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Abstract: Image processing entered the era of artificial intelligence, and machine learning algorithms
emerged as attractive alternatives for time series data processing. Satellite image time series
processing enables crop phenology monitoring, such as the calculation of start and end of
season. Among the promising algorithms, Gaussian process regression (GPR) proved to be
a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian
framework, providing associated uncertainty estimates. Nevertheless, the processing of time
series images becomes computationally inefficient in its standard per-pixel usage, mainly for
GPR training rather than the fitting step. To mitigate this computational burden, we propose to
substitute the per-pixel optimization step with the creation of a cropland-based precalculations for
the GPR hyperparameters θ. To demonstrate our approach hardly affects the accuracy in fitting,
we used Sentinel-2 LAI time series over an agricultural region in Castile and Leon, North-West
Spain. The performance of image reconstructions were compared against the standard per-pixel
GPR time series processing. Results showed that accuracies were on the same order (RMSE 0.1767
vs. 0.1564 [m2/m2], 12% RMSE degradation) whereas processing time accelerated about 90 times.
We further evaluated the alternative option of using the same hyperparameters for all the pixels within
the complete scene. It led to similar overall accuracies over crop areas and computational performance.
Crop phenology indicators were also calculated for the three different approaches and compared.
Results showed analogous crop temporal patterns, with differences in start and end of growing
season of no more than five days. To the benefit of crop monitoring applications, all the gap-filling
and phenology indicators retrieval techniques have been implemented into the freely downloadable
GUI toolbox DATimeS.

Keywords: Gaussian processes regression; time series; crop monitoring; Sentinel-2; phenology
indicators; optimization

1. Introduction

Earth observation (EO) is used to monitor and assess continuously the status of, and changes in,
natural and managed vegetated lands [1,2]. Today, a growing amount of EO data comes mainly from
different airborne and satellite remote sensing observations. For instance, the Copernicus’ flagship for
terrestrial EO, i.e., the Sentinel-2 (S2) constellation, provides free, full and open access optical data
with very short revisit times (five days in mid-latitudes), high spatial resolution (10 m and 20 m),
and good spectral resolution (10–180 nm) [3,4]. The usage of optical EO time series has opened
the door to global-scale crop monitoring through their spectral properties using different kinds of
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vegetation indicators such as NDVI (Normalized Difference Vegetation Index) [5], LAI (Leaf Area
Index, projected one-side leaf area per unit of ground area) [6] or fAPAR (Fraction of Absorbed
Photosynthetically Active Radiation) [7]. To achieve that, the generation of continuous fields in
time and space (i.e., gap-filling) starting from irregularly distributed data is of critical importance.
However, these time series are associated with significant uncertainties and incomplete because
of inadequate climatic conditions (e.g., clouds, snow and aerosols), and the long interval needed
for the satellites to revisit and acquire data for the exact same location [8]. Consequently, robust
gap-filling solutions are required for accurate crop phenology characterization [9–11]. A diversity of
interpolation and fitting methods can perform this task (e.g., see review of [12]), but the difficulty
lies in the choice of the one that successfully reconstruct vegetation indices and retrieve reliable
phenology indicators such as dates of start and end of growing season (SOS and EOS, respectively),
maximum peak, day of maximum value (DOM) (when the largest value per cycle occurs), amplitude
(difference between the maximum and the average of the left and right minimum values per season),
length of the season (LOS), etc. [13], which are narrowly related to essential sources of information
including start of senescing, harvest day, productivity estimates, irrigation management, nutrient
management, health management, yield prediction, and crop type mapping [14–16].

Artificial intelligence (AI) is a thriving field with many practical applications and active research
topics (e.g., remote sensing). In the early days of AI, the field rapidly tackled and solved problems that
are intellectually difficult for human beings but relatively straightforward for computers—Problems
that can be described by a list of formal, mathematical rules [17]. Machine Learning (ML) can be
defined as a subset of AI. In ML, machines have the ability to learn on their own without being
explicitly programmed [18,19]. In the last decade, ML has attained outstanding results in estimating
climate variables and related biogeophysical variables (e.g., LAI) from the acquired images at local
and global scales [20–23].

Of specific interest to filling gaps in time series is the emergence of machine learning
regression algorithms (MLRAs) which can serve as fitting functions. Among the multiple MLRA
approaches currently available, the kernel-based methods developed in a Bayesian framework deserve
special attention, such as Gaussian processes regression (GPR) [24]. Recent studies demonstrated
the effectiveness of GPR for LAI time series gap-filling [25–27]. GPR carries out a non-parametric
fitting developed in a Bayesian framework and provides uncertainty intervals along with the mean
estimates [28]. This distinct feature, which is not shared by other machine learning algorithms, can open
a unique source of information to assess the robustness of the predictions at various temporal scales.
The entire procedure of learning a GPR model only relies on appropriate selection of the type of kernel
and the hyperparameters involved in the estimation of input data covariance. Kernels contain our
assumptions about the function we wish to learn and define the closeness and similarity between data
points. Once a kernel is selected, the unknown hyperparameters of the kernel need to be learned from
the training data [29]. This can be done by marginal likelihood maximization, attempting to minimize
for example the squared prediction errors. Finally, inference of the hyperparameters and the weights
for doing predictions can be performed by continuous evidence optimization. We will call this
optimization procedure GPR training. Despite its clear strategic advantage, the most important
shortcomings of this technique are their (1) high computational cost and (2) memory requirements [30],
which grows cubically and quadratically with the number of training points, respectively [31,32].
This can become problematic in view of processing a large amount of data, such as in S2 time series
tiles. Hence, strategies need to be developed on how to speed up the GPR processing while maintaining
the superior performance in terms of accuracy.

In an attempt to optimize GPR time series processing, in this study we describe an efficient
approach to reduce the overall computational burden involved in the hyperparameters optimization
during training stage, and accelerate the gap-filling procedure at pixel level over multiple croplands.
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The remainder of the paper is structured as follows. The GPR theory is described in Section 2.
Section 3 outlines the data and the followed methodology. Section 4 provides the results. Discussion is
presented in Section 5 whereas conclusions and future work lines are finally presented in Section 6.

2. Gaussian Process Regression

Standard Gaussian Process Regression (GPR) models are state-of-the-art statistical methods for
regression and function approximation. In recent years, we have successfully applied GPRs for
the retrieval of biophysical parameters from optical imagery, see [21–23,28,33–37]. GPR models yield
not only predictions of the phenomenon to be characterized by means of a non-parametric modelling,
but also an estimation of their uncertainty. A general introduction to GPR can be found in [22,24].
In the following we briefly review the standard GPR adapted to the general needs of this study.

