

Recent advances in biophysical parameter retrieval methods – opportunities for Sentinel-2

J. Verrelst*, J.P. Rivera, G Camps- Valls & J. Moreno Image Processing Laboratory (IPL), University of Valencia, Spain

*Jochem Verrelst **Image Processing Laboratory** University of Valencia, Spain Jochem.verrelst@uv.es

1. Introduction

New retrieval algorithms for Sentinel-2

The Copernicus Sentinel-2 (S2) satellite missions are designed to provide globally-available information on an operational basis for services and applications related to land. S2 is configured with improved spectral capabilities. Also improved and robust algorithms for biophysical parameter retrieval are demanded. This work present an overview of state-of-the-art retrieval methods dedicated to the quantification of terrestrial biophysical parameters. The rationale of all these methods is that spectral observations are in a way related to the parameters of interest. In all generality, retrieval methods can be categorized into three families: (i) parametric regression, (ii) non-parametric regression, and (iii) Inversion methods.

We have recently developed retrieval modules within the **ARTMO toolbox** that provide a suite of methods of these three families. As such, consolidated findings can be achieved about which type of retrieval method is most accurate, robust and fast.

2. Data & Experimental setup

Ground truth data:

SPARC dataset (Barrax, Spain): **103 LAI points** over various crop types and phenological stages.

Simulated Sentinel-2 observations:

- **HyMap** flight line acquired during SPARC.
- **Resampled to Sentinel-2 settings**.

Band #	B1	B2	B3	B4	B5	B6	B7	B8	B8a	B9	B10	B11	B12
Band center (nm)	443	490	560	665	705	740	783	842	865	945	1375	1610	2190
Band width (nm)	20	65	35	30	15	15	20	115	20	20	30	90	180
Spatial resolution (m)	60	10	10	10	20	20	20	10	20	60	60	20	20

Experimental setup:

- Only S2 bands of 10 m (coarse-grained to 20 m) and 20 m were used (10 bands).
- 50% of data (ground truth & associated S2 spectra) for training (Spectral Indices, MLRA) and **50% for**

6. Conclusions

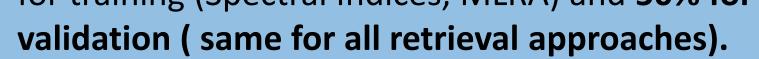
With view of biophysical parameters retrieval (e.g. LAI) from Sentinel-2 (20 m), three families of biophysical parameter retrieval methods have been systematically analyzed against the same validation dataset (SPARC, Barrax, Spain). Users typically require an accuracy with relative errors below 10%. It led to the following conclusions:

Parametric - Spectral Indices: All 2-, 3- and 4-band combinations according to normalized difference (ND) have been analyzed. A 4-band index with bands in SWIR was best performing, but the 10% error was not reached (NRMSE: 16.0%; R2: 0.79). Most critically, the absence of uncertainty estimates makes this method cannot be considered as reliable. Fast mapping (1s.).

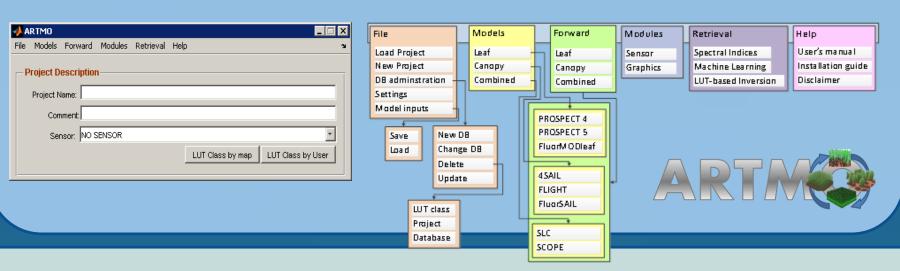
Nonparametric – MLRAs: These are powerful and also fast regressors. Several yielded high accuracies with errors below 10% (KRR, GPR, VHGPR, ELR)! Particularly GPR (NRMSE: 8.2; R²: 0.91) is of interest as it delivers insight in relevant bands and

Objective:

To evaluate systematically 3 families of biophysical parameter retrieval methods for improved LAI estimation by using a local dataset (SPARC) and simulated S2 observations.



