

Optimizing LUT-based RTM inversion for retrieval of biophysical parameters

Jochem Verrelst¹, Juan Pablo Rivera¹, Anna Leoneko², Luis Alonso¹, Jose Moreno¹

¹: University of Valencia, Spain

²: Swansea University, UK

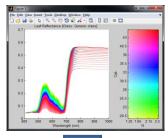
Outline Principles of RTM inversion

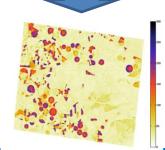
II: ARTMO toolbox

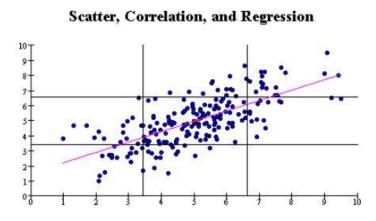
- Design
- Modules
- Inversion strategy

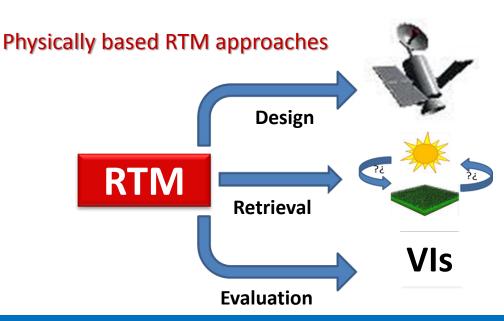
III: LUT-based inversion using CHRIS data

- Optimizing inversion through regularization strategies
- Class-based inversion


VI: Outlook

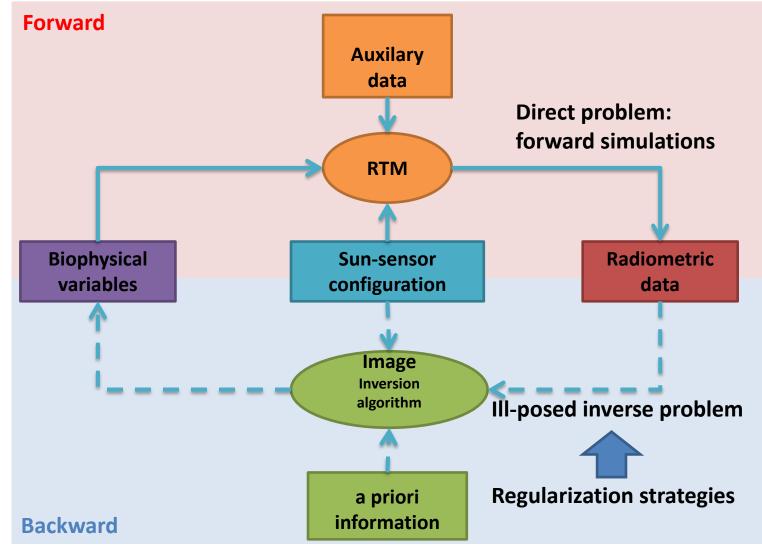





Basics biophysical parameter retrieval

Retrieval of biophysical parameters from optical EO data **always occurs through a model**; e.g. through **statistical models** or through **inversion** of physically-based **radiative transfer models** (RTM).

Statistical approaches

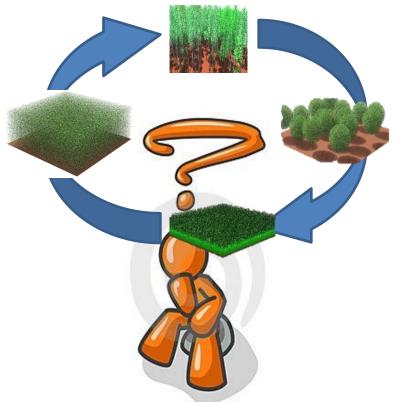


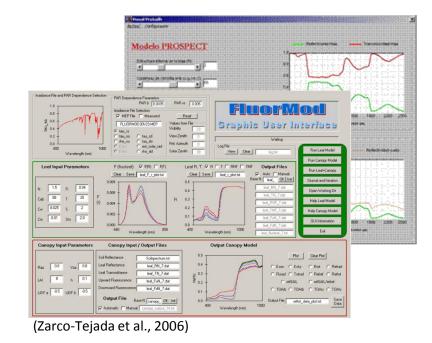
Jochem.verrelst@uv.es – IGARSS

Retrieval of biophysical parameters through RTM inversion:

Jochem.verrelst@uv.es - IGARSS

RTMs





RTMs are important tools in EO research but for the broader community these models are perceived as complicated.

Which RTM is suitable? Which RTM is available?