Let D = {ti, yi}N
i=1 be a set of N pairs of a generic parameter yi extracted from data acquired at

times ti. We use these pairs to learn a function f able to predict the parameter estimates at new times.
Instead of assuming a parametric form for f , we start by assuming an additive noise model:

yi = f (ti) + ei, ei ∼ N (0, σ2
n), (1)

where t ∈ R, σ2
n is the noise variance and f (t) is the unknown (and nonparametric) latent function

to be found. Defining t = [t1, . . . , tN ]
ᵀ, the GPR model assumes that f (t) is a Gaussian-distributed

random vector with zero-mean and covariance matrix K(t, t), i.e., f (t) ∼ N (0, K). The elements ij
of the covariance matrix are calculated by means of a kernel function k(ti, tj) encoding the similarity
between input time points ti and tj. Various covariance functions (kernel functions), with associated
kernel parameters θ (i.e., hyperparameters), can be employed in a GPR ([24,38]): Squared Exponential
(SE), Matern 3/2, Matern 5/2 and Rational Quadratic (RQ), among others. The choice of the covariance
function, and consequently of its hyperparameters, is called model selection.

In this study, we pay special attention to the most commonly employed SE covariance function
(Equation (2)), which reflects our prior assumption that the function to be learned, i.e., the evolution of
any vegetation descriptors in time, is smooth:

k(ti, tj) = σ2
f exp

(
− 1

2l2

(
ti − tj

)2
)
+ σ2

nδij (2)

where σ2
f > 0 is the signal variance, l > 0 is the length-scale, σ2

n >= 0 is the noise covariance and δij

is a Kronecker delta which is 1 if i = j and zero otherwise. These free parameters θ = {σ2
f , l, σ2

n}
allow for flexible customization of the GPR for a wide variety of regression problems. They have
the following interpretation:

• Length-scale l describes how smooth a function is. Small length-scale value means that function
values can change quickly; large values characterize functions that change only slowly. l also
determines how far we can reliably extrapolate from the training data.

• Signal variance σ2
f is a scaling factor. It determines variation of function values from their mean.

Small value of σ2
f characterize functions that stay close to their mean value, larger values allow

more variation. If σ2
f is too large, the modelled function will be free to chase outliers.

• Noise variance σ2
n is formally not a part of the covariance function itself. It is used by the Gaussian

process model to allow for noise present in training data. This parameter specifies how much
noise is expected to be present in the data.

The Bayesian framework allows us to estimate the distribution of f∗ at the test point t∗ conditioned
on the training data, p( f∗|D, t∗). According to the GPR formulation, f (t∗) is normally distributed with
mean and variance given by:
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f (t∗) = µGPR(t∗) = kᵀ
∗(K + σ2

nI)−1y

σ2
f (t∗) = σ2

GPR(t∗) = c∗ − kᵀ
∗(K + σ2

nI)−1k∗
(3)

where k∗ = [k(t∗, t1), . . . , k(t∗, tN)]
ᵀ is an N × 1 vector, y = [y1, .., yN ]

ᵀ and c∗ = k(t∗, t∗) + σ2
n .

For Gaussian process regression with Gaussian noise it is possible to obtain the probability of
the data given the hyperparameters p(y|t, θ) by marginalization over the function values f [24]. The log
marginal likelihood is given by:

log p(y|t, θ) = −1
2

yT
(

K + σ2
nIN

)−1
y− 1

2
log |K + σ2

nIN | −
n
2

log 2π (4)

The first term in Equation (4) can be interpreted as a data-fit term, the second term is a complexity
penalty and the last term is a normalizing constant. The derivatives of the log marginal likelihood with
respect to the hyperparameters are given by:

∂

∂θj
log p(y|t, θ) = −1

2
tr

((
ααT −

(
K + σ2

nIN

)−1

y

)
∂
(
K + σ2

nIN
)

∂θj

)
(5)

where α = K−1y. Any gradient-based optimization algorithm can be applied to Equation (5) to obtain
the hyperparameters that maximize the marginal likelihood of a GPR. We will call this optimization
procedure training the GPR [39,40].

3. Data and Methods

3.1. Data Description

We prepared a demonstration case to assess the validity of the GPR time series processing.
An agricultural region in Castile and Leon, in North-West of Spain, was chosen. The area shown in
Figure 1 was selected as part of a wider validation region of SENSAGRI H2020 Project [21], for which
a highly detailed land-cover map is yearly retrieved by using a random forest classifier on satellite
imagery time series [41]. The classifier distinguishes between 50 specific crop types, being 35 of
them arable crops, seven are irrigated crops and 8 are permanent crops [41]. The scene selected for
the demonstration cases is mainly characterized by an intensive dryland agricultural system where
the arable land comprises up to 80% of the available area.

For the experiments, we used green leaf area index (LAI) generated from atmospherically corrected
S2 imagery using the GPR model developed in the framework of SENSAGRI project [21]. The S2
time series collection consists of 127 unevenly spaced and largely cloud-free acquisitions between
November 2015 to September 2019.
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Figure 1. RGB image of the crop ROIs in Castile and Leon region, Northwest Iberian peninsula,
from Sentinel 2 capture of 26 June 2016.

3.2. Methodology

As opposed to other nonlinear machine learning methods, GPR has proven to be
an attractive and effective tool for gap-filling of biophysical parameter time series [25–27] because
the hyperparameters θ can be optimally set for each time series (one for each pixel in the area) with
a single optimization procedure. A conventional approach adopted by most GPR users is a heuristic
method, i.e., the optimization is repeated using several initial values generated randomly from a simple
prior distribution. The final estimates of the hyperparameters are the ones with the largest likelihood
values after convergence [24,42]. However, one of the main difficulties is the computational burden
in estimating the final hyperparameters, and consequently the inverse of the covariance matrix in
Equation (3), whose dimension grows proportionally with the number of training samples. To address
such shortcoming and repetitive procedure for each pixel, we propose the use of precalculated
hyperparameters to speed up the training stage of the GPR algorithm. The pursued experimental
setup is detailed here:

1. Crop type selection. For each crop type found in the available dataset (i.e., wheat, corn, barley,
sunflower, rape, pea, alfalfa, beet and potato), we randomly selected 100 parcels larger than
50 pixels.