Comparison through goodness-of-fit measures: R², RMSE, NRMSE



associated uncertainties. Hence, unreliable retrievals (e.g. <20%) can be masked out. Fast mapping (7s.).

LUT-based Inversion: A PROSAIL LUT of 100000 simulations has been prepared and various cost functions and regularization options were applied. Best cost functions performed on the same order as best 2-band SIs (16.6%; R2: 0.76). Because inverted against a LUT table pixel-by-pixel, biophysical parameter mapping went unacceptably slow (> 25h.).

ND 3-band

3. (i) Parametric regression: Spectral Indices - LAI

ARTMO's *Spectral Indices* (SI) module:

Load images & cl	ass Input	SI Settings	Test SIs	Retrieval	Tools	Ŷ
Load Image & Class	Input	SI setting	Test SIs	Retrieval	Tools	
Load Image	RTM data]	Load test		Save	
Load Class	User data		New test		Load	
					Test database	
	Select pr	oject			Add spectra	al index
	Edit setti	ngs			Add functio	n fittin
					View map	
					Rename	
				-	Delete	

In the *Spectral Indices* module the predictive power of all posible 2-, 3- or 4-band combinations according to an Index formulation (e.g. simple ratio (SR), normalized difference (ND)) to a biophysical parameter can be evaluated.

Applied SI formulations:

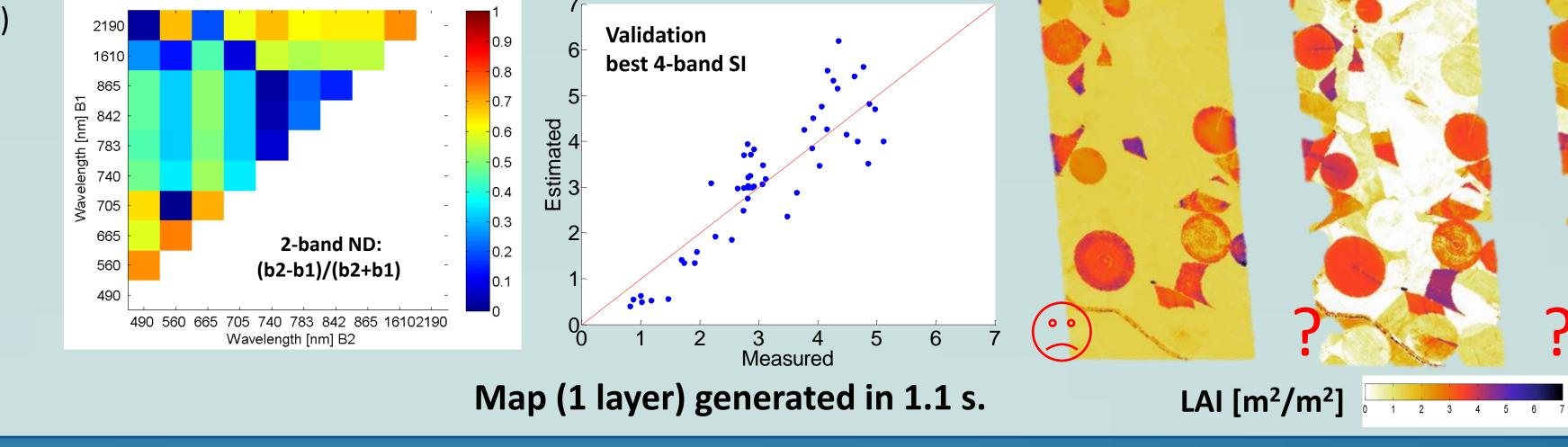
- 2-band SIs:
 - **SR (B2/B1)** (10² combinations)
 - **ND (B2-B1)/(B2+B1)** (10² combinations)