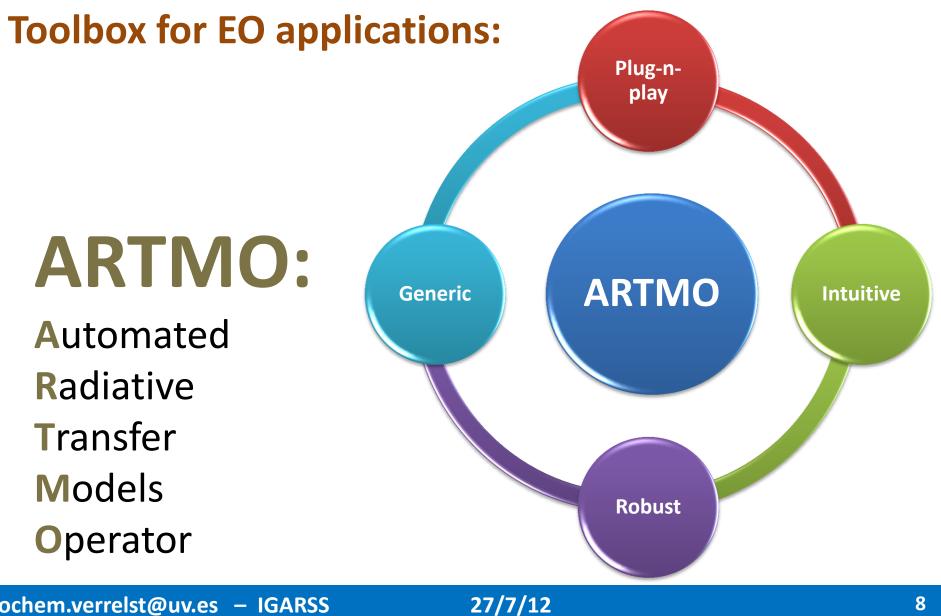
Only very few of them offer a GUI

- Until now there exists no GUI that brings multiple RTMs together.
- None of existing GUIs provide inversion strategies for biophysical parameters retrieval .

Jochem.verrelst@uv.es - IGARSS

Gap to be filled:

> To develop a GUI toolbox that:


- Enables operating various RTMs, both at leaf and at canopy level.
- ✓ Provides tools for EO applications.
- Enables semiautomatic retrieval of biophysical parameters through model inversion.
- ✓ Accounts for variation in land cover during the inversion.

Objective:

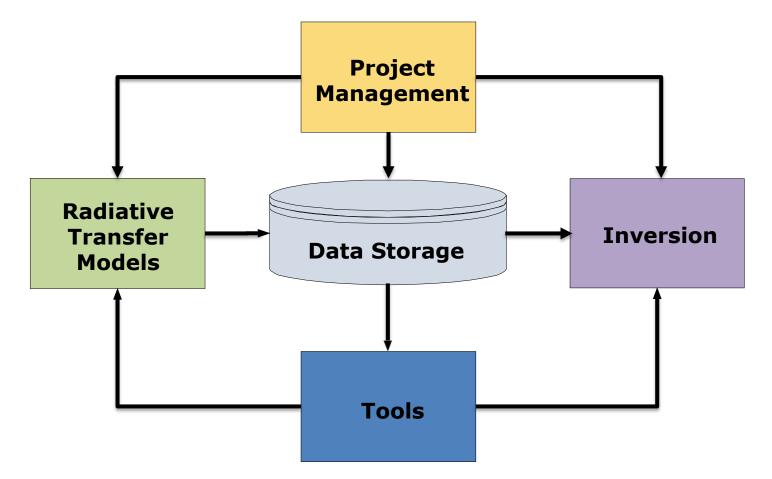
To optimize LUT-based inversion against hyperspectral CHRIS data by using the toolbox.

Reliable	language
Accessible	Invertible

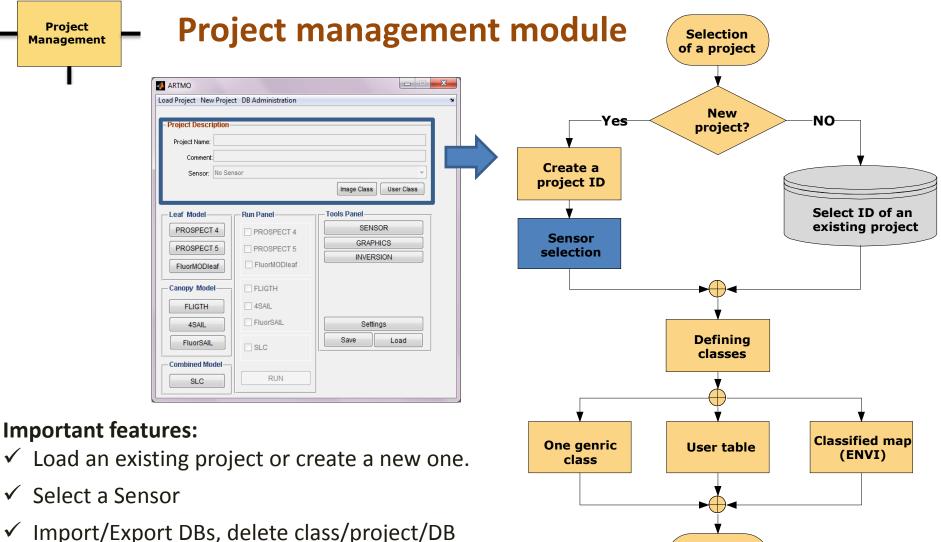
Model	Reference	Source code
Prospect-4	Feret et al., 2008	Matlab
Prospect-5	Feret et al., 2008	Matlab
FluorMODleaf	Pedrós et al., 2010	Executable file
4SAIL	Jacquemoud et al., 2009	Matlab
FluorSAIL	Zarco-Tejada et al., 2006	Executable file
FLIGHT	North, 1996	Executable file
SLC – Prospect + 4SAIL2	Verhoef & Bach, 2007	Mex file (Matlab)