2. Hyperparameter optimization. Hyperparameters were optimally determined by assessing
individually each pixel, across the time series.

3. Hyperparameter average. In this step, we simply took the mean of the previously
trained hyperparameters for each crop type. Additionally, we also computed a global
average of the hyperparameters over all pixels within the randomly selected parcels
(i.e., without any crop segregation).

4. Time series prediction. Subsequently, LAI-reconstructed time series were computed with different
GPR model parameterizations, i.e., using the hyperparameters described in point 2 and 3.

5. Statistical analysis for performance comparison. In this step, we evaluated the performance of
the different GPR models in terms of reconstruction (original vs. recontructed LAI time series)
and processing time. The performance was assessed with the goodness-of-fit indicator root mean
square error (RMSE), i.e., the lower the RMSE the better the reconstruction.

6. Phenological metrics extraction. Finally, we analyzed how the different GPR parametrizations
(i.e., free vs. fixed hyperparameters) affect the estimation of phenological indicators derived from
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the reconstructed LAI time series. For determining when the seasons start and end, we used
a percentage of the seasonal amplitude, defined between the base level and the maximum value
for each individual season [27,43]. For easy visualization and interpretation, we calculated the SOS
when the left part of the fitted curve reached a 20% of the seasonal amplitude, counted from
the base level. The EOS was defined similarly, but using the right side of the curve.

With ambition to tackle these procedures in a streamlined way, the entire analysis was conducted
in the so-called Decomposition and Analysis of Time Series Software (DATimeS) [27], a novel
and generic in-house developed scientific time series toolbox. DATimeS is a stand-alone image
processing GUI toolbox written in MATLAB. In short, DATimeS enables performing different advanced
time series tasks for: (1) generating spatially continuous maps from discontinuous data using advanced
MLRA (e.g., GPRs) and synergy of multiple sensors [26]; and (2) detecting heterogeneous spatial
patterns of phenological indicators (i.e., crop key growth stages) throughout multiple seasons.

4. Results

4.1. Performance of GPR Models

The core part of this study is ascertaining how using precalculated hyperparameters optimized
over crop areas affects the LAI estimates and performance of GPR models. Since the result from models
obtained by performing the per-pixel hyperparameters optimization, here assumed as reference or
“true” models, the accuracy of the different estimates can easily be compared. The hyperparameters
averaged per crop are shown in Table 1.

Table 1. Averaged hyperparameters estimated using fixed crop-type and global apporaches.

Wheat Corn Barley Sunflower Rape Pea Alfalfa Beet Potato Global

log (1/l) −3.9432 −3.6245 −3.6819 −3.6563 −3.8655 −3.2352 −3.6324 −3.7147 −3.4294 −3.6430
log
(

σf

)
−0.6151 −0.1381 −0.6275 −1.4275 −0.0032 −0.9412 −0.9359 0.2405 0.1128 −0.4817

log (σn) −2.0441 −1.5917 −2.0289 −2.1427 −1.3874 −2.1000 −1.8461 −1.0593 −1.4976 −1.7442

Table 2 gives the RMSE between the LAI time series reconstructed by using the conventional
per-pixel hyperparameters (θpp) versus the ones calculated by using per-crop hyperparameters (θpc)
and global (all-crop) hyperparameters (θgl). Regardless of which hyperparameters are used (either
those computed using the same crop type or another specific crop type), the RMSE compared to
the per-pixel hyperparameters is low, producing practically identical predictions. In the worst
case scenario, the RMSE is hardly 0.196 [m2/m2]. Similar outcomes are achieved using θgl
(RMSE < 0.1 [m2/m2]). As expected, the most accurate results are mainly taking place when compared
with the same crop type (bold numbers in Table 2).

Table 2. Mean RMSE of the reconstructed LAI time series using the standard per-pixel hyperparameters
optimization regarding the proposed methodology (i.e., precalculated per crop-type/global
hyperparameters). Last column exhibits the variance in the RMSE. Units: [m2/m2].

Crop Type
Averaged Hyperparameters

Variance
Wheat Corn Barley Sunflower Rape Pea Alfalfa Beet Potato Global

Wheat 0.028 0.032 0.030 0.034 0.027 0.048 0.030 0.028 0.044 0.030 0.007
Corn 0.085 0.046 0.050 0.080 0.072 0.050 0.063 0.055 0.046 0.049 0.015
Barley 0.052 0.036 0.037 0.051 0.046 0.043 0.043 0.039 0.040 0.037 0.006
Sunflower 0.068 0.054 0.056 0.059 0.064 0.047 0.056 0.057 0.050 0.055 0.006
Rape 0.086 0.086 0.083 0.090 0.084 0.104 0.084 0.082 0.101 0.083 0.008
Pea 0.120 0.084 0.090 0.106 0.110 0.064 0.096 0.095 0.070 0.089 0.017
Alfalfa 0.082 0.069 0.070 0.075 0.078 0.066 0.071 0.072 0.069 0.069 0.005
Beet 0.125 0.091 0.092 0.118 0.112 0.105 0.101 0.095 0.101 0.092 0.012
Potato 0.196 0.087 0.104 0.169 0.167 0.062 0.135 0.121 0.059 0.104 0.046
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An additional proof is given by the variation, in percentage, of the retrieved LAIs with respect to
the benchmark (Table 3). This is calculated by dividing the RMSE estimated in Table 2 by the differences
between the highest and lowest LAI values predicted with the reference GPR models. Once again,
these results clearly illustrate that our approach based on using fixed averaged hyperparameters is
almost insensitive to the crop-type selected for the time series gap-filling: defining a specific crop-type
or averaging the hyperparameters of all crops led to very similar results, with final scores ranging
from 1% to 9%.

It is well known that an incorrect choice of hyperparameters for GPR can significantly affect
the performance of this method [44]. However, a more careful analysis of similarity between the time
series of the same pixel obtained with the different approaches (Table 4) reveals significant high
correlation values (>0.94). Accordingly, reliable LAI gap-filling can be carried out at the highest
feasible accuracy independently of the crop type hyperparameter choice.

Table 3. Variation in percentage of LAI obtained with precalculated hyperparameters with respect
to the benchmark, i.e., LAI values predicted with per-pixel optimization. The last column exhibits
the variance in the percentage.

