL project (grant
agreement 647423). We thank the two anonymous reviewers for their
constructive suggestions to improve the quality of our paper.

References

Bacour, C., Baret, F., Béal, D., Weiss, M., Pavageau, K., 2006. Neural network estimation
of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data:
Principles and validation. Remote Sens. Environ. 105, 313–325.

Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., Smets, B.,
2013. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time
series capitalizing over existing products. Part1: Principles of development and
production. Remote Sens. Environ. 137, 299–309.

Bayat, B., van der Tol, C., Verhoef, W., 2020. Retrieval of land surface properties from an
annual time series of Landsat TOA radiances during a drought episode using coupled
radiative transfer models. Remote Sens. Environ. 238, 110917.

Berger, K., Atzberger, C., Danner, M., D’Urso, G., Mauser, W., Vuolo, F., Hank, T., 2018.
Evaluation of the prosail model capabilities for future hyperspectral model en-
vironments: A review study. Remote Sens. 10.

Berk, A., Anderson, G., Acharya, P., Bernstein, L., Muratov, L., Lee, J., Fox, M., Adler-
Golden, S., Chetwynd, J., Hoke, M., Lockwood, R., Gardner, J., Cooley, T., Borel, C.,
Lewis, P., Shettle, E., 2006. MODTRANTM5: 2006 update.

Camps-Valls, G., Sejdinovic, D., Runge, J., Reichstein, M., 2019. A Perspective on
Gaussian Processes for Earth Observation. Natl. Sci. Rev. 6, 616–618.

Camps-Valls, G., Verrelst, J., Munoz-Mari, J., Laparra, V., Mateo-Jimenez, F., Gomez-
Dans, J., 2016. A Survey on Gaussian Processes for Earth-Observation Data Analysis:
A Comprehensive Investigation. IEEE Geosci. Remote Sens. Magaz. 4, 58–78.

Clerc, S., team, M., 2020. Level 2A Data Quality Report S2 MPC. Technical Report. ESA.
Djamai, N., Fernandes, R., 2018. Comparison of SNAP-Derived Sentinel-2A L2A Product

to ESA Product over Europe. Remote Sens. 10, 926.
Doxani, G., Vermote, E., Roger, J.C., Gascon, F., Adriaensen, S., Frantz, D., Hagolle, O.,

Hollstein, A., Kirches, G., Li, F., Louis, J., Mangin, A., Pahlevan, N., Pflug, B.,
Vanhellemont, Q., 2018. Atmospheric Correction Inter-Comparison Exercise. Remote
Sens. 10, 352.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B.,
Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F.,
Bargellini, P., 2012. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES
Operational Services. Remote Sens. Environ. 120, 25–36.

Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J.,
Richter, B., Pause, C., Dowling, T., Bugliaro, L., 2016. The libradtran software
package for radiative transfer calculations (version 2.0.1). Geoscient. Model Develop.
9, 1647–1672.

ESA, 2018. Sentinel-2 Spectral Response Functions (S2-SRF), v3.0, Ref.: COPE-GSEG-
EOPG-TN-15-0007. Technical Report. European Space Agency (ESA).

Fang, H., Baret, F., Plummer, S., Schaepman-Strub, G., 2019. An Overview of Global Leaf
Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 57,
739–799.

Fang, H., Liang, S., 2003. Retrieving leaf area index with a neural network method:
Simulation and validation. IEEE Trans. Geosci. Remote Sens. 41, 2052–2062.

Feret, J.B., François, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P.R., Ustin, S.L.,
le Maire, G., Jacquemoud, S., 2008. PROSPECT-4 and 5: Advances in the leaf optical
properties model separating photosynthetic pigments. Remote Sens. Environ. 112,
3030–3043.

Fourty, T., Baret, F., 1997. Vegetation water and dry matter contents estimated from top-
of-the-atmosphere reflectance data: a simulation study. Remote Sens. Environ. 61,
34–45.