Canopy RTM

Combined RTM

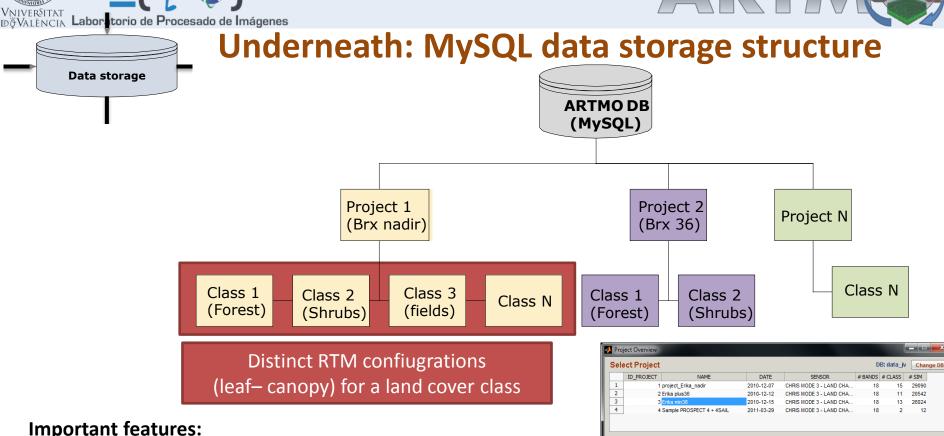

Software packages:

Programming language: Database: Image processing software: Matlab[®] (R2009b) MySQL[®] (5.5.8) ENVI[®] 4.5


Conceptual Architecture ARTMO

Generate ID

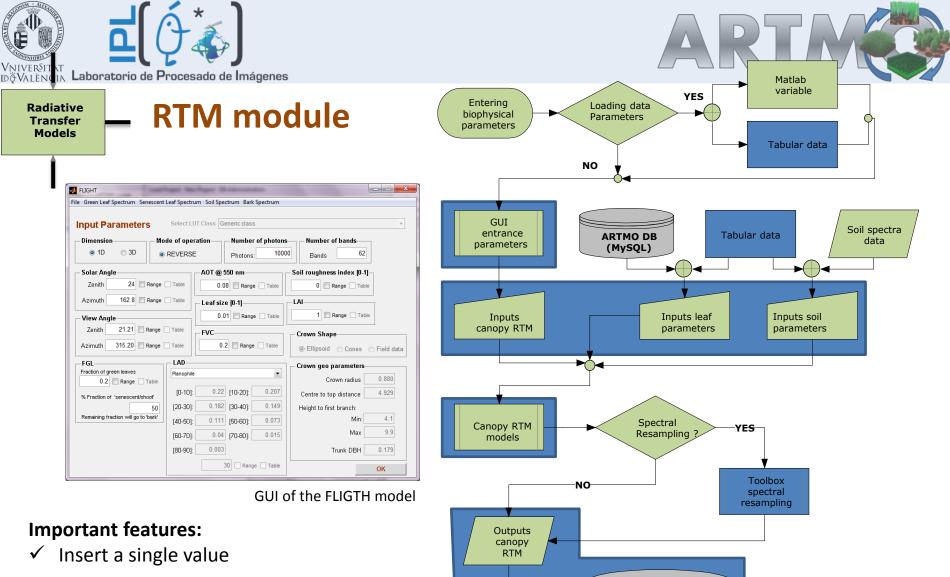
classes



27/7/12

 $\checkmark\,$ Choose whether a project should exist of LUT classes.

DÖVALÈNCIA Laboratorio de Procesado de Imágenes



- Important features:
- All input, output and metadata are stored in MySQL DB
- In 'Project Overview' metadata of all projects can be \checkmark consulted.
- Classes can be accessed. \checkmark
- All fixed input data and ranges of state parameters can be \checkmark consulted.