Crop Type
Averaged Hyperparameters

Variance
Wheat Corn Barley Sunflower Rape Pea Alfalfa Beet Potato Global

Wheat 1.796 2.113 1.950 2.237 1.749 3.106 1.979 1.842 2.869 1.951 0.463
Corn 3.231 1.731 1.883 3.050 2.746 1.891 2.380 2.075 1.749 1.874 0.560
Barley 3.085 2.141 2.201 3.039 2.740 2.557 2.529 2.307 2.391 2.197 0.342
Sunflower 8.837 6.962 7.196 7.650 8.256 6.070 7.242 7.395 6.502 7.079 0.800
Rape 3.126 3.106 3.017 3.264 3.032 3.762 3.037 2.975 3.673 3.002 0.286
Pea 8.669 6.110 6.489 7.678 7.968 4.642 6.982 6.851 5.072 6.428 1.243
Alfalfa 6.585 5.556 5.653 6.006 6.257 5.297 5.702 5.755 5.513 5.586 0.386
Beet 3.549 2.579 2.617 3.342 3.166 2.982 2.857 2.698 2.847 2.591 0.336
Potato 5.468 2.419 2.890 4.711 4.663 1.730 3.771 3.374 1.654 2.890 1.292

Table 4. Mean correlation analysis between the LAI time series estimated by precalculated and per-pixel
optimized kernel hyperparameters (lowest values in bold).

Crop Type
Averaged Hyperparameters

Wheat Corn Barley Sunflower Rape Pea Alfalfa Beet Potato Global

Wheat 0.996 0.996 0.996 0.997 0.997 0.993 0.997 0.997 0.994 0.996
Corn 0.993 0.998 0.997 0.995 0.995 0.997 0.997 0.997 0.998 0.997
Barley 0.991 0.994 0.994 0.993 0.992 0.992 0.994 0.994 0.993 0.994
Sunflower 0.937 0.959 0.956 0.950 0.944 0.966 0.955 0.954 0.964 0.957
Rape 0.993 0.994 0.994 0.994 0.993 0.991 0.994 0.994 0.992 0.995
Pea 0.943 0.968 0.965 0.956 0.951 0.978 0.961 0.962 0.976 0.965
Alfalfa 0.968 0.978 0.977 0.973 0.971 0.979 0.976 0.976 0.978 0.977
Beet 0.992 0.995 0.995 0.994 0.993 0.993 0.995 0.995 0.994 0.995
Potato 0.976 0.993 0.991 0.984 0.981 0.997 0.988 0.989 0.996 0.991

For easiest reference the variation in percentage of the S2-based LAI time series with respect
to different GPR parametrizations are displayed in Table 5. It clearly shows how well different
GPR models are progressing and where any weaknesses may lie. In general, the usage of per-pixel
optimized hyperparameters resulted as the most accurate and robust models (bold numbers in Table 5)
(e.g., 5.8% RMSE increase for barley). After analyzing different GPR parametrizations, it can be
concluded that the accuracy does not change significantly with respect to the crop-type chosen for
the optimization; they produce practically insignificant scatter for operation purposes (e.g., ranging
from 5% to 13%). Also noteworthy is that some crops (e.g., wheat or barley) are more accurate than
others (e.g., pea and sunflower), probably for the higher number of samples available for the former
two classes.
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Table 5. Variation in percentage of LAI obtained with precalculated hyperparameters with respect to
the original LAI time series (lowest values in bold). Last column exhibits the variance in the percentage.

Crop Type Per-Pixel
Hyperpar.

Averaged Hyperparameters
Variance

Wheat Corn Barley Sunflower Rape Pea Alfalfa Beet Potato Global

Wheat 6.269 6.721 6.006 6.165 6.698 6.571 5.138 6.425 6.298 5.335 6.166 0.512
Corn 5.817 7.334 6.223 6.445 7.134 7.066 5.408 6.762 6.631 5.554 6.432 0.640
Barley 5.763 7.150 6.098 6.308 7.043 6.904 5.250 6.663 6.493 5.396 6.309 0.637
Sunflower 9.284 12.717 10.948 11.278 12.165 12.283 9.493 11.691 11.562 9.850 11.251 1.150
Rape 6.905 8.049 6.779 7.111 7.843 7.830 5.288 7.474 7.356 5.504 7.085 0.900
Pea 5.809 10.845 8.908 9.252 10.252 10.357 7.422 9.730 9.560 7.765 9.234 1.482
Alfalfa 8.714 11.136 9.626 9.935 10.792 10.810 8.098 10.352 10.202 8.517 9.920 1.002
Beet 7.436 8.881 7.601 7.857 8.618 8.585 6.537 8.217 8.074 6.749 7.844 0.745
Potato 4.628 7.952 5.863 6.197 7.380 7.389 4.895 6.752 6.521 5.035 6.190 1.091

Finally, we compared the computational time required to calculate GPR hyperparameters
using the conventional per-pixel optimization approach compared with our proposed pre-calculated
hyperparameter approach. The recorded processing time in Table 6 indicates that the proposed
methodology outperforms the conventional strategy being about 90 times faster. Please note that
for the estimation of the computational performance when precalculated hyperparameters are
used, per-crop or global approaches are identical and a unique column accounts for both of them.
Besides, the global model (i.e., GPR model computed by averaging the hyperparameters for each
pixel time series, independently of the crop type) resulted as an optimum trade-off between quality
and computational cost (with accuracy degradation between 6% and 11%, and maximum RMSE of
0.30 [m2/m2]). Special attention also deserves the last column in Tables 2, 3 and 5, where the variance
for each row was estimated. This analysis shows that some crop types are more sensitive to the different
parameterizations (e.g., potato, pea or sunflower is more sensitive to the parameterization than beet,
wheat or barley).

Table 6. Processing time (minutes) using the standard per-pixel hyperparameters optimization
vs. the proposed methodology (i.e., precalculated per crop-type/global hyperparameters).
Computer specifications: CPU i7-8700k @ 3.7 Ghz with 32 gb of RAM, running under windows
10—Matlab 2018b.

Crop Type No. of
Pixels

Time (m)

θpp [θpc,θgl] Ratio

Wheat 62,482 104.136 1.145 90.95
Corn 36,065 60.108 0.661 90.93
Barley 44,154 73.590 0.809 9.,96
Sunflower 29,463 49.105 0.540 90.94
Rape 23,467 39.111 0.430 90.96
Pea 14,726 24.543 0.269 91.24
Alfalfa 21,683 36.138 0.397 91.03
Beet 16,466 27.443 0.301 91.17
Potato 14,337 23.895 0.262 91.20

Total 262,843 438.069 4.814 -

4.2. Performance of Crop Phenology Characterization

Having outlined the potential of fixing hyperparameters, as a follow-up application we compared
the phenological indicators retrieved from the LAI time series reconstructed by the proposed GPR
parametrizations (see. Section 4.1). Since accurate spatiotemporally explicit knowledge of vegetation
phenology is critical to understand the change trend of natural seasonal phenomena and serve for
agricultural production and global change studies [45,46], this comparison becomes crucial to assess
the sensitivity of the phenological parameters to the variations in the hyperparameters.