Gao, B.C., Montes, M.J., Davis, C.O., Goetz, A.F., 2009. Atmospheric correction algo-
rithms for hyperspectral remote sensing data of land and ocean. Remote Sens.
Environ. 113, S17–S24.

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V.,
Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B.,
Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De
Bonis, R., Isola, C., Martimort, P., Fernandez, V., Gascon, F., Bouzinac, C., Thépaut,
O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-
Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J.,
Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De Bonis, R., Isola, C., Martimort, P.,
Fernandez, V., 2017. Copernicus Sentinel-2A Calibration and Products Validation
Status. Remote Sens. 9, 584.

GCOS, G., 2011. Systematic Observation Requirements for Satellite-Based Products for
Climate, 2011 Update, Supplemental Details to the Satellite-Based Component of the
Implementation Plan for the Global Observing System for Climate in Support of the
UNFCCC (2010 update, GCOS-154).

Jacquemoud, S., Baret, F., Hanocq, J.F., 1992. Modeling spectral and bidirectional soil
reflectance. Remote Sens. Environ. 41, 123–132.

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P., Asner, G., François,
C., Ustin, S., 2009. PROSPECT + SAIL models: A review of use for vegetation

J. Estévez, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 289–304

302

http://artmotoolbox.com/
https://isp.uv.es/soft_regression.html
https://isp.uv.es/soft_regression.html
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0005
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0005
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0005
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0010
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0010
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0010
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0010
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0015
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0015
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0015
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0020
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0020
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0020
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0030
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0030
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0035
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0035
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0035
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0045
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0045
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0050
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0050
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0050
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0050
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0055
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0055
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0055
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0055
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0060
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0060
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0060
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0060
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0070
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0070
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0070
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0075
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0075
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0080
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0080
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0080
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0080
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0085
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0085
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0085
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0090
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0090
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0090
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0095
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0095
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0095
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0095
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0095
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0095
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0095
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0095
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0095
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0105
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0105
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0110
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0110


characterization. Remote Sens. Environ. 113, S56–S66.
Kaufman, Y., Sendra, C., 1988. Algorithm for automatic atmospheric corrections to visible

and near-IR satellite imagery. Int. J. Remote Sens. 9, 1357–1381.
Kokaly, R., Clark, R., Swayze, G.A., Livo, K., Hoefen, T., Pearson, N., Wise, R., Benzel, W.,

Lowers, H., Driscoll, R., Klein, A., 2017. USGS Spectral Library Version 7, volume
1035 U.S. Geological Survey, Reston, VA.

Kotchenova, S., Vermote, E., Matarrese, R., Klemm Jr., F., 2006. Validation of a vector
version of the 6S radiative transfer code for atmospheric correction of satellite data.
part I: Path radiance. Appl. Opt. 45, 6762–6774.

Kotchenova, S.Y., Vermote, E.F., 2007. Validation of a vector version of the 6S radiative
transfer code for atmospheric correction of satellite data. Part II. Homogeneous
Lambertian and anisotropic surfaces. Appl. Opt. 46, 4455–4464.

Laurent, V., Verhoef, W., Clevers, J., Schaepman, M., 2011a. Estimating forest variables
from top-of-atmosphere radiance satellite measurements using coupled radiative
transfer models. Remote Sens. Environ. 115, 1043–1052.

Laurent, V., Verhoef, W., Clevers, J., Schaepman, M., 2011b. Inversion of a coupled ca-
nopy-atmosphere model using multi-angular top-of-atmosphere radiance data: A
forest case study. Remote Sens. Environ. 115, 2603–2612.

Laurent, V., Verhoef, W., Damm, A., Schaepman, M., Clevers, J., 2013. A Bayesian object-
based approach for estimating vegetation biophysical and biochemical variables from
APEX at-sensor radiance data. Remote Sens. Environ. 139, 6–17.

Laurent, V.C., Schaepman, M.E., Verhoef, W., Weyermann, J., Chávez, R.O., 2014.
Bayesian object-based estimation of LAI and chlorophyll from a simulated Sentinel-2
top-of-atmosphere radiance image. Remote Sens. Environ. 140, 318–329.