Jochem.verrelst@uv.es – IGARSS

	ID_PROJE	CT	NA	ME		DATE		SENSOR		# BANDS	# CLASS	# SIM	
		1 proj	ect_Erika_nad	ir	2010	-12-07	CHRIS	MODE 3 - LAND	CHA	18	15	29090	
!		2 Erik	a plus36		2010	-12-12	CHRIS	MODE 3 - LANE	CHA	18	11	20542	
3		3 Erik	a min 36		2010-	-12-15	CHRIS	MODE 3 - LAND	CHA	18	13	26024	
4		4 San	nple PROSPECT	Г 4 + 4SAIL	2011	-03-29	CHRIS	MODE 3 - LAND) CHA	18	2	12	
ele	ct Clas	s Sim	ulation										
	ID_	ID_PY	DATE		MODELS	5		CL	ASS		# SIM		
	20		2011-01-17	FLIGTH			sh	rubs min36 fina	1		2196		18
7	21	3	2011-01-18	FLIGTH			mir	136 forest final	normal		2196		
3	22	3	2011-01-19	FLIGTH			for	est min36 bg-50	0oc		1098		
Э	23	3	2011-01-20	FLIGTH			for	est min36 final	bg-25pc		1098		- E
0	45	3	2011-01-24	FLIGTH			for	est min36 3D te	est		1792		
1	52	3	2011-02-02	FLIGTH			for	est min36 3D b	g-25 fcove	er wide	5440		1
2	58	3	2011-02-04	FLIGTH			forest min36 3D bg-25 fcover wide			5440			
3	66	3	2011-03-31	PROSPECT			he	rbaceous_chl			42		
Lea	af Model						Can	opy Model					OK
	Ite	m		Value				Item			Value		
1	MODELO) F	Prospect4			~	1	lai			00,7.000,0.	000	^
2	ID_MLT				7		2	angle		.000,0.0			E
3	D_CLAS				1	-	3	psoil		.500,0.0			-
4	N		.250,1.250,0.0				4	skyl		.000,0.0			
	Cab	5	6.000,55.000,1	0.000			5	hspot		.100,0.0			-
5			ull			-	6	tts	24 000	24 000 0	000		

- ✓ Insert user-defined input data
- ✓ Insert a range (stepwise or a distribution)
- ✓ Inset one or multiple spectra

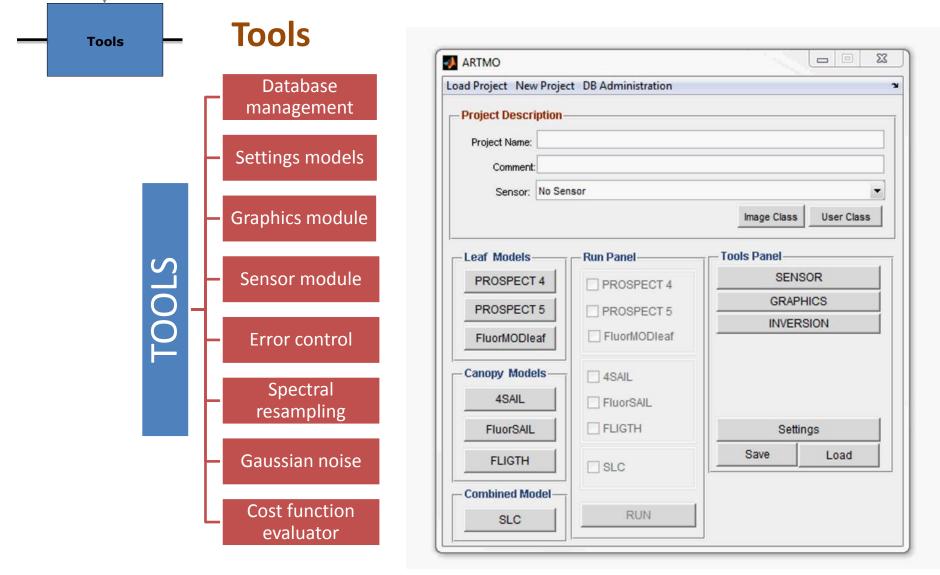
Jochem.verrelst@uv.es – IGARSS

Project

Management ID ARTMODB

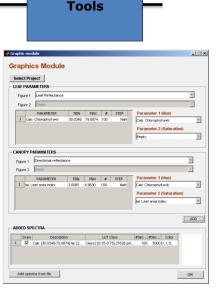
(MySQL)