As described in Section 3.2, DATimeS was used for the automatic identification of vegetation
temporal patterns. To start with a simple example, let us focus primarily on two single pixels,
wheat (Figure 2a) and potato (Figure 3a). Using the same scheme as above, their phenological events
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were estimated testing different LAI-reconstructed time series. In the former case, we used per-pixel
optimized GPR models (θpp). In the second test, hyperparameters were kept constant to a simple
global average estimated by using all the pixels (θgl). In the latter case, these parameters were defined
similarly, but taking only the mean of different crop types, rape (θrape) and corn (θCorn).

(a) (b)

(c) (d)

Figure 2. Modeling LAI time series of wheat by using different GPR parametrizations (θpp,θRape,θgl)
(Figure 2a) and automatic identification of some seasonal patterns (Figure 2b, 2c and 2d). The green
and blue colors represent the area under the curve between SOS and EOS. For reasons of clarity
the associated GPR uncertainties are not displayed. Counting of days starts from 1 January 2016.

The results obtained for the described experiment are shown graphically in Figures 2 and 3
and reported numerically in Table 7. For both cases (potato and wheat), we can see clearly that
the temporal evolution of reconstructed LAI profiles offer similar performance among the use of
conventional GPR models, where each crop presents comparable patterns throughout the different
GPR parametrizations. For wheat, the dates of SOS/EOS/DOM determined with distinct GPR
settings (θpp,θRape,θgl) differ slightly no more than 2 days. Apart from that, the seasonal amplitude
and the maximum value for each individual LAI-reconstructed time series are insignificantly affected
(LAI differences of about 0.1 [m2/m2]). Besides, the influence of different GPR settings on the seasonal
integral (i.e., area under the curve between SOS and EOS) shows the biggest, but not significant,
inconsistencies of about ≈8 [m2/m2d] (approximately 6%). For potato, similar conclusions can be
drawn by comparing the interpolated LAI values using θpp,θcorn and θgl .

Keeping the same scheme as before, a careful “global analysis: of phenological indicators was
done by comparing the different pairs of reconstructed LAI time series (i.e., including all pixels).
For numerical assessment, we calculated the mean absolute deviation (MAD) of the phenological
metrics using the fixed θ approach regarding the ones derived from the conventional per-pixel
optimization technique (Table 8). As before, fixing hyperparameters per crop type or per multiple
crop area (i.e., global) cause no statistically significant amplitude and maximum value differences
(LAI < 0.1[m2/m2]). Concerning SOS/EOS, slight mean differences are observable of about 5 days.
Consequently, it produces fluctuations in LOS of around 7 days. Once again, the seasonal integral
presents the largest deviations (≈7 [m2/m2d]), corresponding to approximately 5%.
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(a) (b)

(c) (d)

Figure 3. Modeling LAI time series of potato by using different GPR parametrizations (θpp,θcorn,θgl)
(Figure 3a) and automatic identification of some seasonal patterns (Figure 3b, 3c and 3d). The green
and blue colors represent the area under the curve between SOS and EOS. For reasons of clarity
the associated GPR uncertainties are not displayed. Counting of days starts from 1 January 2016.

Table 7. Automatic identification of some seasonal patterns computed in DATimeS by using
the reconstructed LAI curves shown in Figures 2 and 3. Units: days for SOS, EOS, LOS, DOM;
[m2/m2] for max value and amplitude; [m2/m2d] for blue and green area.

Wheat Potato

θpp θRape θg θpp θCorn θg

SOS 311 311 313 524 522 520
EOS 538 538 539 606 608 610
LOS 227 227 226 82 87 89
DOM 454 455 453 565 565 565
Max Value 2.79 2.80 2.84 5.09 5.01 4.93
Blue Area 115.01 113.08 107.30 129.70 135.62 137.16
Green Area 56.74 57.07 58.44 55.51 58.02 58.66
Amplitude 1.25 1.26 1.29 3.37 3.35 3.28

Table 8. Mean absolute deviation (MAD) of phenological metrics derived from the predicted LAI
using real GPR models regarding different GPR parametrizations (i.e., using hyperparameter mean
disaggregated by crop types and global hyperparameter average). Units: days for SOS, EOS, LOS,
DOM; [m2/m2] for max value and amplitude; [m2/m2d] for blue and green area.

θ SOS EOS LOS DOM Max Value Blue
Area

Green
Area Amp

Crop Mean 2.76 ± 4.9 3.47 ± 3.6 5.37 ± 10.6 3.49 ± 8.9 0.07 ± 0.1 5.37 ± 10.2 3.19 ± 5.3 0.09 ± 0.1
Global Mean 4.60 ± 8.5 4.99 ± 6.0 7.58 ± 11.2 4.66 ± 8.4 0.09 ± 0.1 6.69 ± 10.1 4.02 ± 6.2 0.12 ± 0.1
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Figure 4. Phenological indicator maps estimated by using θgl (left column) and their differences
regarding θpp (right column). Counting of days starts from 1 January 2017.
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Finally, the spatial field-scale consistency of the result can be easily appreciated by visually
inspecting the final maps in Figure 4 (left column), which were previously estimated by using the global
set of hyperparameters θgl . In general, it shows good agreement in practically every phenological
indicator. In the SOS map it can be clearly viewed that some crops started their growing season
later. The EOS map is consistent as well, leading to homogeneous parcels in terms of length of
season. Also, the day corresponding to the maximum value well resembles the pattern of the start
of season. The differences w.r.t phenological maps derived from the conventional GPR approach
clearly demonstrate a strong similarity, with RMSE differences of about 7 days and 0.22 [m2/m2] in
SOS/EOS and amplitude, respectively (right panels in Figure 4). Based on these results, we can affirm
that the reconstruction of multiple-seasons vegetation temporal patterns are quite insensitive to fixed
hyperparameters optimized over either homogeneous or heterogeneous crop areas.