Lauvernet, C., Baret, F., Hascoët, L., Buis, S., Le Dimet, F.X., 2008. Multitemporal-patch
ensemble inversion of coupled surface–atmosphere radiative transfer models for land
surface characterization. Remote Sens. Environ. 112, 851–861.

Lázaro-Gredilla, M., Titsias, M.K., 2011. Variational heteroscedastic Gaussian process
regression. In: ICML, pp. 841–848.

Lázaro-Gredilla, M., Titsias, M.K., Verrelst, J., Camps-Valls, G., 2013. Retrieval of bio-
physical parameters with heteroscedastic Gaussian processes. IEEE Geosci. Remote
Sens. Lett. 11, 838–842.

Lenoble, J., Herman, M., Deuzé, J., Lafrance, B., Santer, R., Tanré, D., 2007. A successive
order of scattering code for solving the vector equation of transfer in the earth’s
atmosphere with aerosols. J. Quant. Spectrosc. Radiat. Transf. 107, 479–507.

Li-Cor, I., 1992. LAI-2000 plant canopy analyzer instruction manual. LI-COR Inc., Lincoln,
Nebraska, USA.

Louis, J., Charantonis, A., Berthelot, B., 2010. Cloud detection for Sentinel-2. In:
Proceedings of ESA Living Planet Symposium, ESA/ESRIN, Bergen, Norway.

Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Mueller-Wilm, U., Gascon, F., 2017.
Sen2Cor for Sentinel-2.

Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M., Garcia, J.C.a-Santos, G., Fernandes,
R., Berger, M., 2012. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions
for scientific observations of ocean, cryosphere, and land. Remote Sensing of
Environment 120, 91–101.

Martins, V., Barbosa, C., de Carvalho, L., Jorge, D., Lobo, F., Novo, E., 2017. Assessment
of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon
Floodplain Lakes. Remote Sens. 9, 322.

Mayer, B., Kylling, A., 2005. The libRadtran software package for radiative transfer cal-
culations-description and examples of use. Atmos. Chem. Phys. 5, 1855–1877.

Meerdink, S.K., Hook, S.J., Roberts, D.A., Abbott, E.A., 2019. The ecostress spectral li-
brary version 1.0. Remote Sens. Environ. 230, 111196.

Mousivand, A., Menenti, M., Gorte, B., Verhoef, W., 2014. Global sensitivity analysis of
the spectral radiance of a soil–vegetation system. Remote Sens. Environ. 145,
131–144.

Mousivand, A., Menenti, M., Gorte, B., Verhoef, W., 2015. Multi-temporal, multi-sensor
retrieval of terrestrial vegetation properties from spectral-directional radiometric
data. Remote Sens. Environ. 158, 311–330.

Müller-Wilm, U., 2018. Sen2Cor Configuration and User Manual. Technical Report. ESA.
Neugebauer, N., Vuolo, F., 2014. Crop Water Requirements on Regional Level using

Remote Sensing Data–A Case Study in the Marchfeld Region Berechnung des
Pflanzenwasserbedarfs für Sommerfeldfrüchte mittels Fernerkundungsdaten. Eine
Fallstudie in der Marchfeld-Region. Photogrammetrie-Fernerkundung-
Geoinformation 2014, 369–381.

Pasolli, E., Melgani, F., Alajlan, N., Bazi, Y., 2012. Active learning methods for biophy-
sical parameter estimation. IEEE Trans. Geosci. Remote Sens. 50, 4071–4084.

Prikaziuk, E., van der Tol, C., 2019. Global Sensitivity Analysis of the SCOPE Model in
Sentinel-3 Bands: Thermal Domain Focus. Remote Sensing 11, 2424.

Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine Learning. The
MIT Press, New York.

Richter, R., Louis, J., Niezette, M., Quality, C.D., Manager, A., 2011a. Sentinel-2 MSI-
Level 2A Products Algorithm Theoretical Basis Document. Technical Report.

