

ARTMO's new Machine Learning Regression Algorithms (MLRA) module for mapping biophysical parameters

Jochem Verrelst, Juan Pablo Rivera, Jordi Muñoz-Mari, Jose Moreno, Gustavo Camps-Valls

Outlook

- Background
 - Biophysical parameter retrieval
 - Nonparametric regression for retrieval of biophysical parameters
 - ARTMO

MLRA toolbox

- MLRAs
- MLRA settings
- Results tests
- Retrievals
- Multi-output
- Coupling with RTMs
- Conclusions

Basics biophysical parameter retrieval

Retrieval of biophysical parameters from optical EO data **always occurs through a model**; e.g. through **statistical models**, through **inversion** of physically-based **radiative transfer models** (RTM), or through **hybrid forms**.

Jochem.verrelst@uv.es – Earsel ISW

Parametric – Nonparametric – Physicallybased inversion

- Parametric regression: Some constraints introduced
- Nonparametric regression: No constraints in developing models
- Physically-based approaches: Inversion of RTMs using parametric or nonparametric inversion techniques (i.e., *hybrid forms*).

Nonparametric regression is a form of regression analysis in which the predictor **does not take a predetermined form** but is constructed according to information derived from the data. Nonparametric regression requires larger sample sizes than regression based on parametric models because the data must supply the model structure as well as the model estimates.

Nonparametric regression based on machine learning algorithms:

- Linear transformations: PCR, PLS
- Non-linear transformations: NN, GPR, KRR, SVR.

Nonparametric regression

Pros 😊

- Powerful
- Relatively fast
- Additional features
- Multi-output

Cons 😕

- Portability?
- Black-box (for the majority)
- Difficult to use

Operational retrieval of biophysical parameters

• Neural networks coupled with RTMs widely used but face limitations: black box, unstable, difficult and slow in training.

- The ability of NN to process hyperspectral data?
- Towards new generation of MLRA regressors for operational use.

Input, output and metadata stored in MySQL running underneath.

MLRA toolbox

Jochem.verrelst@uv.es – Earsel ISW

Implemented MLRAs

Gaussian Processes Regression (GPR)

- 😊 Robust regressor
- Transparent: provides insight in relevant bands and samples
- Provides addtional confidences
- Bifficulty with many training samples, e.g. > 2000

Linear nonparametric regressors:

- Linear regression (LR)
- Partial least squares regression (PLS)

Alternative regressors are planned to be added: PCR, LASSO

Kernel ridge

 $\begin{array}{c} \underline{\zeta} \\ \underline$

- Robust regressor
- Cather fast
- 8 Prone to outliers

- Bobust regressor
- Ability to detect complex nonlinear relationships
- Once trained, fast in applying to images
- 8 Lack of transparency
- 8 prone to overfitting
- Computational demanding in the training phase

Support vector regression (SVR)

- Robust regressor
- Robust to outliers
- Provides some information through support vectors
- 8 Computational demanding

MLRA settings

🣣 gui_m	od_mla06	
Class:	Full image	If active, configure per
	- MLA Settings-	land cover class.
	Select MLA approaches	
	1 Gaussians Processes Regression	
	2 Kernel ridge Regression	📔 🔰 Select a MLRA
	3 Linear Regression	
	4 Neural Network	
	5 Partial least squares regression	
	Parameter Gaussian Noise [0-100%] 0 🔲 Range	Options to add noise
	Spectral Gaussian Noise 10 100%1	
	RTM data [0-100%] ———— USER data [0-100%] ———	
		A Ontion to mix DTM with
	Only train Only test Only train Only test	field data
	Wavelength Settings	
	ID Select Model % informa	
	1 Band: 1 📝 410.5600 0	Option to select hands (manually or
	2 Band: 2 📝 441.3700 0	
	3 Band: 3 📝 451.2400 0	automatically through mutual
	4 Band: 4 📝 460.8600 0	information: band with most
	5 Band: 5 📝 471.0500 0	information first)
	All Ranking Clear all	
	Finished	

Data:

SPARC campaign, Barrax, Spain

Field data:

- LCC measured with CCM-200
- LAI measured with LiCor LAI-2000

Spectral data:

- CHRIS mode 1 (62 bands; 34m) nadir spectra
- HyMap (5 m resolution;
- 125 bands ; 450-2500 nm

Jochem.verrelst@uv.es – Earsel ISW

9/4/13

Results test

Jochem.verrelst@uv.es - Earsel ISW

9/4/13

LCC – User data (SPARC - CHRIS)

MLRA	Spectral noise [%]	training [%]	RMSE	NRMSE [%]	R2
Kernel ridge Regression	0	95	0.97	1.89	0.998
Gaussians Processes Regression	0	90	1.03	2.02	0.997
Neural Network	6	90	1.50	2.95	0.995
Linear Regression	0	95	2.71	5.31	0.988
Partial least squares regression	10	95	2.90	5.69	0.991

DÖVALÈNCIA Laboratorio de Procesado de Imágenes

10 12 14 16 18

0

LR poor, only suitable with high training.

0.8

07

ີ້ 0.5

0.4

0.3

0.2

0.1

0

- **PLS somewhat better**, but not excellent performances. Needs noise. •
- **NN behaves erratic**: can lead to good performances but unstable.
- KKR: Excellent performances, very robust. •
- GPR: Excellent performances, robust.