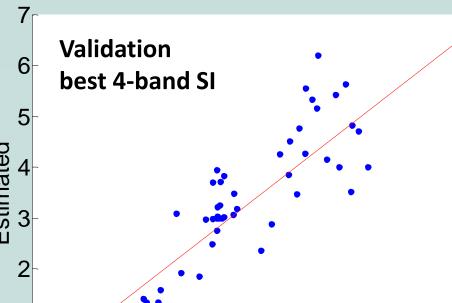
Very fast: 0.004 sec per SI model (11200 SI models in 42.8 s.)

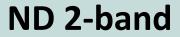
Best validated SIs (**50% validation data**) ranked according to R²:

SI formulation	Best band combination (B1, B2, B3, B4)	RMSE	NRMSE	R ²
ND 4-bands: (b2-b1)/(b3+b4)	560, 2190, 1610, 1610	0.69	16.01	0.79
ND 3-bands: (b2-b1)/(b2+b3)	560, 2190, 740	0.70	16.74	0.79
ND 2-bands: (b2-b1)/(b2+b1)	665 <i>,</i> 560	0.76	16.86	0.74
SR 2-bands: (b2/b1)	665 <i>,</i> 560	0.77	20.36	0.74

A 4-band SI with bands in green and SWIR best validated. Green and red led to best 2-band index.







GPR

Relative

[%]

- ND 3-band (B2-B1)/(B2+B3) (10³ combinations)
- ND 4-band (B2-B1)/(B3+B4) (10⁴ combinations) A Linear regression was applied.

4. (*ii*) Nonparameteric regression: Machine learning regression algorithms (MLRAs) - LAI

ARTMO's *Machine Learning Regression Algorithms* (MLRA) module:

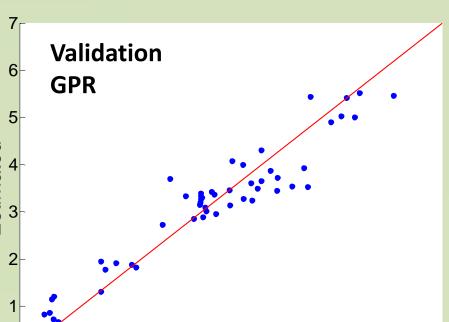
📣 Machine Learning Regression Algorithms Module								
Load images & class Input MLRA Settings Test MLRAs Retrieval Tools 🛥								
Load Image & Class	Input	MLRA setting	Test MLRAs	Retrieval	Tools			
Load Image	RTM data	Single-output	Load test		Save			
Load Class	User data	Multi-output	New test		Load			
					Test database			
	Select pr	oject			View maps			
	Edit setti	ings			Settings			
					Rename			
					Delete			

- More than 10 MLRAs have been implemented, e.g. neural nets (NN), kernel ridge regression (KRR), Gaussian Processes regression (GPR), principal component regression (PCR), partial least squares regression (PLSR), regression trees (RT) -(http://www.uv.es/gcamps/code/simpleR.html).
- Options to add noise and partitionate training-validation are provided.