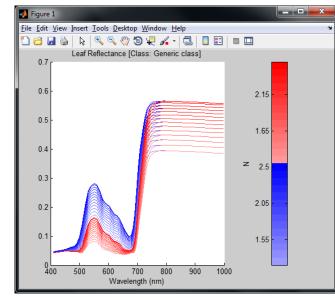
Radiative Transfer Models

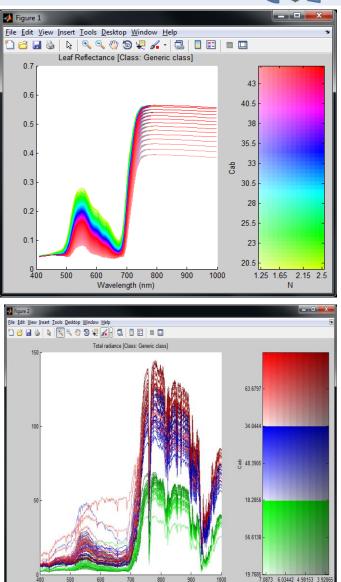

RTM input module

roject Descriptio	n				
Project Name: PRC	SPECT4+4SAIL				
Sensor: No	Sensor 🗸				
		Image Class	User Class		
.eaf Models		Tools Panel			
PROSPECT 4	PROSPECT 4	SEN	SOR		
PROSPECT 5	PROSPECT 5	GRAP	HICS		
FluorMODleaf	FluorMODleaf	INVER	SION		
anopy Models-	4SAIL				
4SAIL	FluorSAIL				
FluorSAIL	FLIGTH	Setti	ngs		
FLIGTH	SLC	Save	Load		
combined Model-					

Jochem.verrelst@uv.es – IGARSS

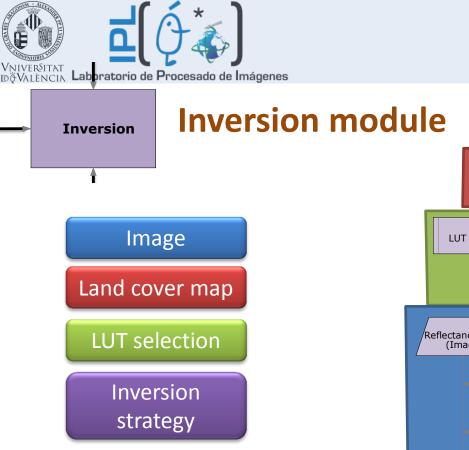




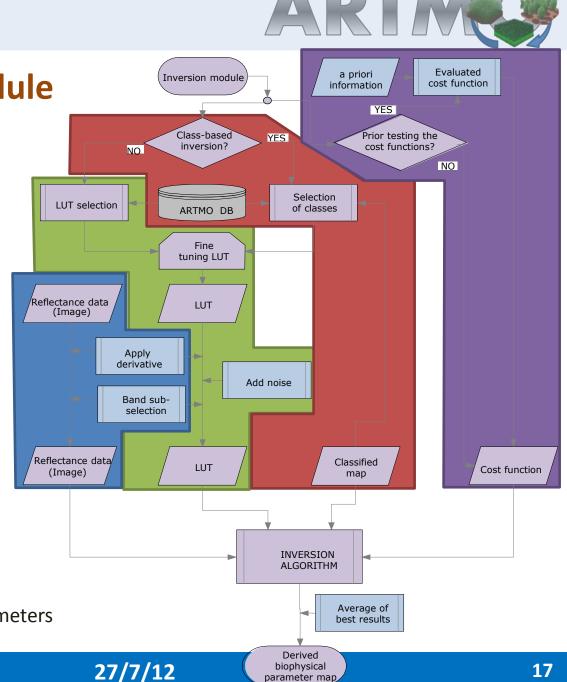


Plotting examples

Important features:


- ✓ A group of spectra can be plotted according to a color range related to 1 parameter.
- ✓ Multiple groups can be added to the same plotting panel.
- ✓ A group of spectra can also be plotted according to 2 parameters, 1 as color hue and 1 as color saturation.
- ✓ External spectra can be added.
- ✓ The 'Graphics' module allows exporting spectra to a .txt file.

Wavelength (nm)


27/7/12

LAI

Important features:

- Generic or class-based inversion \checkmark
- Select form multiple cost functions \checkmark
- Select inversion optimization tools \checkmark
- Retrieve simultaneously multiple parameters \checkmark