35

30

15

LAI – User data (SPARC - CHRIS)

NN

12 14 16 18 20

MLRA	Spectral noise [%]	training [%]	RMSE	NRMSE [%]	R2
Kernel ridge Regression	0	90	0.15	2.75	0.99
Neural Network	0	90	0.19	3.42	0.99
Gaussians Processes Regression	0	90	0.22	3.98	0.99
Partial least squares regression	10	95	0.21	5.55	0.99
Linear Regression	2	90	0.36	6.65	0.96

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

6 8 10 12 14 16 18 20

spect noise

LR

DÖVALÈNCIA Laboratorio de Procesado de Imágenes

- **LR poor**, only acceptable with high training.
- **PLS somewhat better**, but not excellent performances. Needs noise. ٠
- **NN behaves erratic**: can lead to good performances but unstable.
- KKR: Excellent performances, very robust.
- GPR: Excellent performances, robust.

30

KRR

0.9

0

Retrieval

🛃 gui_mod_mla09	🔟 🦵 Manual options
Retrieval configuration	
Select class Inversion Parameter MLR algorithm Full_image Image Image Image Parameter Gaussian Noise [0-100%] 0 Spectral Gaussian Noise [0-100%] 0	Options to select land cover class, parameter and algorithm.
RTM data [0-100%] USER data [0-100%] Train Only train Only test Delete selected Delete all Class Parameter MLRA spect_no param_n.	Options to add noise, select user/RTM and train/test data distribution.
1 Full_image LAI Kernel ridge Regression 20	Selected strategies, from above or imported from earlier test.
Select class Parameter Full_image LAI Select bands OK	Plotting options

Case studies:

- Applying GPR to images because of additional features LCC
- The same SPARC-trained model has been applied to various CHRIS images.
- Also HyMap data was processed

Portability SPARC-trained GPR model

Barrax Jul 03

CHRIS

LCC

Barrax Jul 04

Barrax Aug 09

Tablas Aug 09

Demmin May 06

Relative uncertainty

Absolute uncertainty

σ

CV: $\frac{\sigma}{\mu}$

SPARC – HyMap - LCC

Regressor	Training [%]	RMSE	NRMSE	R2
Gaussians Processes Regression	80	1.73	3.51	0.99
Kernel ridge Regression	80	2.31	4.71	0.99
Neural Network	80	2.71	5.51	0.98
Partial least squares regression	80	8.16	16.61	0.90
Linear Regression	80	23.21	47.23	0.05

Note that PLS performs considerably poorer. GPR insight in relevant bands

GPR mean estimates, uncertainties and relative uncertainties

SPARC – HyMap - LAI

Regressor	Training [%]	RMSE	NRMSE	R2
Neural Network	80	0.28	5.24	0.96
Gaussians Processes Regression	80	0.30	5.66	0.95
Kernel ridge Regression	80	0.37	6.95	0.93
Partial least squares regression	80	0.67	12.59	0.80
Linear Regression	80	2.72	51.10	0.19

Uncertainties poorer; both over vegetated and non-vegetated surfaces.

9/4/13

📣 Multi-outpul

Multi-output CHRIS-SPARC

Full image							
- MLRA Settings							
Select MLRA approaches							
2 Neurel Network							
3 Partial least squares regression							
Parameter Gaussian Noise [0-100%] 0 🗖 Range							
Spectral Gaussian Noise [0-100%] 0 🗖 Range							
RTM data [0-100%] USER data [0-100%]							
Train Image Image Image Image Image Image Image Image Image Image Image Image Image							
-Wavelength Settings							
ID Select Model % informat							
1 Band: 1 🔽 410.5600 0							
2 Band: 2 🔽 441.3700 0							
3 Band: 3 🔽 451.2400 0							
4 Band: 4 🔽 460.8600 0							
5 Band: 5 🔽 471.0500 0							
6 Bandt 6 🔽 481 8000 0							
All Ranking Clear all							
Finished							

Faster but not
necessarily better.

	LCC				LAI	
MLRA	RMSE	NRMSE	R2	RMSE	NRMSE	R2
KRR	4.06	7.96	0.96	0.36	6.43	0.96
NN	3.93	7.70	0.96	0.51	9.06	0.92
PLS	8.26	16.21	0.83	0.60	10.59	0.90

5

4

3

2

1

Coupling RTM (PROSAIL) with MLRAs

Training: 10000 random simulations; Validation: SPARC dataset (without bare soil)

Coupling so far unsuccessful:

DÖVALÈNCIA Laboratorio de Procesado de Imágenes

- Difficulties to deal with large training samples
- Poor matching: noise needed to enable matching with real data
- Results poor: better configurations needed
- NN rather unstable
- GPR best performing

Regressor	Training [%]	Noise [%]	RMSE	NRMSE	R2
Neural Network	12	16	0.89	16.24	0.78
Partial least squares regression	16	10	0.97	17.62	0.76
Gaussians Processes Regression	4	13	1.03	18.76	0.62
Linear Regression	20	4	1.06	19.37	0.70
Kernel ridge Regression	18	7	2.15	39.15	0.16

Jochem.verrelst@uv.es – Earsel ISW

9/4/13

Conclusions

- Nonparametric regressors powerful retrieval algorithms. They easily outperform parametric regressors (e.g. VI-based).
- PLS not most powerful. MLRA such as NN, KRR and GPR were best evaluated.
- GPR a Bayesian regressor; insight in relevant bands and provides uncertainties.
- MLRA toolbox developed in ARTMO that guides the user through all necessary processing steps.
- Coupling RTMs with MLRAs possible, but further efforts needed to make it successful.

Thanks

Availability

ARTMO is work in progress - beta version

- Accessible at Valencia University under our supervision.
- Matlab programmers are encouraged to write their own apps. In turn, a copy can be given.
 - Atmospheric models
 - BRDF apps
 - Temporal domain
 - classifiers
- Public available after publication (will take some time so far unsuccessful)