Richter, R., Wang, X., Bachmann, M., Schläpfer, D., 2011b. Correction of cirrus effects in
Sentinel-2 type of imagery. Int. J. Remote Sens. 32, 2931–2941.

Rivera, J., Verrelst, J., Leonenko, G., Moreno, J., 2013. Multiple cost functions and reg-
ularization options for improved retrieval of leaf chlorophyll content and LAI through
inversion of the PROSAIL model. Remote Sens. 5, 3280–3304.

Rivera Caicedo, J., Verrelst, J., Muñoz-Marí, J., Moreno, J., Camps-Valls, G., 2014.
Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE
J. Select. Top. Appl. Earth Observ. Remote Sens. 7, 1249–1259.

Schläpfer, D., Borel, C., Keller, J., Itten, K., 1998. Atmospheric Precorrected Differential
Absorption Technique to Retrieve Columnar Water Vapor. Remote Sens. Environ. 65,
353–366.

Shi, H., Xiao, Z., Liang, S., Ma, H., 2017. A method for consistent estimation of multiple
land surface parameters from MODIS top-of-atmosphere time series data. IEEE Trans.
Geosci. Remote Sens. 55, 5158–5173.

Shi, H., Xiao, Z., Liang, S., Zhang, X., 2016. Consistent estimation of multiple parameters
from MODIS top of atmosphere reflectance data using a coupled soil-canopy-atmo-
sphere radiative transfer model. Remote Sens. Environ. 184, 40–57.

Sola, I., García-Martín, A., Sandonís-Pozo, L., Álvarez-Mozos, J., Pérez-Cabello, F.,
González-Audícana, M., Montorio Llovería, R., 2018. Assessment of atmospheric
correction methods for Sentinel-2 images in Mediterranean landscapes. Int. J. Appl.
Earth Obs. Geoinf. 73, 63–76.

Suykens, J., Vandewalle, J., 1999. Least squares support vector machine classifiers.
Neural Process. Lett. 9, 293–300.

Svendsen, D., Martino, L., Camps-Valls, G., 2020. Active Emulation of Computer Codes
with Gaussian Processes – Application to Remote Sensing. Pattern Recogn. 100, 1–12.

Thompson, D., Guanter, L., Berk, A., Gao, B.C., Richter, R., Schläpfer, D., Thome, K.,
2019. Retrieval of atmospheric parameters and surface reflectance from visible and
shortwave infrared imaging spectroscopy data. Surv. Geophys. 40, 333–360.

Thuillier, G., Hersé, M., Foujols, T., Peetermans, W., Gillotay, D., Simon, P., Mandel, H.,
et al., 2003. The solar spectral irradiance from 200 to 2400 nm as measured by the
SOLSPEC spectrometer from the ATLAS and EURECA missions. Sol. Phys. 214, 1–22.

Upreti, D., Huang, W., Kong, W., Pascucci, S., Pignatti, S., Zhou, X., Ye, H., Casa, R., 2019.
A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat
Biophysical Variables from Sentinel-2. Remote Sens. 11, 481.

Verger, A., Baret, F., Camacho, F., 2011. Optimal modalities for radiative transfer-neural
network estimation of canopy biophysical characteristics: Evaluation over an agri-
cultural area with CHRIS/PROBA observations. Remote Sens. Environ. 115, 415–426.

Verhoef, W., 1984. Light scattering by leaf layers with application to canopy reflectance
modeling: The SAIL model. Remote Sens. Environ. 16, 125–141.

Verhoef, W., Bach, H., 2003. Simulation of hyperspectral and directional radiance images
using coupled biophysical and atmospheric radiative transfer models. Remote Sens.
Environ. 87, 23–41.

Verhoef, W., Bach, H., 2007. Coupled soil–leaf-canopy and atmosphere radiative transfer
modeling to simulate hyperspectral multi-angular surface reflectance and TOA ra-
diance data. Remote Sens. Environ. 109, 166–182.

Vermote, E., Tanré, D., Deuzé, J., Herman, M., Morcrette, J.J., 1997. Second simulation of
the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote
Sens. 35, 675–686.

Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., Moreno, J., 2012a. Retrieval of
vegetation biophysical parameters using Gaussian process techniques. IEEE Trans.
Geosci. Remote Sens. 50, 1832–1843.

Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J., Camps-Valls, G., Moreno, J.,
2012b. Machine learning regression algorithms for biophysical parameter retrieval:
Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 118, 127–139.

Verrelst, J., Romijn, E., Kooistra, L., 2012c. Mapping vegetation density in a hetero-
geneous river floodplain ecosystem using pointable CHRIS/PROBA data. Remote
Sens. 4, 2866–2889.

Verrelst, J., Alonso, L., Rivera Caicedo, J., Moreno, J., Camps-Valls, G., 2013a. Gaussian
process retrieval of chlorophyll content from imaging spectroscopy data. IEEE J.
Select. Top. Appl. Earth Observ. Remote Sens. 6, 867–874.

Verrelst, J., Rivera, J., Moreno, J., Camps-Valls, G., 2013b. Gaussian processes un-
certainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content re-
trieval. ISPRS J. Photogram. Remote Sens. 86, 157–167.

Verrelst, J., Rivera, J., Leonenko, G., Alonso, L., Moreno, J., 2014. Optimizing LUT-Based
RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from
Sentinel-2 and -3 Data: Role of Cost Functions. IEEE Trans. Geosci. Remote Sens. 52
(1), 257–269.

Verrelst, J., Camps Valls, G., Muñoz Marí, J., Rivera, J., Veroustraete, F., Clevers, J.,
Moreno, J., 2015a. Optical remote sensing and the retrieval of terrestrial vegetation
bio-geophysical properties - A review. ISPRS J. Photogram. Remote Sens. 108,
273–290.

Verrelst, J., Rivera, J.P., Veroustraete, F., Muñoz-Marí, J., Clevers, J.G., Camps-Valls, G.,
Moreno, J., 2015b. Experimental Sentinel-2 LAI estimation using parametric, non-
parametric and physical retrieval methods – A comparison. ISPRS J. Photogram.
Remote Sens. 108, 260–272.

Verrelst, J., Dethier, S., Rivera, J.P., Munoz-Mari, J., Camps-Valls, G., Moreno, J., 2016a.
Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval. IEEE
Geosci. Remote Sens. Lett. 13, 1012–1016.

Verrelst, J., Rivera, J.P., Gitelson, A., Delegido, J., Moreno, J., Camps-Valls, G., 2016b.
Spectral band selection for vegetation properties retrieval using gaussian processes
regression. Int. J. Appl. Earth Obs. Geoinf. 52, 554–567.

Vicent, J., Verrelst, J., Rivera-Caicedo, J., Sabater, N., Munoz-Mari, J., Camps-Valls, G.,
Moreno, J., 2018. Emulation as an accurate alternative to interpolation in sampling
radiative transfer codes. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 11,
4918–4931.

Verrelst, J., Malenovský, Z., van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.P.,
Lewis, P., North, P., Moreno, J., 2019a. Quantifying vegetation biophysical variables
from imaging spectroscopy data: A review on retrieval methods. Surv. Geophys.
1–41.

Verrelst, J., Vicent, J., Rivera-Caicedo, J.P., Lumbierres, M., Morcillo-Pallarés, P.,
Moreno, J., 2019b. Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs:
Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance
Data. Remote Sens. 11.

Vicent, J., Verrelst, J., Sabater, N., Alonso, L., Rivera-Caicedo, J.P., Martino, L., Muñoz-
Marí, J., Moreno, J., 2020. Comparative analysis of atmospheric radiative transfer
models using the atmospheric look-up table generator (alg) toolbox (version 2.0).
Geoscientific Model Development 13.

Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., Ng, W.T., 2018. How much does
multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth
Observ. Geoinform. 72, 122–130.