Jochem.verrelst@uv.es – IGARSS

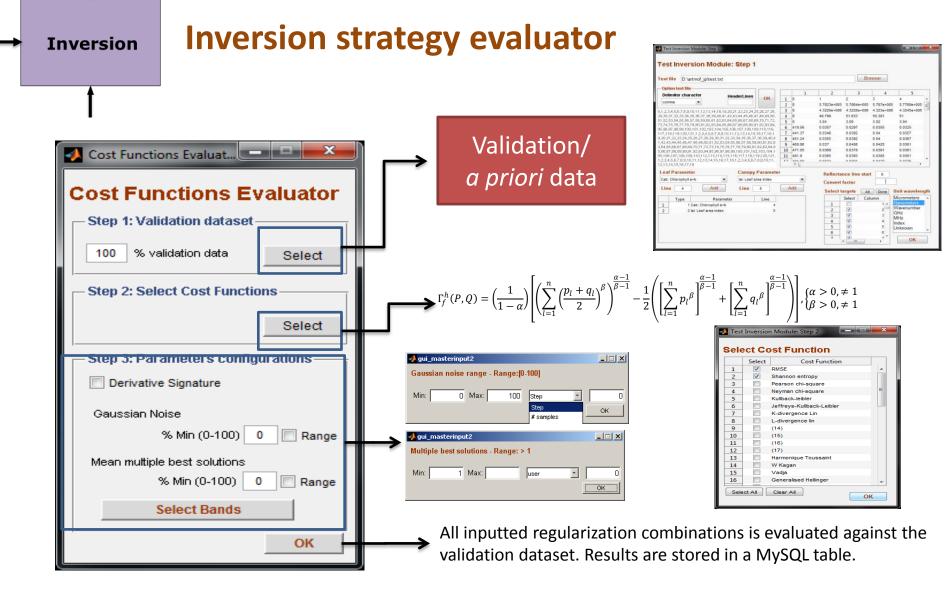
Inversion module

Inversion

Ť

ad Project New P	roject DB Administration		
Project Descript	ion		
Project Name:			
Comment:			
Sensor: N	o Sensor		
		Image Class	User Class
Leaf Models—		Tools Panel	
PROSPECT 4	PROSPECT 4	SEN	SOR
PROSPECT 5	PROSPECT 5	GRAP	HICS
FluorMODleaf		INVER	SION
,			
-Canopy Models	4SAIL		
4SAIL	FluorSAIL		
FluorSAIL	FLIGTH	Setti	ngs
FLIGTH		Save	Load
- Combined Mode			
SLC	RUN		

Jochem.verrelst@uv.es - IGARSS


ARTMO's cost functions: minimizing distances between observed and modeled spectra

More than 60 different cost functions (also known as metrics, distances, or divergence measures) have been implemented (Leonenko et al, 2012). They can be grouped into three families:

- First family is reffered to **information measures** and describes **distances between two** 1. probability functions.
 - Power divergence measure: $D[P,Q] = \sum_{\lambda=1}^{\lambda_n} p(\lambda_i) \frac{\{[p(\lambda_i)/q(\lambda_i)]^{\alpha} 1\}}{\alpha(\alpha+1)}, \alpha \in (-\infty, +\infty)$ ۲
- 2. Second family is called **M-estimates**, and in this case reflectance is considered as a nonlinear regression function.
 - Root Mean Squared Error (RMSE): $D[P,Q] = \sqrt{\sum_{\lambda_i=1}^{\lambda_n} \frac{(p(\lambda_i) q(\lambda_i))}{n}}$ Trigonometric : $\rho(x) = v \left(x \arctan(sx) \frac{\log(s^*x^* + 1)}{2s} \right), s, v > 0.$ ۲
 - •
- Third family of **minimum contrast estimates** represents **distances in the spectral domain**. In 3. this case **reflectance is considered as spectral density function**.

Contrast function K(x)=-log(x)+x: $D[P,Q] = \sum_{\lambda_i}^{\lambda_n} \{-log(q(\lambda_i))/p(\lambda_i)) + q(\lambda_i))/p(\lambda_i)\}.$ •

Jochem.verrelst@uv.es – IGARSS

DÖVALÈNCIA Laboratorio de Procesado de Imágenes

Hyperspectral Satellite data:

CHRIS (Compact High Resolution Imaging Spectrometer)

- Acquisition angle: Nadir
- Mode 1: 62 bands (410-1040 nm), 37 m
- Geometrically and atmospherically corrected

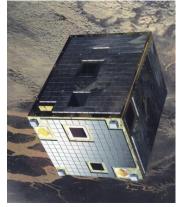
Field measurements for validation:

SPectra bARrax Campaign (SPARC 2003):

- >100 elementary sample units on agricultural fields
- **Rich dataset:** 9 differents crops (corn, sugarbeet, onion, garlic, potato, alfalfa, wheat, sunflower, vine)
- In situ: Ch, LAI, fCOVER, Biomass, Water content,...
- Leaf Chl values between 0 and 55 mg/cm²
- LAI values between 0 and 6.5

Evaluating cost functions:

- RMSE
- 3 alternatives, from each family one.