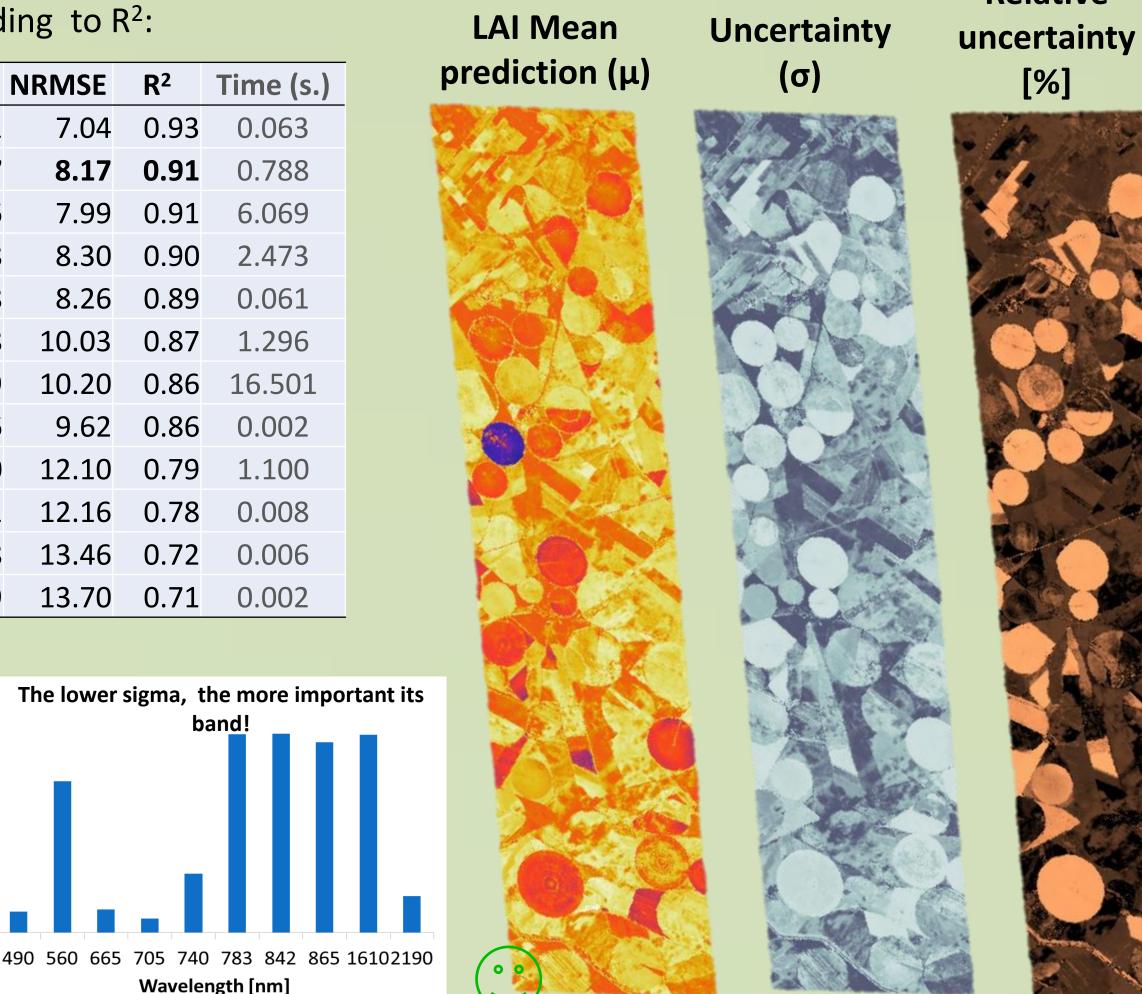
Examples of **robustness**: validation results (R²) along increasing noise levels (X) and training data (Y):

50% validation results ranked according to R²:

MLRA	RMSE	NRMSE	R ²	Time (s.)
Kernel ridge Regression	0.41	7.04	0.93	0.063
Gaussian Processes Regression	0.47	8.17	0.91	0.788
Neural Network	0.46	7.99	0.91	6.069
VH. Gaussians Processes Regression	0.48	8.30	0.90	2.473
Extreme Learning Machine	0.48	8.26	0.89	0.061
Bagging trees	0.58	10.03	0.87	1.296
Relevance vector Marchine	0.59	10.20	0.86	16.501
Least squares linear regression	0.56	9.62	0.86	0.002
Boosting trees	0.70	12.10	0.79	1.100
Partial least squares regression	0.71	12.16	0.78	0.008
Regression tree	0.78	13.46	0.72	0.006
Principal components regression	0.79	13.70	0.71	0.002