5. Discussion

GPR is a promising fitting method for gap-filling purposes. In two earlier comparison studies
against alternative interpolation and curve fitting algorithms, GPR was evaluated as top-performing
in accurately reconstructing time series images [26,27]. However, GPR is a kernel-based machine
learning method and in its conventional usage goes along with a computational cost because for each
pixel it goes through a training phase whereby the model hyperparameters (l, σ2

f , σ2
n) are optimized.

While processing time is negligible for a single pixel time series (i.e., in order to 0.1 s), when running
pixel-by-pixel over images it accumulates to a long run-time. It makes this method impractical when
aiming to process time series of complete Sentinel-2 tiles, which contains over 30 M pixels at 20 m
resolution. Therefore, computationally efficient alternatives had to be sought that enables dealing with
such big data.

As an efficient and fast solution, we proposed and evaluated whether the GPR θ hyperparameters
can be precalculated per crop and kept fixed for the characterization of crop dynamics. With a Sentinel-2
demonstration case of LAI time series we showed that performance in terms of RMSE stays alike when
comparing against the default per-pixel optimized setting. Hyperparameters can be kept fixed per
crop type but also globally, i.e., for the heterogeneous crop area. Overall, their mean reconstruction
accuracies in terms of RMSE are 0.1767 and 0.1792 [m2/m2], respectively, as opposed to 0.1564 [m2/m2]

for the standard GPR estimations (i.e., 12% RMSE increase). At the same time the gain in processing
time is up to 90 times faster. Altogether, these results suggest that optimizing the GPR hyperparameters
θ over a limited subset of crop pixels, either homogeneous or heterogeneous, and then fixing their
value for the whole crop area leads to a slight loss in accuracy, while gaining tremendously in run-time.
We therefore believe that this method is a promising way forward in view of time series processing of
large data, such as S2 tiles.

As an application to demonstrate the utility of the fixed θ approach, we used the two proposed
strategies (per crop type and global) for time series reconstruction to enable subsequent calculation
of phenology indicators. Results were alike as opposed to the standard GPR method with per-pixel
hyperparameters. For instance, focusing on the global analysis summarized in Table 8, the maximum
phenological pattern inconsistencies were never greater than 5 and 7 days for SOS/EOS and LOS,
respectively. This again confirms that the hyperparameters can be safely kept fixed for the processing
of agricultural areas.

Although GPR is a rather novel machine learning method that has hardly been applied to time
series processing, some recent studies started exploring GPR in crop monitoring studies. An initial time
series study was recently published by Campos-Taberner [35] where multitemporal LAI maps were
processed from SPOT and Landsat data to monitor rice fields. It enabled identifying the occurrence
of specific phenological phases such as green-up and maturation of the fields. In a follow-up
study the GPR models were extended to Sentinel-2 and Sentinel-1 time series processing [47].
Further progress was achieved by Pipia [26], who used multi-output GPR models to fuse multiple data
sources for improved spatiotemporal reconstruction of vegetation products such as LAI. This approach
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proved to be successful when fusing with radar data in case of persistent cloud cover and gaps become
too long for accurate reconstruction based on optical data alone. Nevertheless, what all these GPR time
series studies have in common is that they processed rather small agricultural regions, merely intended
as demonstration cases. This is not surprising, given GPR’s per pixel training computational costs.
In this respect, with the here proposed alternative, it may well become possible to overcome this
limitation and process time series of complete tiles, meaning that more operational processing to
the benefit of crop monitoring can become possible on cloud-computing platforms such as Google
Earth Engine (GEE) or Amazon Web Service (AWS).

As a final remark, we are well aware that actors involved in crop monitoring activities may not be
familiar with machine learning methods or how to run these methods. A key aspect in transferring new
methods to a broader community implies easy access and easy use. To this end, we have implemented
the here proposed method as an option into the DATimeS software toolbox [27]. DATimeS is a GUI
toolbox that only requires a few essential steps such as (1) loading the satellite time series data,
(2) selecting a region of interest if desired, (3) defining cloud mask and then (4) selecting the gap-filling
fitting method, and finally (5) a gap-filling option. The user can choose either to fill solely the gaps due
to cloud cover, but can also choose to reconstruct time series images according to a user-defined or
fixed time step (e.g., every 10 days). When selecting GPR as fitting method, in version 1.1 the option
has been added to fix hyperparameters, e.g., per crop type when a land cover map is provided. Fixing
is done by asking the user for specific hyperparameters or by giving the possibility to use those derived
from this study. In case no land cover map is available, standard GPR methodology can be applied.
Finally, the option to compute a new set of precalculated optimum hyperparameters over specific
mask-defined regions (to be fully processed or randomly sampled) or specific class from an available
land cover map will be added to the Matlab-based GUI in the next DATimeS release.

Once having the gap-filling step completed, as a next step, the phenology indicators can be
calculated, and all in an automated fashion. With these improvements in DATimeS, we are convinced
that DATimeS can contribute to: (1) a wider familiarity of machine learning methods for time
series processing, (2) easy tools of gap-filling and subsequent calculation of phenology indicators,
and (3) ability to process big time series data, thanks to the here presented GPR alternatives. The toolbox
can be freely downloaded at http://artmotoolbox.com.

6. Conclusions

Gaussian processes regression (GPR) emerged as a promising machine learning method for time
series gap filling. However, the training on a per-pixel bases makes that this method is considerably
more computationally expensive as opposed to standard interpolation fitting methods such as
empirical smoothing methods and curve fitting methods. To mitigate its computational burden,
in this work we evaluated whether the hyperparameters θ can be preoptimized over a reduced set of
representative pixels and kept fixed over a more extended crop area using Sentinel-2 time series of LAI
maps over a Spanish agricultural region. Our analysis led to the following main findings:

• For all tested crop fields, fixing the hyperparmeters led to LAI accuracies (RMSE) on the order of
0.1767 [m2/m2], as opposed to 0.1564 [m2/m2] for the standard GPR estimations. This suggests
only a small loss in accuracy of around 12%.

• When further simplifying to fix to one hyperparameter for all crop types, the performance was
only degraded between 2% and 7% compared to using the per-pixel optimization.

• Using both methodologies, the gain in processing speed is 90 times faster than the standard GPR
estimations (i.e., 0.00111 vs. 0.1 sec, respectively).