J. Estévez, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 289–304

303

http://refhub.elsevier.com/S0924-2716(20)30185-4/h0110
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0115
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0115
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0120
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0120
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0120
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0125
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0125
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0125
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0130
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0130
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0130
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0135
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0135
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0135
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0140
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0140
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0140
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0145
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0145
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0145
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0150
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0150
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0150
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0155
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0155
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0155
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0160
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0160
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0165
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0165
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0165
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0170
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0170
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0170
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0175
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0175
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0195
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0195
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0195
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0200
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0200
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0205
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0205
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0210
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0210
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0210
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0215
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0215
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0215
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0230
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0230
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0235
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0235
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0240
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0240
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0250
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0250
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0255
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0255
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0255
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0260
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0260
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0260
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0265
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0265
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0265
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0270
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0270
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0270
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0275
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0275
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0275
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0280
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0280
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0280
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0280
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0285
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0285
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0290
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0290
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0295
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0295
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0295
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0300
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0300
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0300
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0305
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0305
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0305
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0310
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0310
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0310
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0315
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0315
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0320
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0320
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0320
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0325
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0325
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0325
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0330
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0330
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0330
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0335
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0335
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0335
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0360
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0360
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0360
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0385
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0385
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0385
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0340
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0340
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0340
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0370
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0370
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0370
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0365
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0365
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0365
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0365
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0345
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0345
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0345
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0345
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0380
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0380
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0380
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0380
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0350
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0350
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0350
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0375
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0375
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0375
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0395
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0395
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0395
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0395
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0355
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0355
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0355
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0355
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0390
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0390
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0390
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0390
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0405
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0405
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0405


Vuolo, F., Żółtak, M., Pipitone, C., Zappa, L., Wenng, H., Immitzer, M., Weiss, M., Baret,
F., Atzberger, C., 2016. Data Service Platform for Sentinel-2 Surface Reflectance and
Value-Added Products: System Use and Examples. Remote Sens. 8.

Weidong, L., Baret, F., Xingfa, G., Qingxi, T., Lanfen, Z., Bing, Z., 2002. Relating soil
surface moisture to reflectance. Remote Sens. Environ. 81, 238–246.

Weiss, M., Baret, F., 2016. S2ToolBox Level 2 products: LAI, FAPAR, FCOVER, Version 1.
1, in: ESA Contract nr 4000110612/14/I-BG (p. 52). INRA Avignon, France.

Weiss, M., Jacob, F., Duveiller, G., 2020. Remote sensing for agricultural applications: A

meta-review. Remote Sens. Environ. 236, 111402.
Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., Xie, D., Zhang, W., 2019. Review of

indirect optical measurements of leaf area index: Recent advances, challenges, and
perspectives. Agric. Forest Meteorol. 265, 390–411.

Yang, P., van der Tol, C., Yin, T., Verhoef, W., 2020. The SPART model: A soil-plant-
atmosphere radiative transfer model for satellite measurements in the solar spectrum.
Remote Sens. Environ. 247, 111870.

J. Estévez, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 289–304

304

http://refhub.elsevier.com/S0924-2716(20)30185-4/h0410
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0410
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0410
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0415
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0415
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0425
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0425
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0430
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0430
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0430
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0435
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0435
http://refhub.elsevier.com/S0924-2716(20)30185-4/h0435

	Gaussian processes retrieval of LAI from Sentinel-2 top-of-atmosphere radiance data
	Introduction
	Theoretical framework top-of-canopy and top-of-atmosphere simulations for retrieval
	Leaf, canopy and atmosphere RTMs: PROSAIL and 6SV
	Gaussian process regression
	Heteroscedastic Gaussian process regression
	Sentinel-2 satellite measurements

	Materials and methods
	PROSAIL simulations
	Noise model and added soil spectra
	6SV simulations and coupling
	Training the GPR LAI models, retrieval and cross-validation
	Validation with ground measurements and Sentinel-2 data
	Marchfeld site
	Barrax site

	Mapping and comparison with SNAP Biophysical Processor

	Results
	GPR LAI models and validation against field data
	LAI mapping from S2 BOA (L2A) and TOA (L1C) data
	Comparison against LAI maps obtained from SNAP NN model

	Discussion
	Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References