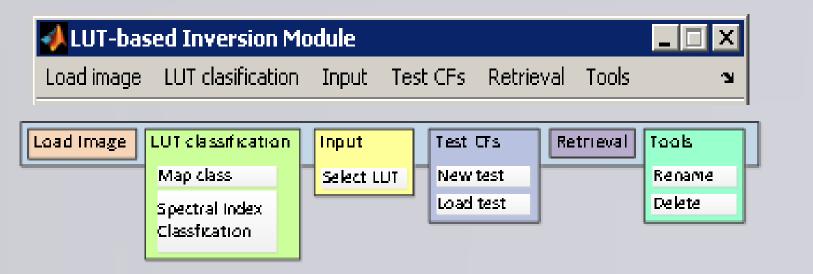


Measured



5. (iii) Inversion of canopy RTM through cost functions - LAI

ARTMO's *Inversion* module:



Retrieval of biophysical parameters through LUT-based inversion.

- LUTs prepared in ARTMO and loaded in *Inversion* module
- More than 60 cost functions have been implemented.
- Various regularization options: adding noise, mean of multiple solutions, data normalization.

PROSAIL LUT (sub-selection 100000):

	Model Parameters	Units	Range	Distribution	Examples of cost functions:
Leaf	variables: PROSPECT-4				Shannon (1948):
Ν	Leaf structure index	unitless	1.1	-	1 <i>/</i>
LCC	Leaf chlorophyll content	$(\mu g/cm^2)$	5-75	Gaussian (x 35, SD:	$D(P,Q) = -\sum_{\lambda_l=1}^{\lambda_n} \left(\frac{p(\lambda_l) + q(\lambda_l)}{2}\right) \log\left(\frac{p(\lambda_l) + q(\lambda_l)}{2}\right)$
				30)	$1\left(\sum_{n=1}^{\lambda_n} (\lambda) I_n(\lambda) \right) + \sum_{n=1}^{\lambda_n} (\lambda) I_n(\lambda)$
C_m	Leaf dry matter content	(g/cm^2)	0.001-0.03	Uniform	$\frac{1}{2} \left(\sum_{\lambda_l=1}^{\lambda_n} p(\lambda_l) log(p(\lambda_l)) + \sum_{\lambda_l=1}^{\lambda_n} q(\lambda_l) log(q(\lambda_l)) \right)$
C_w	Leaf water content	(cm)	0.002-0.05	Uniform	
Cano	py variables: 4SAIL				Laplace distribution:
LAI	Leaf area index	(m^2/m^2)	0.1–7	Gaussian $(x: 3, SD:$	λ_n
				2)	$D(P,Q) = \sum_{l=1}^{n} p(\lambda_l) - q(\lambda_l) $
α_{soil}	Soil scaling factor	unitless	0	-	$\sum_{\lambda_1=1}^{D(1, Q)} - \sum_{\lambda_1=1}^{D(1, Q)} P(\mathcal{A}_l) $
ALA	Average leaf angle	(°)	40–70	Uniform	×1=1
HotS	Hot spot parameter	(m/m)	0.05-0.5	Uniform	
skyl	Diffuse incoming solar radiation	(fraction)	0.05	-	Pearson chi-square:
θ_s	Sun zenith angle	(°)	22.3	-	λη (()) ()) 2
θ_v	View zenith angle	(°)	0	-	$D[P,Q] = \sum_{\lambda=1}^{\lambda_n} \frac{(q(\lambda_l) - p(\lambda_l))^2}{p(\lambda_l)}$
φ	Sun-sensor azimuth angle	(°)	0	-	$\lambda_{1=1} \qquad p(\lambda_l)$