• To demonstrate the validity of the optimization, phenology indicators were calculated based on
the different GPR strategies. The final maps show the good quality of the proposed approach,
with no statistically significant RMSE differences regarding the conventional GPR methodology
(e.g., 7.27 days in EOS/SOS).

http://artmotoolbox.com
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Altogether, the conducted experiments adequately demonstrated that with precalculating
and fixing θ substantial gain in run-time can be achieved in time series reconstruction while maintaining
the advantages of GPR, i.e., a high accuracy and provision of associated uncertainties. Given that cloud
cover is a common yet undesired part of optical imagery, we are therefore convinced this simplification
is a promising approach for time series gap-filling processing, which in turn is an essential requirement
for precise calculation of crop phenology indicators. To the benefit of the community and to
facilitate the usage of this simplified GPR approach for crop monitoring studies, the method has
been implemented into the freely downloadable GUI software package DATimeS.
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2. Verrelst, J.; Malenovskỳ, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.P.; Lewis, P.; North, P.;
Moreno, J. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on
retrieval methods. Surv. Geophys. 2019, 40, 589–629.

3. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.;
Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services.
Remote Sens. Environ. 2012, 120, 25–36, doi:10.1016/j.rse.2011.11.026.

4. Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.; Garcia-Santos, G.; Fernandes, R.; Berger, M. Sentinels for
science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land.
Remote Sens. Environ. 2012, 120, 91–101.

5. Rouse, W.; Haas, R.; Well, J.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS.
Proc. Third ERTS Symp. 1974, 1, 309–317.

6. Watson, D. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation
rate and leaf area between species and varieties, and within and between years. Ann. Botany 1947, 11, 41–76.

7. Gobron, N.; Pinty, B.; Aussedat, O.; Chen, J.; Cohen, W.; Fensholt, R.; Gond, V.; Huemmrich, K.;
Lavergne, T.; Mélin, F.; et al. Evaluation of fraction of absorbed photosynthetically active radiation
products for different canopy radiation transfer regimes: Methodology and results using Joint Research
Center products derived from SeaWiFS against ground-based estimations. J. Geophys. Res. Atmos. 2006, 111,
doi:10.1029/2005JD006511.

8. Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A comparison of methods for smoothing and gap
filling time series of remote sensing observations—Application to MODIS LAI products. Biogeosciences 2013,
10, 4055–4071, doi:10.5194/bg-10-4055-2013.

9. White, M.A.; Hoffman, F.; Hargrove, W.W.; Nemani, R.R. A global framework for monitoring phenological
responses to climate change. Geophys. Res. Lett. 2005, 32.

10. Rezaei, E.E.; Siebert, S.; Ewert, F. Climate and management interaction cause diverse crop phenology trends.
Agric. For. Meteorol. 2017, 233, 55–70, doi:10.1016/j.agrformet.2016.11.003.

11. Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing
satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417,
doi:10.1016/j.rse.2012.04.001.

12. Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics
extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511,
doi:10.1016/j.rse.2019.111511.

13. Jönsson, J.; Eklundh, L. TIMESAT—A program for analysing time-series of satellite sensor data.
Comput. Geosci. 2004, 30, 833–845, doi:10.1016/j.cageo.2004.05.006.

https://doi.org/10.1016/j.isprsjprs.2015.05.005
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1029/2005JD006511
https://doi.org/10.5194/bg-10-4055-2013
https://doi.org/10.1016/j.agrformet.2016.11.003
https://doi.org/10.1016/j.rse.2012.04.001
https://doi.org/10.1016/j.rse.2019.111511
https://doi.org/10.1016/j.cageo.2004.05.006


Agronomy 2020, 10, 618 15 of 16

14. Alam, M.M.; Strandgard, M.N.; Brown, M.W.; Fox, J.C. Improving the productivity of mechanised harvesting
systems using remote sensing. Austral. Forest. 2012, 75, 238–245, doi:10.1080/00049158.2012.10676408.

15. Jayawardhana, W.; Chathurange, V. Extraction of Agricultural Phenological Parameters of Sri Lanka Using
MODIS, NDVI Time Series Data; International Conference of Sabaragamuwa University of Sri Lanka 2015
(ICSUSL 2015). Proc. Food Sci. 2016, 6, 235–241, doi:10.1016/j.profoo.2016.02.027.

16. Zhang, X.; Zhang, Q. Monitoring interannual variation in global crop yield using long-term
AVHRR and MODIS observations. ISPRS J. Photogramm. Remote Sens. 2016, 114, 191–205,
doi:10.1016/j.isprsjprs.2016.02.010.

17. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
18. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2013.
19. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics), 1st ed.; Springer:

Berlin, Germany, 2007.
20. Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover

and LAIxCab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ.
2006, 105, 313–325, doi:10.1016/j.rse.2006.07.014.

21. Amin, E.; Verrelst, J.; Rivera-Caicedo, J.P.; Pasqualotto, N.; Delegido, J.; Verdú, A.R.; Moreno, J. The Sensagri
Sentinel-2 LAI Green and Brown Product: from Algorithm Development Towards Operational Mapping.
In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1822–1825.

22. Camps-Valls, G.; Verrelst, J.; Munoz-Mari, J.; Laparra, V.; Mateo-Jimenez, F.; Gomez-Dans, J. A survey on
Gaussian processes for earth-observation data analysis: A comprehensive investigation. IEEE Geosci. Remote
Sens. Mag. 2016, 4, 58–78, doi:10.1109/MGRS.2015.2510084.

23. Camps-Valls, G.; Sejdinovic, D.; Runge, J.; Reichstein, M. A perspective on Gaussian processes for
Earth observation. Natl. Sci. Rev. 2019, 6, 616–618, doi:10.1093/nsr/nwz028.

24. Rasmussen, C.; Williams, C. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006.
25. Mateo-Sanchis, A.; Muñoz-Marí, J.; Campos-Taberner, M.; García-Haro, J.; Camps-Valls, G. Gap filling of

biophysical parameter time series with multi-output Gaussian Processes. In Proceedings of the IGARSS
2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018;
IEEE: Piscataway, NJ, USA, 2018, pp. 4039–4042, doi:10.1109/IGARSS.2018.8519254.

26. Pipia, L.; Muñoz-Marí, J.; Amin, E.; Belda, S.; Camps-Valls, G.; Verrelst, J. Fusing optical and SAR time series
for LAI gap filling with multioutput Gaussian processes. Remote Sens. Environ. 2019, 235, 111452.

27. Belda, S.; Pipia, L.; Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Amin, E.; de Grave, C.; Verrelst, J. DATimeS:
A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection.
Environ. Model. Softw. 2020, 127, 104666.