Jochem.verrelst@uv.es - IGARSS

- Power divergence
- Trigonometric
- Contrast function K(x)=-log(x)+x

Validation

21

LUT easily created (here with PROSAIL)

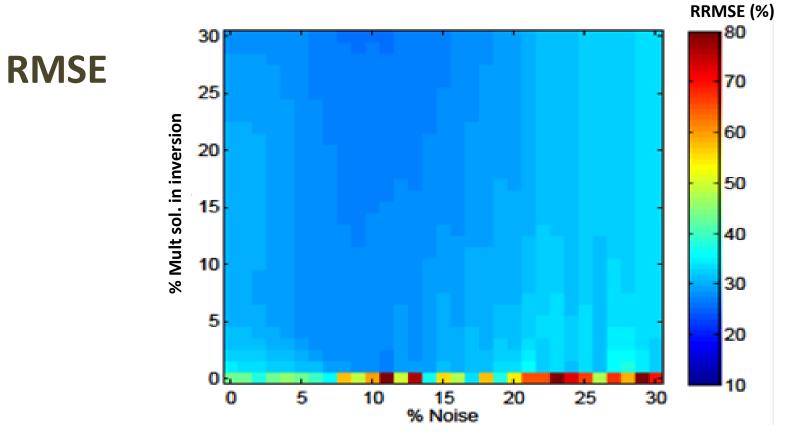
 \checkmark 100000 spectra generated

Spectra automatically resampled to CHRIS mode 1

	Model Parameters	Units	Range	Distribution
Leaf	parameters: PROSPECT-4			
Ν	Leaf structure index	unitless	1.3-2.5	Uniform
Chl	Leaf chlorophyll content	$[\mu g/cm^2]$	5-75	Gaussian (µ: 35, SD: 30)
C_m	Leaf dry matter content	[g/cm ²]	0.001-0.03	Uniform
C_w	Leaf water content	cm	0.002-0.05	Uniform
Cano	ppy variables: 4SAIL			
LAI	Leaf area index	$[m^2/m^2]$	0.1-7	Gaussian (µ: 3, SD: 2)
ALA	Average leaf angle	[°]	40-70	Uniform
α_{soil}	Soil scaling factor	unitless	0-1	Uniform
HotS	Hot spot parameter	[m/m]	0.05-0.5	Uniform
skyl	Diffuse incoming solar radiation	[fraction]	0.05	-
θ_s	Sun zenith angle	[°]	22.3	-
θ_v	View zenith angle	[°]	20.19	-
ϕ	Sun-sensor azimuth angle	[°]	0	-

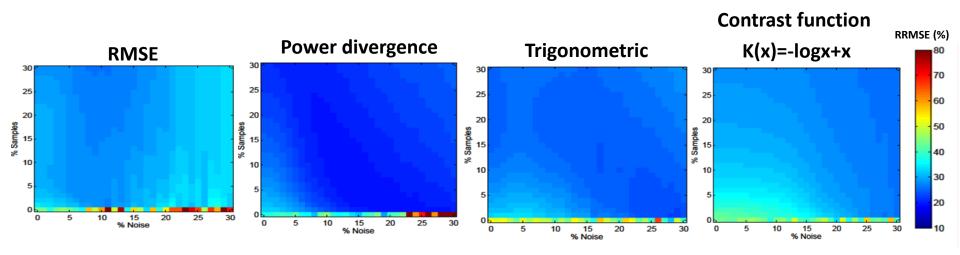
1.5

0.03

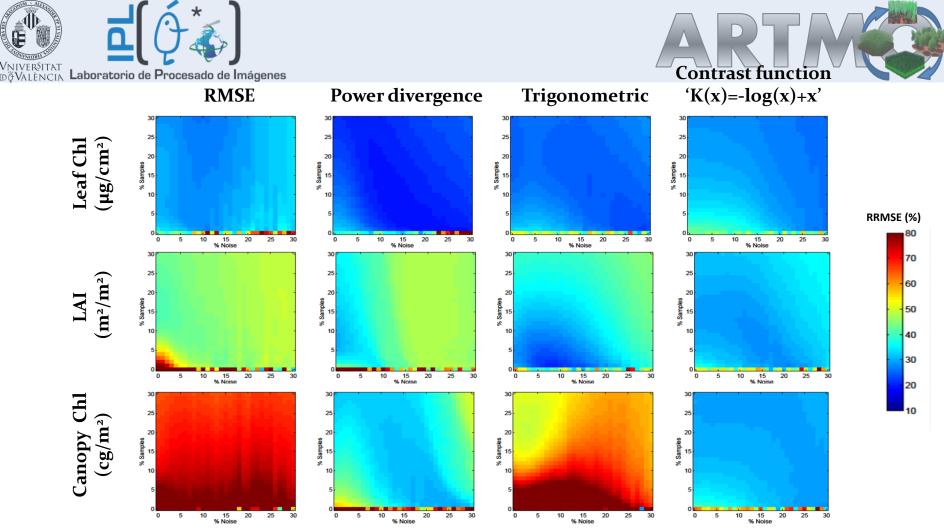


Evaluating the role of inversion strategies against validation dataset

Chl retrieval using CHRIS 62 bands - Validation



- Single best solution never the best choice.
- Regularization options improved retrievals: from 43% to 26%.



Chl retrieval using CHRIS 62 bands

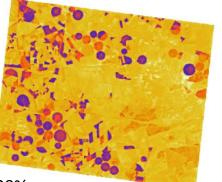
RMSE suboptimal cost function – other cost functions perform superior!