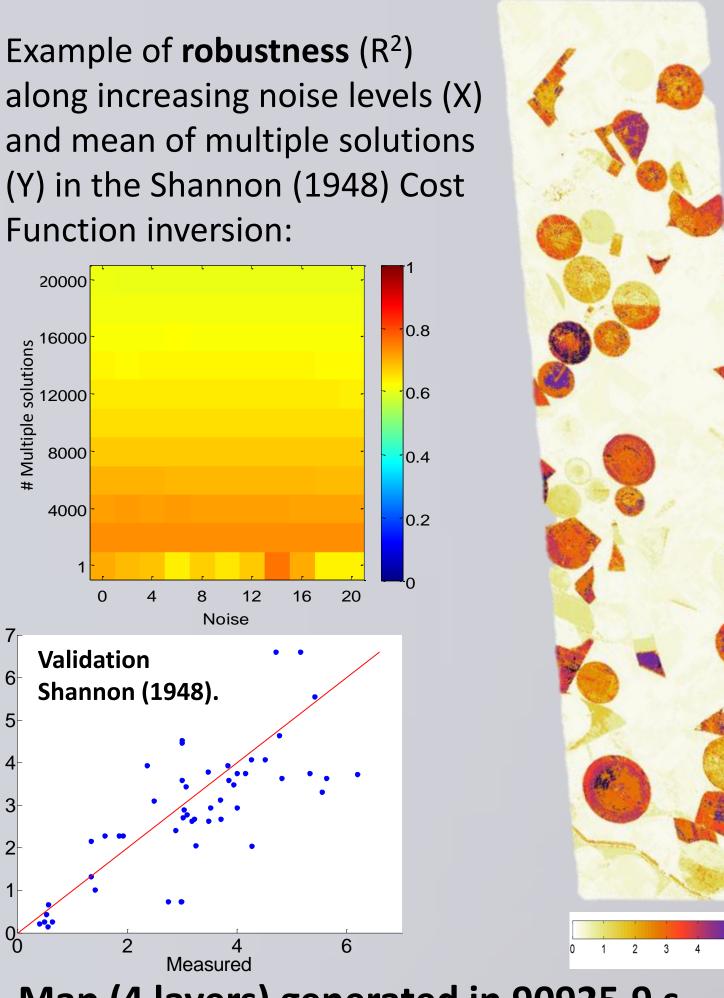
In total 5508 inversion strategies analyzed. 50% validation results for best noise & multiple samples ranked according to R²:

Map (3 layers) generated in 7.5 s.

Sigma

% multiple RMSE NRMSE R² **Cost function** % Noise time (s.) samples single best 0.96 16.56 0.76 0.027 **Shannon (1948)** 14 single best 0.86 14.74 0.74 Laplace distribution 0.021 6 Neyman chi-square single best 0.89 15.31 0.74 0.005 0 Pearson chi-square 17.74 0.73 16 single best 1.03 0.005 Least absolute error 15.28 0.72 single best 0.89 0.005 6 Geman and McClure 16 14.36 0.71 0.83 0.007 2 14.37 0.71 RMSE 16 0.83 0.006 2 14.66 0.71 0.008 Exponential 16 0.85 2 K(x)=x(log(x))-xsingle best 1.06 18.25 0.70 20 0.009 $K(x) = (log(x))^{2}$ 1.01 17.40 0.69 0.012 0 2 single best 2.60 44.84 0.64 K-divergence Lin 4 0.009 1.15 19.82 0.60 Shannon entropy 6 0.013 2 Gen. Kullback-Leibler 1.20 20.63 0.58 10 0.013 2 17.96 0.58 Neg. Exp. disparity 0.007 0 1.04 4 Kullback-leibler 28.62 0.57 4 18 0.009 1.66 K(x) = log(x) + 1/xsingle best 35.65 0.55 2.07 0.012 2 Harmonique Toussaint 20 27.04 0.54 1.57 0.005 2 $K(x) = -\log(x) + x$ 1.77 30.52 0.49 0.012 2

LAI Mean *prediction* (μ)



Map (4 layers) generated in 90925.9 s. (> 25 hours)

1.5 2

Function inversion:

8

Measured

Noise

4

0

Validation

Shannon (1948).

12

20000

, 16000

<u>ត្ត</u> 12000

8000

4000