28. Verrelst, J.; Rivera, J.P.; Moreno, J.; Camps-Valls, G. Gaussian processes uncertainty estimates in experimental
Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J. Photogramm. Remote Sens. 2013, 86, 157–167,
doi:10.1016/j.isprsjprs.2013.09.012.

29. Chen, Z.; Wang, B. How priors of initial hyperparameters affect Gaussian process regression models.
Neurocomputing 2018, 275, 1702–1710, doi:10.1016/j.neucom.2017.10.028.

30. Camps-Valls, G.; Martino, L.; Svendsen, D.H.; Campos-Taberner, M.; Muñoz-Marí, J.; Laparra, V.; Luengo, D.;
García-Haro, F.J. Physics-aware Gaussian processes in remote sensing. Appl. Soft Comput. 2018, 68, 69–82,
doi:10.1016/j.asoc.2018.03.021.

31. Hensman, J.; Fusi, N.; Lawrence, N.D. Gaussian Processes for Big Data. arXiv 2013, arXiv:1309.6835.
32. Moore, C.; Chua, A.; Berry, C.; Gair, J. Fast methods for training gaussian processes on large datasets. R. Soc.

Open Sci. 2016, 3, doi:10.1098/rsos.160125.
33. Verrelst, J.; Alonso, L.; Camps-Valls, G.; Delegido, J.; Moreno, J. Retrieval of Vegetation Biophysical

Parameters Using Gaussian Process Techniques. IEEE Trans. Geosci. Remote Sens 2012, 50, 1832–1843,
doi:10.1109/TGRS.2011.2168962.

34. Verrelst, J.; Alonso, L.; Rivera Caicedo, J.; Moreno, J.; Camps-Valls, G. Gaussian Process Retrieval of
Chlorophyll Content From Imaging Spectroscopy Data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
2013, 6, 867–874.

https://doi.org/10.1080/00049158.2012.10676408
https://doi.org/10.1016/j.profoo.2016.02.027
https://doi.org/10.1016/j.isprsjprs.2016.02.010
https://doi.org/10.1016/j.rse.2006.07.014
https://doi.org/10.1109/MGRS.2015.2510084
https://doi.org/10.1093/nsr/nwz028
https://doi.org/10.1109/IGARSS.2018.8519254
https://doi.org/10.1016/j.isprsjprs.2013.09.012
https://doi.org/10.1016/j.neucom.2017.10.028
https://doi.org/https://doi.org/10.1016/j.asoc.2018.03.021
https://doi.org/10.1098/rsos.160125
https://doi.org/10.1109/TGRS.2011.2168962


Agronomy 2020, 10, 618 16 of 16

35. Campos-Taberner, M.; García-Haro, F.J.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Crema, A.;
Boschetti, M. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop
monitoring. Remote Sens. Environ. 2016, 187, 102–118.

36. Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.; Camps-Valls, G.; Moreno, J.
Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A
comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272, doi:10.1016/j.isprsjprs.2015.04.013.

37. Camps-Valls, G.; Jung, M.; Ichii, K.; Papale, D.; Tramontana, G.; Bodesheim, P.; Schwalm, C.; Zscheischler, J.;
Mahecha, M.; Reichstein, M. Ranking drivers of global carbon and energy fluxes over land. In 2015
IEEE International Geoscience and Remote Sensing Symposium (IGARSS); IEEE: Piscataway, NJ, USA, 2015;
pp. 4416–4419.

38. Aye, S.; Heyns, P. An integrated Gaussian process regression for prediction of remaining useful life
of slow speed bearings based on acoustic emission. Mech. Syst. Signal Proc. 2017, 84, 485–498,
doi:10.1016/j.ymssp.2016.07.039.

39. Rasmussen, C.E. Gaussian processes in machine learning. In Advanced Lectures on Machine Learning; Springer:
Berlin, Germany, 2004; pp. 63–71.

40. Blum, M.; Riedmiller, M. Optimization of Gaussian Process Hyperparameters using Rprop. In Proceedings of
the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN), Bruges, Belgium, 24–26 April 2013.

41. Gómez, V.; Medina, V.; Bengoa, J.; García, D. Accuracy Assessment of a 122 Classes Land Cover Map
Based on Sentinel-2, Landsat 8 and Deimos-1 Images and Ancillary Data. In Proceedings of the IGARSS
2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018;
pp. 5453–5456.

42. Brahim-Belhouari, S.; Bermak, A. Gaussian process for nonstationary time series prediction. Comput. Stat.
Data Anal. 2004, 47, 705–712, doi:10.1016/j.csda.2004.02.006.

43. Udelhoven, T. TimeStats: A Software Tool for the Retrieval of Temporal Patterns From Global
Satellite Archives. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2011, 4, 310–317,
doi:10.1109/JSTARS.2010.2051942.

44. Takigawa, I.; Shimizu, K.; Tsuda, K.; Takakusagi, S. Machine learning predictions of factors affecting
the activity of heterogeneous metal catalysts. In Nanoinformatics; Springer: Singapore, 2018; pp. 45–64,
doi:10.1007/978-981-10-7617-6_3.

45. Yu, L.; Liu, T.; Bu, K.; Yan, F. Monitoring the long term vegetation phenology change in Northeast China
from 1982 to 2015. Scienti. Rep. 2017, 7, 1–9, doi:10.1038/s41598-017-14918-4.

46. Ren, S.; Chen, X.; An, S. Assessing plant senescence reflectance index-retrieved vegetation phenology and its
spatiotemporal response to climate change in the Inner Mongolian Grassland. Int. J. Biometeorol. 2017,
61, 601–612.

47. Campos-Taberner, M.; García-Haro, F.J.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Busetto, L.;
Katsantonis, D.; Stavrakoudis, D.; Minakou, C.; Gatti, L.; et al. Exploitation of SAR and optical sentinel data
to detect rice crop and estimate seasonal dynamics of leaf area index. Remote Sens. 2017, 9, 248.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.isprsjprs.2015.04.013
https://doi.org/https://doi.org/10.1016/j.ymssp.2016.07.039
https://doi.org/https://doi.org/10.1016/j.csda.2004.02.006
https://doi.org/10.1109/JSTARS.2010.2051942
https://doi.org/10.1007/978-981-10-7617-6_3
https://doi.org/10.1038/s41598-017-14918-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Gaussian Process Regression
	Data and Methods
	Data Description
	Methodology

	Results
	Performance of GPR Models
	Performance of Crop Phenology Characterization

	Discussion
	Conclusions
	References