- The single best solution is never the best choice.
- Regularization options different impact on CFs (because of different interpretation on data distribution).
- 'Power divergence' and 'Trigonometric' best performing but they need to be tuned (α , β).

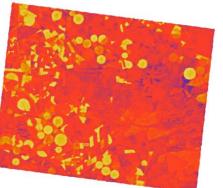
- Different patterns for different biophysical parameters.
- **RMSE is performing poorly** for LAI and extremely poor for canopy chl.
- LAI best retrieved by 'Trigonometric'.
- Given the three biophysical parameters, the Contrast function 'K(x)=-logx(x)+x' yielded overall best results. Most useful for simultaneous retrieval of multiple parameters (21% noise, 1% mult. solution).

27/7/12

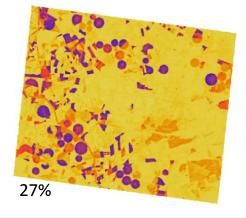
Jochem.verrelst@uv.es - IGARSS



Final maps through optimized LUT-based inversion:

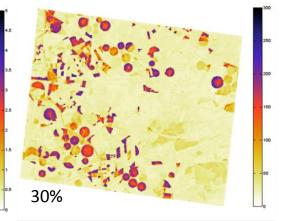

Mean estimation

Leaf Chl (µg/cm²)



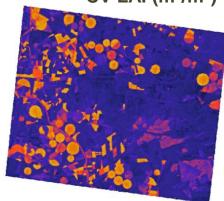
RRMSE: 30% Coefficient of Variation

CV Leaf Chl (µg/cm²)


LAI (m²/m²)

Contrast function K(x)=-log(x)+x

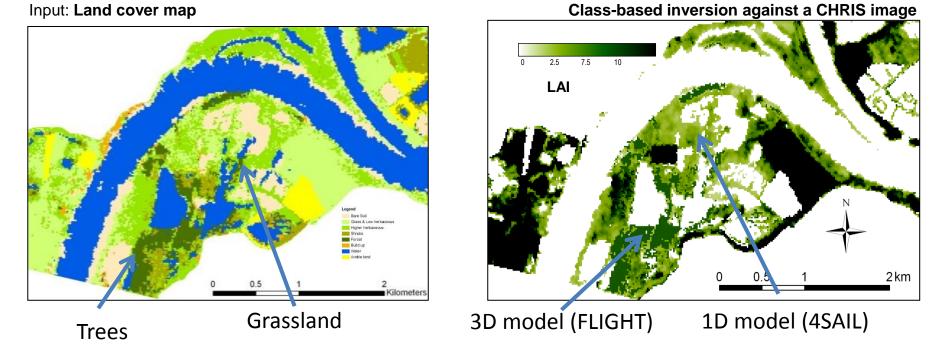
(21% noise, 1% mult. solution)


Canopy Chl (cg/m²)

I (m²/m²) CV Canopy ChI (cg/m²)

CV LAI (m²/m²)

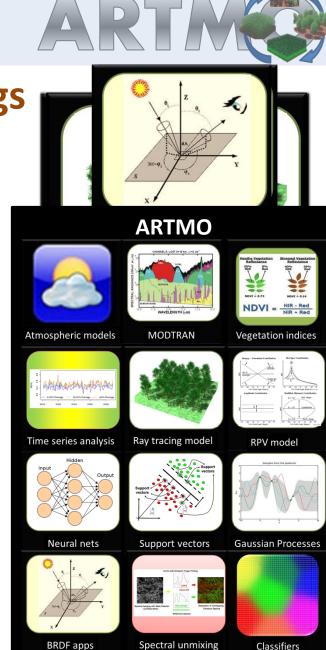
27/7/12


Jochem.verrelst@uv.es – IGARSS

Example class-based inversion: combining 1D and 3D models within same image

Landscapes are typically patchy. With class-based inversion a whole image can be instantly processed.

Models can be combined. As such, more realistic representations of patchy landscapes can be achieved



Outlook ARTMO – towards addings 'apps'

Various new modules and apps can be added to ARTMO:

- Atmospheric correction models
- Module with Vegetation Indices apps
- New RTMs: e.g., GeoSAIL, RPV, FRT, SCOPE, ...
- Module with Nonparametric models (e.g. neural nets, SVR,..)
- Module with BRDF apps
- Unmixing app
- Classifier apps

We encourage colleagues to develop apps for easier working with EO data

Thanks

VERRELST, J., RIVERA J.P., ALONSO, L., MORENO, J. (2011). ARTMO: an Automated Radiative Transfer Models Operator toolbox for automated retrieval of biophysical parameters through model inversion. In: *EARSeL* 7th SIG-Imaging Spectroscopy Workshop 2011, 11-13 April, Edinburgh, UK.

Jochem.verrelst@uv.es - IGARSS

27/7/12

29